
Digital Video Subcommittee

AMERICAN NATIONAL STANDARD

ANSI/SCTE 67 2017

Recommended Practice for
Digital Program Insertion for Cable

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 1

NOTICE

The Society of Cable Telecommunications Engineers (SCTE) Standards and Operational Practices
(hereafter called “documents”) are intended to serve the public interest by providing specifications, test
methods and procedures that promote uniformity of product, interchangeability, best practices and
ultimately the long term reliability of broadband communications facilities. These documents shall not in
any way preclude any member or non-member of SCTE from manufacturing or selling products not
conforming to such documents, nor shall the existence of such standards preclude their voluntary use by
those other than SCTE members.

SCTE assumes no obligations or liability whatsoever to any party who may adopt the documents. Such
adopting party assumes all risks associated with adoption of these documents, and accepts full
responsibility for any damage and/or claims arising from the adoption of such documents.

Attention is called to the possibility that implementation of this document may require the use of subject
matter covered by patent rights. By publication of this document, no position is taken with respect to the
existence or validity of any patent rights in connection therewith. If a patent holder has filed a statement
of willingness to grant a license under these rights on reasonable and nondiscriminatory terms and
conditions to applicants desiring to obtain such a license, then details may be obtained from the standards
developer. SCTE shall not be responsible for identifying patents for which a license may be required or
for conducting inquiries into the legal validity or scope of those patents that are brought to its attention.

Patent holders who believe that they hold patents which are essential to the implementation of this
document have been requested to provide information about those patents and any related licensing terms
and conditions. Any such declarations made before or after publication of this document are available on
the SCTE web site at http://www.scte.org.

All Rights Reserved

© Society of Cable Telecommunications Engineers, Inc. 2017
140 Philips Road
Exton, PA 19341

http://www.scte.org/

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 2

Table of Contents
Title Page Number
Table of Contents __ 2

1. Introduction __ 6
1.1. Executive Summary ___ 6
1.2. Scope __ 6
1.3. Benefits __ 6

1.3.1. Improvements in Ad Timing Synchronization ___________________________ 6
2. Informative References ___ 6

2.1. SCTE References __ 6
2.2. Standards from Other Organizations __ 7
2.3. Published Materials ___ 7

3. Compliance Notation ___ 8
4. Abbreviations and Definitions __ 8

4.1. Abbreviations __ 8
4.2. Definitions ___ 9

5. Overview ___ 10
5.1. Example SCTE 35 Decoder __ 12

6. Application Guidelines ___ 12
6.1. Practical Boundaries for splice_time() in splice_insert() __________________________ 12
6.2. System Delays __ 13

6.2.1. SCTE 104 Insertion Delays __ 13
6.2.2. Encoder Delays ___ 13
6.2.3. Transmission Delays ___ 13
6.2.4. Splicer/Multiplexor Delays ___ 13

6.3. Splice Time Accuracy ___ 13
6.3.1. Splicer Timing __ 15

6.4. Splice_event_id Usage and Uniqueness ______________________________________ 15
6.5. Use of splice_schedule() Command ___ 17
6.6. Component Splice Mode __ 17

6.6.1. Erroneous Component Splice Commands ____________________________ 18
6.7. Pre-Roll Functionality - Accomplishing a Pre-Roll Function _______________________ 18
6.8. Conditional Access and Cue Encryption ______________________________________ 19

6.8.1. What to Encrypt ___ 19
6.8.2. Operation in a Cue Insertion Device _________________________________ 19
6.8.3. Operation in an Ad Insertion Device _________________________________ 19
6.8.4. Theory of Operation __ 20

7. Usage of fields in the Splice_Insert command __ 24
7.1. Usage of unique_program_id ___ 24

7.1.1. What is a "Program"? ___ 25
7.1.2. What is a "program_id"? __ 25
7.1.3. Why Should Programs Be Identified and Differentiated? _________________ 25
7.1.4. Why Does the Time at Which a Program Is Scheduled Not Identify It? ______ 25
7.1.5. How Will a unique_program_id Alleviate Problems? _____________________ 25

7.2. Avail Fields Usage ___ 26
7.2.1. What is an Avail? __ 26
7.2.2. How Many Avails Occur Within a Program? ___________________________ 26
7.2.3. Why is it important to identify the Avails Within a Program? _______________ 26
7.2.4. How Do the Avail Fields Provide for This? ____________________________ 27
7.2.5. What Does the avails_expected Field Do? ____________________________ 27
7.2.6. Conditional Avails__ 27

8. Cue Usage ___ 29
8.1. Starting a Break ___ 29
8.2. Ending a Break __ 29

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 3

8.3. Spot Sharing Within a Break ___ 30
9. Creation and Usage of Splice Descriptors ___ 30

9.1. What are Descriptors ___ 30
9.1.1. The Problem __ 31
9.1.2. The Solution __ 31

9.2. Registration __ 31
9.3. Creating Compatible Private Descriptors ______________________________________ 31
9.4. Using the avail_descriptor. ___ 32
9.5. Using the DTMF Descriptor __ 33

9.5.1. Pre-roll Timing __ 33
9.5.2. DTMF Tone Sequence __ 34
9.5.3. SCTE 35 Operating Modes __ 34

9.6. Usage of Segmentation Descriptors ___ 34
9.6.1. Segmentation Descriptor Field Usage ________________________________ 34
9.6.2. Delivery of Segmentation Descriptors ________________________________ 36
9.6.3. Processing of Segmentation Descriptors ______________________________ 36
9.6.4. Specific Use Cases __ 37
9.6.5. Identifying Placement Opportunities _________________________________ 38
9.6.6. Identifying Standalone Advertisements _______________________________ 39

10. Presentation Time Stamp considerations __ 42
10.1. Handling Time Base Discontinuities ___ 42
10.2. Cascaded Splicing Devices __ 43

10.2.1. Restamping Cue Messages __ 43
10.2.2. Cue Propagation __ 44
10.2.3. Delay ___ 44
10.2.4. Logical Cascading ___ 44

11. Command Usage __ 44
11.1. Bandwidth Reservation Command __ 44

11.1.1. Why Use a Bandwidth Reservation Command? ________________________ 44
11.2. Heartbeat Messages ___ 45

11.2.1. Why Use a Heartbeat Message _____________________________________ 45
11.3. Time Signal Command __ 45

11.3.1. Uses for the Time Signal Command _________________________________ 45
11.3.2. Practical Boundaries for splice_time() in time_signal() ___________________ 45

12. Implementing SCTE 35 for Signaling in Linear Content _________________________________ 46
12.1. System Architecture - Provider ___ 46

