

Society of Cable Telecommunications Engineers

ENGINEERING COMMITTEE Interface Practices Subcommittee

AMERICAN NATIONAL STANDARD

ANSI/SCTE 150 2013

Preparing a Line Extender Specification

NOTICE

The Society of Cable Telecommunications Engineers (SCTE) Standards are intended to serve the public interest by providing specifications, test methods and procedures that promote uniformity of product, interchangeability and ultimately the long term reliability of broadband communications facilities. These documents shall not in any way preclude any member or nonmember of SCTE from manufacturing or selling products not conforming to such documents, nor shall the existence of such standards preclude their voluntary use by those other than SCTE members, whether used domestically or internationally.

SCTE assumes no obligations or liability whatsoever to any party who may adopt the Standards. Such adopting party assumes all risks associated with adoption of these Standards or Recommended Practices, and accepts full responsibility for any damage and/or claims arising from the adoption of such Standards or Recommended Practices.

Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent rights. By publication of this standard, no position is taken with respect to the existence or validity of any patent rights in connection therewith. SCTE shall not be responsible for identifying patents for which a license may be required or for conducting inquires into the legal validity or scope of those patents that are brought to its attention.

Patent holders who believe that they hold patents which are essential to the implementation of this standard have been requested to provide information about those patents and any related licensing terms and conditions. Any such declarations made before or after publication of this document are available on the SCTE web site at http://www.scte.org.

All Rights Reserved

© Society of Cable Telecommunications Engineers, Inc. 2013

140 Philips Road

Exton, PA 19341

TABLE OF CONTENTS

1.0	SCOPE	1
2.0	INFORMATIVE REFERENCES	1
3.0	DATA FORMAT	2
4.0	LINE EXTENDER SPECIFICATION NOTES	2
5.0	DATA TEMPLATE	3

1.0 SCOPE

This document provides guidance for preparing a Line Extender requirement specification independent of manufacturer and type.

2.0 INFORMATIVE REFERENCES

Test Procedures used to establish, verify or characterize line extenders should conform to established SCTE requirements. The following test procedures apply when specifying line extender performance.

ANSI/SCTE 06 2009	Composite Distortion Measurements (CSO & CTB)
ANSI/SCTE 16 2012	Test Procedure for Hum Modulation
ANSI/SCTE 17 2007	Test Procedure for Carrier to Noise (C/N, CCN, CIN, CTN)
ANSI/SCTE 45 2012	Test Method for Group Delay
ANSI/SCTE 46 2007	Test Method for AC to DC Power Supplies
ANSI/SCTE 58 2012	AM Cross Modulation Measurements
ANSI/SCTE 62 2012	Measurement Procedure for Noise Figure
ANSI/SCTE 75 2012	Test Point Accuracy
ANSI/SCTE 81 2012	Surge Withstand Test Procedure
ANSI/SCTE 82 2012	Test Method for Low Frequency and Spurious Disturbances
ANSI/SCTE 119 2011	Measurement Procedure for Noise Power Ratio
ANSI/SCTE 121 2011	Test Method for Downstream Bit Error Rate
ANSI/SCTE 144 2012	Test Procedure for Measuring Transmission and Reflection

3.0 DATA FORMAT

Amplifier performance information should specify units and tolerances presented in a clear tabulated format. Ambiguous specification should include explanation notes. Notes should clarify deviation from SCTE test procedures and configuration.

Specification data should include a statement outlining manufacturer's recommended operating settings.

4.0 LINE EXTENDER SPECIFICATION NOTES

- 1. All specifications should include a brief overview of the technology and features incorporated in the product.
- 2. Unless otherwise specified, this specification represents worst-case performance for all parameters within the stated operating conditions.
- 3. Gain and distortion specifications should clearly outline setup and description of specific accessories used in product qualification.
- 4. Noise figure (NF) specifications are within the specified amplifier operating pass-band with specified accessory (pads and equalizers) values and at operational gain as specified in section 5.0.
- 5. Distortion characteristics should apply to all channels, covering the specified operational temperature range with the amplifier configured for normal operation.
- 6. Line Extender Specification should include but are not limited to the SCTE requirements. Product specification may include additional information over and above SCTE minimum requirements.
- 7. All test points should be labeled directional or non-directional and referenced to a port or other location (input/output).

5.0 DATA TEMPLATE

PRODUCT MODEL #						
PARAMETER		Notes	Units	Forward	Reverse	
Technology						
Passband			MHz			
Flatness			+/-dB			
Minimum Full Gain			dB			
Operational Gain			dB			
Manual Control Range	Gain		dB			
	Slope		dB			
Pilot Operating Frequency			MHz			
Pilot Operating Levels	AGC		dBmV			
AGC Range (for +/- 0.5dB hold	d)		+/-dB			
Noise Figure			dB			
Channel Loading	Analog		#			
	Digital		#			
Rated Output Level	$F_{\text{min}}/F_{\text{max}}$		dBmV			
Distortion (@ Rated Output Le	vel) CTB		dBc		N/A	
	XM		dB		N/A	
	CSO		dBc		N/A	
	CIN		dBc		N/A	
Forward BER					N/A	
Dynamic Range @ 54dB C/N-		dB	N/A			

PARAMETE	R	Notes	Units	Forward	Reverse
Forward Group Delay (Channel Carrier to Chroma)					
1st Analog above banded	ge		nSec		
2nd Analog above banded	ge		nSec		
3rd Analog above bandeds	ge		nSec		
Reverse Group Delay					
Lower bandedge to 1.5 MHz above	:		ns/MHz		
1.5 MHz above to 3.0 MHz above			ns/MHz		
3.0 MHz above to 4.5 MHz above			ns/MHz		
4.5 MHz below Upper bandedge to 3.0MHz below			ns/MHz		
3.0 MHz below to 1.5 MHz below			ns/MHz		
1.5 MHz below to upper bandedge.			ns/MHz		
Test Point	Accuracy		+/-dB		
Directional Yes? No	Input		dBc		
Directional Yes? No	Output		dBc		
Return Loss	Input		dB		
	Output		dB		
Return Loss	Input		dB		
	Output		dB		

PARAMETER		Notes	Units	
Hum Modulation			dBc	
DC Voltage (B+)			Vdc	
Current DC			mA	
DC Ripple			mV	
Power Consumption			W	
AC Input Voltage			V	
AC Current	@ 87 VAC		A	
	@ 60 VAC		A	
Rated Low Voltage Limit	@ VAC		A	
AC Bypass Current			A	
Operating Temperature Range			° F (° C)	
Operating Humidity Range			%	
Operating Altitude			f(m)	
Weight			lb(kg)	
Dimensions			in(mm)	