12.1.1. Rights ___ 47
12.1.2. Programming ___ 47
12.1.3. Sports ___ 47
12.1.4. Ads ___ 47
12.1.5. Scheduling ___ 47
12.1.6. Automation ___ 48
12.1.7. Master Control __ 48
12.1.8. Live/Servers __ 48
12.1.9. SCTE 104 __ 48
12.1.10. Slate/Alternate Switch/Generator____________________________________ 48
12.1.11. Encoder ___ 48
12.1.12. Packager __ 48
12.1.13. Origin ___ 49
12.1.14. CDN __ 49
12.1.15. Distributor __ 49
12.1.16. Metadata Generation ___ 49
12.1.17. App Server ___ 49
12.1.18. Clients __ 49

12.2. System Architecture - Distributor __ 49
12.2.1. Broadcast/Mezzanine __ 50

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 4

12.2.2. QAM/Satellite ___ 50
12.2.3. VOD/nPVR ___ 50
12.2.4. Transcoder ___ 50
12.2.5. Packager __ 51
12.2.6. Origin ___ 51
12.2.7. Metadata Reader __ 51
12.2.8. Player/App Server ___ 51
12.2.9. MVPD Distribution ___ 51

12.3. Extensions to Content Identification for Real Time Signaling ______________________ 51
12.3.1. SCTE 35 Guidelines ___ 51
12.3.2. USAGE of SCTE 35 Restriction Bits _________________________________ 52
12.3.3. Web Restriction Use Cases __ 52
12.3.4. Regional Blackout Use Cases ______________________________________ 56
12.3.5. Alternate Content __ 57
12.3.6. Alternate Content Removal __ 58
12.3.7. Archive Use Cases __ 58
12.3.8. Device Restriction Use Cases ______________________________________ 58

13. Recommendations on carrying SCTE 35 in other than MPEG2 Transport Streams ___________ 58
13.1. General Comments on Transforming SCTE 35 _________________________________ 58

13.1.1. Time Base Conversions ___ 58
13.1.2. Ad Signaling for RTMP ___ 60
13.1.3. AD Signaling for Microsoft Smooth Streaming _________________________ 61
13.1.4. AD Signaling for MPEG-DASH _____________________________________ 61
13.1.5. Ad Signaling for HLS ___ 64

14. Additional Information ___ 67
14.1. Considerations for Evaluation of MPEG-2 Splicing Devices _______________________ 67
14.2. Overview __ 67

14.2.1. Splicer Technology __ 67
14.2.2. Environment __ 68
14.2.3. Splicer Performance ___ 71

14.3. Ad Timing Recommendations __ 74
14.3.1. Provider Issues ___ 74
14.3.2. Distributor Monitoring ___ 75
14.3.3. Cue Timing Monitoring Points ______________________________________ 76

List of Figures

Title Page Number
Figure 1 - System Overview 11

Figure 2 - Cue Message Insertion Points 16

Figure 3 - DES ECB Example 22

Figure 4 - DES CBC Encryption Example 22

Figure 5 - DES CBC Decryption Example 22
Figure 6 - Triple-DES ECB Encryption Example 23

Figure 7 - Triple-DES ECB Decryption Example 24

Figure 8 - Cascading of Splicer / Server Devices 43

Figure 9 - System Architecture 46

Figure 10 - Example Distributor Architecture 50

Figure 11 - Cue Timing Monitoring Points 76

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 5

Figure 12 - Example Cue Timing Monitoring 78

List of Tables
Title Page Number
Table 1 - Avail incrementing/skipping Example 28

Table 2 - (of SCTE 35): splice_descriptor() 32

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 6

1. Introduction

1.1. Executive Summary

This Recommended Practice is to serve as an informational enhancement to SCTE 35, Digital Program
Insertion Cue Message for Cable. SCTE 35 is necessarily brief in many areas in order to maintain
conciseness and accuracy. This document serves as a companion to SCTE 35.

1.2. Scope

This document is an informational companion to SCTE 35. It is not in itself a specification or a standard.
The information within is intended as guideline information. Where this document contradicts SCTE 35,
SCTE 35 takes precedence.

1.3. Benefits

The purpose of this document is to aid splicing equipment designers, ad insertion equipment designers as
well as the purchasers and users of such equipment, such as the networks that will originate Cue
Messages from their uplink sites. This document is also expected to aid in the system integration of
advertising related equipment, both at the Message origination end and at the Message reception end.

SCTE 35 includes content segmentation messages, and this document has been updated to aid the users of
these messages. Some of the new devices that will be interpreting the SCTE 35 commands include
transcoders, packagers, network PVR and other content manipulation, storage and streaming delivery
systems.

There may be crucial information within this document for manufacturers of equipment that pass the Cue
Message as part of the MPEG-2 transport stream. An example of such equipment is a rate altering re-
multiplexer, which performs complex processing of the stream. When the stream is demultiplexed and
processed and then re-multiplexed, it is very important to place the Cue Message in the proper position
relative to the video service and relative to nearby time-base discontinuities. Such equipment may also be
required to alter the Message before retransmission

1.3.1. Improvements in Ad Timing Synchronization

This document makes recommendations on how to maintain proper time synchronization between servers
and splicers. These recommendations include the time synchronization method used between servers and
splicers; methods for configuring splicer controlled Ad Insertion Systems; and methods for monitoring
the proper timing of Cue Messages.

2. Informative References
The following documents might provide valuable information to the reader but are not required when
complying with this document.

2.1. SCTE References

• [SCTE 35] ANSI/SCTE 35 2016 - Digital Program Insertion Cueing Message for Cable.
• [SCTE 30] ANSI/SCTE 30 2015 - Digital Program Insertion Splicing API.
• [SCTE 40] ANSI/SCTE 40 2016 - Digital Cable Network Interface Standard.

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 7

• [SCTE 54] ANSI/SCTE 54 2015 - Digital Video Service Multiplex and Transport System
Standard for Cable Television.

• [SCTE 104] ANSI/SCTE 104 2015 – Automation System to Compression System
Communications Applications Program Interface (API).

• [SCTE 118-1] ANSI/SCTE 118-1 2012 – Program-Specific Ad Insertion - Data Field Definitions,
Functional Overview and Application Guidelines.

• [SCTE 118-2] ANSI/SCTE 118-2 2012 – Program-Specific Ad Insertion – Content Provider to
Traffic Communication Applications Data Model.

• [SCTE 118-3] ANSI/SCTE 118-3 2012 – Program-Specific Ad Insertion – Traffic System to Ad
Insertion System File Format Specification.

• [SCTE 130] ANSI/SCTE 130-1 2013 – Digital Program Insertion – Advertising Systems
Interfaces Part 1 – Advertising Systems Overview (Informative).

• [SCTE 172] ANSI/SCTE 172 2011 – Constraints on AVC video coding for digital program
insertion.

• [SCTE 224] ANSI/SCTE 224 2015 – Event Scheduling and Notification Interface
• [DVS 839] DVS 839 2014 – SCTE Interfaces for Advanced Advertising – Version 29 15-Jul-

2014.

2.2. Standards from Other Organizations

• [13818-1] ITU-T Rec. H.222.0 / ISO/IEC 13818-1 2013 - Information technology – Generic
coding of moving pictures and associated audio information: systems

• [13818-2] ITU-T Rec. H.262.0 / ISO/IEC 13818-2 2012 - Information technology – Generic
coding of moving pictures and associated audio information: video

• [AVC] ITU-T Rec. [13818-4] ISO/IEC 13818-4 2004 - Information technology — Generic
coding of moving pictures and associated audio information — Part 4: Conformance testing

• [312] SMPTE ST 312:2001- Splice Points for MPEG-2 Transport Streams
• [AMF0] "Action Message Format AMF0",

http://download.macromedia.com/pub/labs/amf/amf0_spec_121207.pdf
• [BXF] SMPTE ST 2021-1:2013 - Broadcast Exchange Format
• [DASH] ISO/IEC 23009-1 2013 - Information technology - Dynamic adaptive streaming over

HTTP (DASH) - Part 1: Media presentation description and segment formats, 2nd edition
• [EIDR] Entertainment Identification Registry

http://eidr.org/documents/EIDR_2.0_Best_Practices.pdf
• [EIDRCB] EIDR ID Format – “EIDR: ID FORMAT Ver. .2”,

http://eidr.org/documents/EIDR_ID_Format_v1.2.pdf
• [ESAM] OC-SP-ESAM-API- C01 161021 Real-time Event Signaling and Management API
• [ISOBMFF] ISO/IEC 14496-12 2012 - Information technology - Coding of audio-visual objects -

Part 12: ISO base media file format, 4th edition
• [OATC CF] OATC Content Feed 2.0 www.oatc.us
• [HLS] “HTTP Live Streaming”, https://tools.ietf.org/html/draft-pantos-http-live-streaming-20
• [RFC4648] “The Base16, Base32, and Base64 Data Encodings”
• [XML10] "Extensible Markup Language (XML) 1.0, Fifth Edition",

http://www.w3.org/TR/REC-xml/
[XMLS2] "XML Schema Part 2 Data Type, Second Edition", http://www.w3.org/TR/xmlschema-
2/

2.3. Published Materials

• No informative references are applicable.

http://download.macromedia.com/pub/labs/amf/amf0_spec_121207.pdf
http://eidr.org/documents/EIDR_2.0_Best_Practices.pdf
http://eidr.org/documents/EIDR_ID_Format_v1.2.pdf
http://www.oatc.us/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 8

3. Compliance Notation

shall This word or the adjective “required” means that the item is an
absolute requirement of this document.

shall not This phrase means that the item is an absolute prohibition of this
document.

forbidden This word means the value specified shall never be used.

should

This word or the adjective “recommended” means that there may exist
valid reasons in particular circumstances to ignore this item, but the
full implications should be understood and the case carefully weighted
before choosing a different course.

should not

This phrase means that there may exist valid reasons in particular
circumstances when the listed behavior is acceptable or even useful,
but the full implications should be understood and the case carefully
weighed before implementing any behavior described with this label.

may

This word or the adjective “optional” means that this item is truly
optional. One vendor may choose to include the item because a
particular marketplace requires it or because it enhances the product,
for example; another vendor may omit the same item.

deprecated
Use is permissible for legacy purposes only. Deprecated features may
be removed from future versions of this document. Implementations
should avoid use of deprecated features.

4. Abbreviations and Definitions

4.1. Abbreviations
ATSC Advanced Television Systems Committee, www.atsc.org
AVC Advanced Video Coding AVC
CBC Cipher Block Chaining
CBR Constant Bit Rate
CDN Content Delivery Network
CRC Cyclic Redundancy Check
DASH Dynamic Adaptive Streaming over HTTP [DASH]
DES Data Encryption Standard
DTMF Dual Tone Multi Frequency
DTS Decoding Time Stamp [13818-1]
DVB Digital Video Broadcasting
ECB Electronic Code Book
ECM Entitlement Control Message
EMM Entitlement Management Message
GOP Group of Pictures
HD-SDI High-Definition Serial Digital Interface
IDR Instantaneous Decoder Refresh
MPEG Moving Picture Experts Group
MPD Media Presentation Description
MPTS Multi Program Transport Stream.
MVPD Multichannel Video Programming Distributor
PES Packetized Elementary Stream [13818-1]

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 9

PID Packet Identifier
PMT Program Map Table [13818-1]
PTS Presentation Time Stamp [13818-1]
SCTE Society of Cable Telecommunications Engineers Inc., www.scte.org
SDI Serial Digital Interface
SPTS Single Program Transport Stream
T-STD Transport Stream System Target Decoder
TVE TV Everywhere
uimsbf Unsigned integer, most significant bit first
VANC Vertical Ancillary Data
VBR Variable Bit Rate

4.2. Definitions

Access Unit The coded representation of a video picture or an audio frame
[13818-1]

Ad Insertion System A combination of servers and splicers used to splice advertisements
into digital networks

Advanced Video Coding Refers specifically to video compression standardized in ISO/IEC
14496-10 [AVC]

Analog Cue Tone In an analog system, a signal which is usually either a sequence of
DTMF tones or a contact closure that denotes to ad insertion
equipment that an advertisement avail is about to begin or end

Avail Time space provided to cable distributors by cable programming
services during a program for use by the CATV distributor; the time
is usually sold to local advertisers or used for channel self promotion

Break Avail or an actual insertion in progress
C3 An audience measurement that is specified to include live viewing as

well as DVR viewing up to 75 hours from the ad minute original
broadcast time

Cipher Block Chaining This is a specific method of encryption. It is one of the methods used
in DES

Cyclic Redundancy Check A method to verify the integrity of a transmitted Message
Component Splice Mode A mode of the Cue Message whereby the program_splice_flag is set

to ‘0’ and indicates that each PID/component that is intended to be
spliced will be listed separately by the syntax that follows.
Components not listed in the Message are not be spliced

Cue Message In the context of this document a message is the contents of any
splice_info_section of an SCTE 35 message in a compressed stream

Data Encryption Standard A method for encrypting data with symmetric keys
Digital Video Broadcasting An international consortium for the development of digital television

systems
Electronic Code Book This is a specific method of encryption. It is one of the methods used

in DES
Entitlement Control Message These are private conditional access information messages which

specify control words and possibly other, typically stream-specific,
scrambling and/or control parameters

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 10

Entitlement Management
Message

These are private conditional access information messages which
specify the authorization levels or the services of specific decoders.
They may be addressed to single decoders or groups of decoders

Event A splice event or a Viewing Event as defined below
In Point A point in the stream, suitable for entry
Media Presentation
Description

A formalized description for a [DASH] Media Presentation for the
purpose of providing a streaming service

Message In the context of this document a message is the contents of any
splice_info_section

Out Point A point in the stream, suitable for exit
Packet identifier A unique 13-bit value used to identify elementary streams of a

program in a single or multi-program Transport Stream [13818-1]
payload_unit_start_indicator A bit in the transport packet header that signals, among other things,

that a section begins in the payload that follows [13818-1]
PID stream A stream of packets with the same PID within a transport stream
Presentation Time The time that a presentation unit is presented in the system target

decoder [13818-1]
Program A collection of video, audio, and data PID streams which share a

common program number within an MPTS [13818-1]
Program In Point A group of PID stream In Points that correspond in Presentation Time
Program Out Point A group of PID stream Out Points that correspond in Presentation

Time
Program Splice Mode A mode of the Cue Message whereby the program_splice_flag is set

to ‘1’ and indicates that the Message refers to a Program Splice Point
and that all PIDs/components of the program are to be spliced

Program Splice Point A Program In Point or a Program Out Point
Registration Descriptor Carried in the PMT of a program to indicate that, when signaling

Splice Events, splice_info_sections is carried in a PID stream within
this program. The presence of the Registration Descriptor signifies a
program’s compliance with SCTE 35

reserved The term “reserved”, when used in the clauses defining the coded bit
stream, indicates that the value may be used in the future for
extensions to the standard. Unless otherwise specified in SCTE 35, all
reserved bits are set to ‘1’

Splice Event An opportunity to splice one or more PID streams
Splice Immediate Mode A mode of the Cue Message whereby the splicing device chooses the

nearest opportunity in the stream, relative to the splice_info_table, to
splice. When not in this mode, the Message gives a “pts_time”, which
is a Presentation Time, for the intended splicing moment

Trigger In the context of this document a message is the contents of any
splice_info_section of an SCTE 224 message in a baseband stream

TV Everywhere A being authenticated as a subscriber to a distributor, it is the ability
to view TV content on the internet in addition to on one’s television

Viewing Event A television program or a span of compressed material within a
service; as opposed to a Splice Event, which is a point in time

5. Overview
The SCTE 35 standard supports the splicing of MPEG-2 transport streams for the purpose of Digital
Program Insertion, which includes insertion of advertisement and other content types. An in-stream

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 11

messaging mechanism is defined in SCTE 35 to signal splicing and insertion opportunities. A splicing
device is free to ignore Splicing Events signaled by the Cue Message because the Message is not a
command to splice, but is an indicator of the presence of an ad Avail. Inserting content in to the Avail is
optional.

A Cue Message can also signal other events such as program start/end, content identification and other
program or advertisement related events. These events can be used for applications such as network PVR,
TV Everywhere, Regional Blackouts, Live VOD Capture or other advanced services.

As shown in the following diagram, Cue Messages are received and acted upon in the cable system
headends by splicer and server devices to affect the insertion of local advertisements by splicing the ad bit
stream (typically containing the commercial content) into the bit stream of programming content. Similar
to SCTE 30, SCTE 35 does not differentiate between a splicing device and a server. When SCTE 35 uses
the terms “splicer” or “splicing device” the meaning of the sentence may apply to a splicer/server
combination as well. In actual practice it is common for servers (and not splicers) to parse, interpret and
initiate action upon Cue Messages. Since splicer and server devices can be combined into one, this
document often uses the term server/splicer to denote a device or set of devices that together perform both
functions. This block diagram describes the overall functionality and interoperability associated with the
systems that accomplish this.

Figure 1 - System Overview

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 12

In Figure 1 [DVS 839], a compliant MPEG-2 transport stream (either Multi Program Transport Stream or
Single Program Transport Stream) is assumed for the provider stream. No further constraints beyond the
inclusion of the defined Cue Messages are placed upon the stream in SCTE 35.

SCTE 35 specifies a technique for carrying notification of upcoming splice points in the transport stream.
A splice information table is defined for notifying downstream devices of Splice Events, such as a
network Break or return from a network Break. The splice information table, which pertains to a given
program, is carried in a separate PID referred to by that program’s Program Map Table (PMT). In this
way, Splice Event notification can pass through most transport stream remultiplexers without need for
special processing. However, remultiplexers may need to obey certain constraints when they carry the
Cue Message. These constraints are addressed in SCTE 35 and are elaborated on within this document.

SCTE 35 does not address constraints on splicing devices and SCTE 35 splice_info_table syntax and is
not intended to guarantee seamless splicing.

By using PTS to reference In Points and Out Points in the program or component streams frame accurate
splicing is possible. This document does offer some advice on how to properly encode or condition the
video to aid this. While SCTE 35 does not require any stream conditioning, it can be advantageous to get
the best splice results. SCTE 172 defines constraints on insertion materials at In Points and Out Points.
SCTE 172 also provides suggestions on splicer behavior at In Points and Out Points

5.1. Example SCTE 35 Decoder

A sample java SCTE 35 decoder application written using the Netbeans framework is available (provided
separately). It allows you to enter a Base64 or Hex string of the SCTE 35 mpeg section and will decode it
with a printout of the data. It will also convert the Base64 or Hex to the opposite format. This is open
source sample code and it does not have extensive error checking. It may be useful to understand how to
properly parse a Cue Message. The SCTE website will be updated to list the SCTE 35 decoder beside the
listing of the SCTE 67.

6. Application Guidelines

6.1. Practical Boundaries for splice_time() in splice_insert()

How far ahead of the splice must a splice_insert Message be sent, relative to the picture it refers to, in
order to be safely responded to by an Ad Insertion System? SCTE 35 requires a minimum of 4 seconds of
“pre-roll,” which is also termed “arm time.”

The “arm time” denotes the time a Cue Message precedes that actual insertion. The arm time is typically
in the range of 5 - 8 seconds. This is in line with the pre-roll time for analog cue-tones. The arm time
cannot be so short that the Avail passes by before the Ad Insertion System has time to respond. A
minimum of 4 seconds is required for “start” Cue Messages (out_of_network_indicator = 1) and a
minimum of 4 seconds is recommended for “stop” Cue Messages (out_of_network_indicator = 0). It is
not necessary to send a “stop” Cue Message if “Duration” is provided. Manufacturers should provide the
option to generate a real time DTMF “stop” cue-tone at the actual switch point for legacy analog insertion
systems.

More thought about the possible consequences is required if it is desirable to extend the arm time beyond
the recommended eight seconds. To specify a maximum arm time therefore seems premature.

The splice_info_section itself does not have any PTS or DTS value associated with it, as it is not a PES
structure.

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 13

6.2. System Delays

Most devices that operate on the video and audio components will delay the transport stream from the
input to the output of the device. Encoders typically have delays of 0.5 to two or more seconds depending
on if a low delay mode or multi-pass encoding mode is used. Splicers/statistical multiplexors also have
delays in the same range. The satellite transmission of the transport stream also incurs some delay as well.
Converting a transport stream to an adaptive bit-rate format such as [DASH] will incur significant delays
both on the preparation and playback/buffering side.

While most providers prefer that there is as small amount of delay as possible, small amounts of
additional delay are usually only a concern on live programs that have call-in or simulcast issues.

6.2.1. SCTE 104 Insertion Delays

Being able to insert messages with at least 4 seconds of pre-roll to allow the encoders to handle GOP
structures properly, especially in AVC encoding, is a good practice. There are some events that are
manually triggered and can lead to an immediate command being inserted. This will likely result in an
inaccurate splice with MPEG-2 video or picture artifacts if AVC video is used.

One possible solution is to add a few seconds of HD-SDI delay before the SCTE 224 VANC inserter and
craft the Triggers pre-roll value to account for that delay. This would have the effect of adding the
additional pre-roll to the message but to the distributor it would be as if the command happened as an
immediate command.

6.2.2. Encoder Delays

Encoder delays should be handled by the encoder properly resulting in frame accurate splicing. An
encoder can pass the Trigger through immediately as a Cue Message in to the output essentially adding
the encode delay to the pre-roll. In all cases the encoder needs to consider the encode delay when
converting the SCTE 224 frame to the SCTE 35 PTS time.

6.2.3. Transmission Delays

Transmission delays are a factor when generating Cue Messages, although the variability of receipt and
processing within receive sites is a major reason why Cue Messages use the in-stream PTS time.

6.2.4. Splicer/Multiplexor Delays

Section 6.1 describes the suggested minimum pre-roll of 4 seconds for splice insert commands. This
allows for one second of message processing before the 3 second minimum to send a SCTE 30
Splice_Request Message. In order to ensure proper splice accuracy and quality these minimums need to
be adhered to.

Some splicers and servers using MPEG-2 video will attempt to complete insertions even if the timing is
below the minimums as this does represent lost revenue. Some splicers use their delay and/or have faster
processing capabilities to allow for lower minimums and theoretically could have slightly negative splice
times due to delays.

6.3. Splice Time Accuracy

Although precise splice times can be specified using both the Program Splice Mode and Component
Splice Mode a server/splicer may choose to perform splices at other than these precise times. Since most

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 14

splicing devices operate in the compressed domain they are typically constrained to only perform splices
at specific locations in the stream if the splice is to meet the semantic and syntactic requirements of the
MPEG-2 Systems specification [13818-1] and the relevant video coding specification.

See Section 6 of the document for stream requirements for splicing MPEG-2 video. Stream requirements
for splicing AVC and other video codecs are described in SCTE 172. While the details of Out Point
requirements differ, both video codecs require that In Points be intra-coded pictures with no stream
dependencies on pictures prior to the In Point (a closed GOP in MPEG-2, an IDR in AVC). In time
shifted environments (for example VOD), where ads may be inserted into content, the Out and In Points
in the entertainment content may be coincident and, if coincident, needs to meet the requirements of both
an In Point and an Out Point.

If the signaled splice times are not aligned with these locations, the server/splicer may choose nearby In
or Out Points, using the splice times as guidelines, if the resulting splice is to be syntactically seamless.

Splicing between AVC streams with differing GOP structures and/or buffer delays may place further
requirements on the selection of splice points. Please refer to SCTE 172 for details.

In the case of audio, the video Presentation Time of the splice will not in general align with the audio
Presentation Time(s) and, therefore, corresponding audio splices may be executed at times that are "close"
to the nearest video Presentation Time. Consequently, it may be necessary for a server/splicer to replace
existing audio around the splice point with silence to ensure a clean transition.

Note that specific server/splicer implementations may place further, or fewer, restrictions on In and Out
Points depending upon their capabilities. Section 6 of this document discusses various aspects of
server/splicer capabilities and performance.

In order for a splice to be visually seamless, that is occurring at the desired location in the content with no
visible transition (for example, black frames) the specified splice points should align with the GOP
structure of the content. This can be accomplished by various means:

• Encoders that insert splice points under control of an automation system can SCTE 224 adjust the
GOP structure around the splice point so that it meets In or Out Point requirements without
impacting video quality

• Systems that insert Cue Messages into existing content may re-encode the GOP surrounding the
desired splice point so that it meets In or Out Point requirements

• Since splice points will often coincide with scene breaks or changes, encoders that employ scene
change detection will often generate streams where GOP structures naturally align with splice
points (for example, beginning each new scene with a closed GOP or IDR would enable scene
breaks to be used as splice points after encoding).

If the content cannot be encoded such that the desired splice points align with the GOP structure, other
techniques can be used such as encoding a number of black frames around the time of the desired splice
point to minimize the visual effect if the server/splicer performs the splice at the nearest In or Out Point.

Some server/splicers may be capable of inserting black or repeat frames, and corresponding audio silence,
between the nearest valid In or Out Point and the specified splice location to minimize visual effect of
adjusting the splice point. If this is used in an environment where an ad is replacing an existing ad in the
network feed the server/splicer is required to ensure that the combined length of the black frames and the
inserted content does not exceed the length of the replaced ad. Similarly, there is the possibility that the
length or GOP structure of the replacement ad may not precisely align with the original. In that event a
splicer may insert black frames to align with the network feed GOP structure when returning from the ad.

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 15

Alternatively, some splicers may use their buffers and delay to look for an appropriate In Point/Out Point
somewhere in their buffer. This technique should be used carefully and every effort to move in opposite
directions each time a time-jump is made to even out the offset and not overflow or underflow the buffer.

Thus, behavior when requested splice points do not align with actual splice points will be one factor that
differentiates between splicers.

6.3.1. Splicer Timing

This section of the recommended practice considers the splicer control of digital ad insertion. The
following recommendation would change the way ad splices are controlled. As specified by SCTE 30,
the server controls the splice time by sending a splice request, containing the splice time, to the splicer.

Assumptions for a splicer controlled system

• An ideal system where the Cue Message always points to the correct insertion point.
• Distributors will never need to adjust ad insertion timing at their location.

This section recommends two possible ways of having the splicer control the splice time; one using SCTE
130 and one using SCTE 30.

6.3.1.1. Using SCTE 130

Distributors choosing a splicer centric system can implement an SCTE 130 based Ad Insertion System
that behaves as a splicer centric system.

The splicer can also use SCTE 130 to contact an ad decision system (an ad decision system, or ADS as
defined in SCTE 130 Part 1) and request what ad to play at the given break. The splicer will need access
to the ads in some manner, but this is not a difficult task.

This option requires frame accurate PTS splice time from the provider. There is no requirement for time
synchronization with this method.

6.3.1.2. Using the SCTE 30 asset_id_descriptor

Another possible way of deploying a splicer centric system is to utilize the asset_id_descriptor defined in
Section 8.5.5 of SCTE 30:asset_id_descriptor() Field Definitions. The asset_id_descriptor is added to a
Splice_Request command by the server to tell the splicer what ad to play. If the Splice_Request returns
the exact time in the Cue_Request then the splicer should attempt to play (by local file, NFS or some
similar method) the ad when it needs it. There is no longer any need for time synchronization with this
method.

“The asset_id_descriptor() is an implementation of the splice_API_descriptor() which shall only be used
in the Splice_Request message. This descriptor is intended to be used when the asset playout is being
performed by the splicer, but can be used to identify the asset being played also. It is suggested for
advertising content that the spot id or other identifier be used rather than a fully qualified name. For long
form VOD type content, a full asset name will probably be required. How the Server and Splicer manage
the name format is not specified in this document.”

6.4. Splice_event_id Usage and Uniqueness

Note: This section also applies to the segmentation_event_id carried in the segmentation_descriptor.

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 16

Cue Messages can be created by several means: from information embedded in the original audio / video
source, by uplink event trigger systems or by headend event trigger systems. When all of these sources
are combined within a service there is potential for collisions in the splice_event_id value chosen for the
SCTE 35Cue Message. The 32-bit splice_event_id should therefore be partitioned in the following way to
allow each source a unique range of splice_event_id values:

Syntax Bits Type
Event_source 4 uimsbf
Event_number 28 uimsbf

Event_source – A user assigned number for the source of the Cue Message.

Event_number – A number chosen by the Event source to identify an instance of the Cue Message.

The splice_event_id serves to identify a particular instance of an opportunity to change the multiplex. At
least two distinct splice_events are required to perform one insertion, one to initiate the insertion and one
to end it (unless the duration is included in the Message signaling the splice-out).

Each Event is required to have a unique splice_event_id. A splice_event_id cannot be re-used before the
splicing opportunity it describes (fully or in part) has completely passed. A splice_event_id is regarded to
be in-use from the first Cue Message where it appears until about one second after the splice time that it is
associated with. It may be reused for a new Splice Event immediately afterwards. It is not possible to use
the same splice_event_id to signal an Avail’s start and stop if the stop is signaled before the start has been
executed. However, it is possible to reuse the same splice_event_id if the first stop Message is sent after
the start has been executed.

The advertising industry uses additional information besides the splice_event_id to identify the actual
material being played and the time of its insertion. This information includes: service name, time, ad-
agency and spot number.

As long as the Event_source is unique for each point at which Cue Messages can be inserted in the
following chain the Event identifiers will not collide:

Figure 2 - Cue Message Insertion Points

The following values for Event_source are suggested:

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 17

Source of Cue Message Event_source
Value

Example splice_event_id ranges

Cue embedded in original source material 0 0x00000000, 0x00000001 0x0fffffff

Cue created by automation system switching 4 0x40000000, 0x40000001 0x4fffffff

Cue created by manual event trigger system 6 0x60000000, 0x60000001 0x6fffffff

Cue created by local content replacement
system

12 0xC0000000, 0xC0000001 0xCfffffff

6.5. Use of splice_schedule() Command

The splice_schedule() command is intended for announcements of large schedules. It is not intended for
the announcement of single Events. Current implementations of SCTE 35 focus on the support of single
Events that do not rely on the use of the splice_schedule() command.

6.6. Component Splice Mode

While Component Splice Mode is part of the SCTE 35 standard, there are currently no known
implementations and it should be used with caution.

The primary reason for the Component Splice Mode is to allow the replacement of or the passage of
individual elementary streams of any type in a manner consistent with the program content and the
advertiser’s intent.

For example, during a local commercial Break, it might be useful to allow informational data (e.g. market
returns) that is being streamed from the network provider to continue, although the viewer is being shown
a locally inserted commercial. Conversely, with an advanced set-top box implementation, one might offer
the viewer information to be downloaded for later review as part of the commercial. In this case, if the
data content exceeds the duration of the commercial, the advertising data might be continued, although
the program has resumed.

The methodology defined in SCTE 35 allows some data types to be passed while allowing others to be
blocked or replaced during a Break. The decision which to pass and which to block is made by the
Message inserter. A splicing device may choose to behave differently if it knows better or is commanded
to do so by an entity within the headend.

It is the intention of the standard, in both the Program Splice Mode and the Component Splice Mode, that
the splicer should have a great deal of freedom in choosing the actual Access Units (both video and audio)
on which to splice. Some equipment will provide frame accurate splices and some may not.

The signaled splice_time may or may not be on an anchor frame or I-frame and the splicer may need to
round off to a frame that makes sense for its capabilities.

There appears to be industry consensus that in Program Splice Mode it makes the most sense to give a
Presentation Time of a video frame and then let the splicer choose whichever audio frame is closest or
which makes sense for its methods. This wasn’t, however, specified in the standard. It is believed that the
industry will come up with the best way to use the tools (especially if it differs from what is stated here).

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 18

In the Component Splice Mode, things work the same way. A single splice_time should be used (called
the default splice_time). It is optional to give a splice_time for each component. There is some concern in
the industry that the creator of a Message will try to "help" the splicer by giving the exact time of all
components and possibly complicate the job of the splicer (or the splicer may need to ignore the
splice_time for some components).

It is understood that SMPTE [312] requires a time per component to define the exact Access Unit for each
component to be spliced. The cable industry is looking at a different usage for the time per component
approach, however. SCTE 35 allows individual components to start or end at very different times from
the normal beginning or ending of the Break. For instance, a "data" component such as a Java applet may
have to be downloaded to the set-top box a number of seconds prior to the ad in order to support the ad.
This is the primary usage of the unique splice_time for each component.

6.6.1. Erroneous Component Splice Commands

When a Cue Message (in component mode) specifies invalid component tags, the splice should be
executed for all correctly identified components. The intent is to let insertion succeed if possible, even if
the complete chain of devices results in a violation of the standard. Several potential cases are given
below.

In case a device removes one of several audio streams after the Cue Message has been inserted, but fails
to update the Cue Messages (either because it is unaware of them or other reasons), the combination of
stream and Message at the server/splicer will be invalid. It is, however, still possible for the server/splicer
to perform a valid insertion.

In case a device adds a component (e.g. a data channel), but fails to update the Cue Message (same
possible reasons as above), it is still possible to perform a valid insertion.

Whenever a discrepancy between actual stream and Cue Message exists, a server/splicer should perform
the insertion, in order to add error resilience to the chain.

6.7. Pre-Roll Functionality - Accomplishing a Pre-Roll Function

A Pre-Roll function was necessary in the days of analog ad insertion to allow time for a tape machine to
get up to speed by the beginning of the ad Avail. So Analog Cue Tones were often sent about 5 to 8
seconds prior to the Avail (each network used its own chosen time and the consistency was varying). The
early arrival of the cue tone has remained unchanged during the days of hybrid ad insertion where tape
machines are replaced by MPEG servers and decoders, but the insertion was still analog. This early cue
tone is useful for digital ad insertion as well. It gives the ad insertion equipment time to access its ad
database, to determine which ad to play next, to start accessing its disk drives and to fill the MPEG
decoder pipeline. This however takes much less time and allows for pre-rolls typically in the 4 to 5
second range. However, legacy analog systems remain in operation and should be considered until the
industry “sunsets” the requirement to provide DTMF cue tones and differing “splice return” with pre-roll
for digital splices versus actual end-time switch points for analog.

The splice_insert() command is constructed such that a pre-roll time can be used. It is also possible to
repeat a splice_insert() command to increase the error resilience of the system.

The simplest variant is to send the splice_insert() command once about 8 seconds prior to an Avail. This
is similar to the analog insertion case.

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 19

An enhancement is to send the splice_insert() command 3 times: at about 8 sec, 6 sec and 4 sec prior to
the Avail. This increases the redundancy and prevents lost insertion opportunities. A lost Avail
nationwide is a very expensive error. In the case of multiple Messages denoting a single Avail, the
splice_event_id field in all such Messages are required to be identical. It is allowable that the splice time
be different from Message to Message in the case where the first splice time is approximate and
subsequent Messages supply a more accurate splice time. Servers should only act on the last time
received that meets the pre-roll constraints.

While servers should be reading the splice_event_id and handling the messages as described in the above
paragraph, other implementations are known to exist. Some servers once they receive a valid Cue
Message and have ads to play will block all subsequent Cue Messages until playback is finished. If they
receive a valid Cue Message with no ads to play, they may see the subsequent Cue Messages and
incorrectly advance to the next avail within the window. Some servers have an adjustable timer to block
subsequent cues for a number of seconds to prevent this from happening.

6.8. Conditional Access and Cue Encryption

There are no known implementations of the following sections. The message encryption is typically
handled by the proprietary conditional access systems in the satellite feed.

6.8.1. What to Encrypt

The format of the SCTE 35 section allows for the payload to be optionally encrypted. This includes all
data from the “splice_command_type” through to the “E_CRC_32”. This mechanism allows for any
current, or future, commands to be protected. The reasons for protection can range from anti-piracy (e.g.
commercial killers), malicious tampering of the data, and privacy when using cascaded ad insertion
devices.

The specification requires that an encrypted CRC be present so that any receive device is able to verify
that the encrypted data has not been changed since origination. This could be due to noise, but normally
this type of corruption is detected by the standard CRC. The encrypted CRC has the primary purpose as a
signature to detect that the receiver is authorized to receive the Message. (i.e. that they have the correct
control word). It is also used to detect willful modification of the encrypted data. This CRC is not present
when the section is sent in-the-clear.

6.8.2. Operation in a Cue Insertion Device

A cue insertion device is used to create splice_info_sections and insert them into a transport stream.
When encryption is desired, the cue inserter uses a fixed key entered by a distributor, plus the algorithm
selected, to encrypt the section before being transmitted.

The cue insertion device should be able to maintain multiple simultaneous keys for the same program.
The reason is that each ad inserter in a cascade could require one or more different keys to decrypt the
splice_info_section.

A cue insertion device is only required to implement one of the standard encryption methods. In
recommended practice, the cue insertion device should implement all standard algorithms.

6.8.3. Operation in an Ad Insertion Device

An ad insertion device consumes splice_info_sections. When a splice_info_section is encrypted, the ad
inserter will only act upon the section if the decryption is successful. This is determined by checking the

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 20

encrypted CRC before interpreting the data. A failure will usually mean that the device is simply not
authorized to interpret the information that the section contains.

The ad inserter is expected to allow the encrypted splice_info_section to pass through it to the next
device. This is true whether the decryption was successful or not. The ad inserter never releases the
contents of a decrypted section for security reasons.

Once the section has been decrypted, the device may act on the information it contains, or discard it. This
is the same operation that would be performed if the section had been sent in-the-clear.

The ad inserter device should be able to hold 256 different decryption keys. The cw_index field in the
section indicates which of these decryption keys should be used. The method of key interchange is out of
scope for this document.

For normal operation, it is expected that one or two keys are used for any one pair of send/receive
devices. There is a provision for a large number of keys to allow an ad inserter to connect to multiple
programs in a transport stream, or to allow cascaded ad inserters to use different ranges of cw_indexes
when connecting to the same program.

An Ad Insertion device should implement all defined decryption algorithms in SCTE 35. This allows it to
receive encrypted sections from any cue insertion device. Any cue insertion device may choose any
standard algorithm to protect the section, and the Ad Inserter is required to be able to decrypt any
Message it is authorized to receive.

6.8.4. Theory of Operation

6.8.4.1. Encryption Verses Scrambling

Scrambling means the use of the “standard” DES or DVB Common Scrambling algorithm that is being
used for video and audio services.

When deciding how best to encrypt the splice_info_section, one needs to consider that the Ad Insertion
functionality is typically not located in a settop box. There has been a provision made for this model, but
it is not the primary model. Most systems will employ an Ad Insertion device in a digital headend (or
some other distribution point). These standalone devices are typically computers. Using a descrambler
would require a custom circuit designed to descramble the stream. Also, since the entire transport packet
is scrambled, the ad insertion device has no access to the header data as it does with the current model.
Some of the information, such as pts_adjustment, may need to be modified even when the section is not
descrambled. There are similar considerations when creating the stream.

The model used for the splice_info_section is closer to the ECM model, than the Elementary Stream
model. An ECM section is independently encrypted (and decrypted), and authorized by some external
mechanism. In the case of the ECM, it is usually the EMM that controls authorization. In the case of the
splice_info_section, it is a manual authorization.

The fixed key model was chosen for simplicity. The key distribution was left undefined and may use any
mechanism that gets the key to the decryptor in a secure and timely manner. It is conceivable that a
committee may standardize on some type of ECM and/or EMM to distribute the keys in the transport
stream.

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 21

6.8.4.2. Standard Encryption Methods

The standard provides for three types of algorithms. All three algorithms use the DES decryptor as the
basic building block. For Triple DES, the DES encryptor is also required. Software implementations of
the DES algorithm are readily available.

6.8.4.3. Section Stuffing

All DES type algorithms (block encryptors rather than stream encryptors) require the length of the data to
be an exact multiple of 8 bytes. To achieve this, stuffing is often required. The alignment_stuffing field
may be present whether the section is encrypted or not. The number of bytes of stuffing can be
determined during the interpretation of the data. The stuffing bytes are never used, so they may take on
any value.

To determine the length of the stuffing, one uses the fact that the total length is known from the
section_length field. Knowing the size of the header, it is possible to determine the start of a
splice_command. Every command has a size completely determined by the syntax within the command
itself. The length is:

<section_length> +3 - <end_of_command> - <length_trailing>

where <length_trailing> is four for non-encrypted sections and eight for encrypted sections.

Algorithmically, it is easier to simply ignore the stuffing. Work forward to decrypt and interpret the
command, and work backward from the end to find the CRCs.

6.8.4.4. DES Electronic Codebook (ECB) Algorithm

DES ECB requires a 56-bit key plus 8 parity bits to make up a complete 64-bit key, which is then used by
the algorithm to encrypt or decrypt a stream. The DES algorithm is symmetric. The same key is used in
both the encryptor and the decryptor. The actual encryption and decryption algorithms are slightly
different to allow this symmetry to work.

It is suggested that the full 64-bit key be distributed between the two devices. The key will be entered as a
16 digit hexadecimal number. For example, 0x123456789ABCDEF0 would be distributed. In engineering
notation, the leftmost digit is the most significant digit, and the MSB of this nibble is the most significant
bit of the key (bit 63). Cipher algorithms generally use FIPS notation to represent keys. In this case, the
leftmost bit of the key is numbered Bit 1, through to Bit 64 on the right. Therefore, bit 63 of the
distributed key value will be loaded into Bit 1 of the initial key register. Similarly, bit 0 of the key value is
loaded into Bit 64 of the key register.

The Electronic Codebook method of encryption uses the same key for every 8-byte block of the original
Message. Figure 3 gives an example of a simple 3-block Message being encrypted. The arrows represent
operations. Across the top, the key is being loaded into the key register. Side to side, the data is being
shifted into the encryption register, and across the bottom, the DES algorithm is being applied.

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 22

Figure 3 - DES ECB Example

6.8.4.5. DES Cipherblock Chaining (CBC) Algorithm

DES CBC requires a 56-bit key plus 8 parity bits to make up a complete 64-bit key, which is used by to
the algorithm to encrypt or decrypt a stream. The same bit ordering rules and key distribution methods
can be used for CBC that were used for the ECB algorithm described in section 6.8.4.4.

The Cipherblock Chaining method of encryption uses a different key for every 8-byte block of the
original Message.

Figure 4 - DES CBC Encryption Example

From Figure 4, one can see that the plaintext data is modified by the result of the previous encryption
block. For the first block, one needs to have an “initial vector” to apply to the exclusive-or block. It turns
out that the initial vector provides no extra security, whether it is known or not. So, for this system, the
initial vector can be zero, which removes the need for it to be distributed with the key.

Figure 5 - DES CBC Decryption Example

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 23

From Figure 5 one can see the DES CBC decryption is slightly different from encryption. The
exclusive-or block requires the previous block of encrypted data to arrive at the proper cipher
key for the DES algorithm. In the decryptor, this encrypted block is derived from the transmitted
data.

6.8.4.6. Triple-DES ECB Mode (EDE Method) Algorithm
Triple DES uses the standard DES algorithm, but applies the algorithm 3 times for each block of
input data. This provides a significant security enhancement. The disadvantage is that
distributing a 192-bit key (actually three 64-bit keys) is needed to obtain the security
enhancement.

Using the combination of two algorithms and three passes (encryption and decryption are
different), it is possible to generate eight different Triple DES variants1. The variants are
designated by a three-letter code. Of these variants, the most common is selected for use in a
splicing system. This variant is designated the EDE method, referring to the fact that pass one
uses encryption, pass two uses decryption, and pass three uses the encryption algorithm again.
For simplicity, the DES ECB mode of operation is used for the Triple-DES algorithm2.

Figure 6 - Triple-DES ECB Encryption Example

Triple-DES decryption requires that the algorithm be applied in the reverse of the encryption
algorithm. As a result, the block diagram for decryption is slightly different again. It can be
found in Figure 7.

1 Triple DES also has two key variants. This can be simulated by making KEY A == KEY C.
2 Triple DES can also use the cipherblock chaining mode, but this not one of the standard methods.

Block 1
Plaintext

Distributed
Key A

Encr

Block 1 Ciphertext

Distributed
Key B

Decr
Distributed
Key C

Encr

Block 2
Plaintext

Distributed
Key A

Encr

Block 2 Ciphertext

Distributed
Key B

Decr
Distributed
Key C

Encr

Block 3
Plaintext

Distributed
Key A

Encr

Block 3 Ciphertext

Distributed
Key B

Decr
Distributed
Key C

Encr

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 24

Figure 7 - Triple-DES ECB Decryption Example

Key distribution for triple-DES is in the form of three 64-bit keys. Each of the keys is ordered the same
way that the single key is ordered for single DES methods. Each of the keys is labeled A, B and C for
reference. Using the block diagrams, one can see that key A is applied first, then B and C, during the
encryption process. During decryption, the keys are required to be applied in the reverse order.

6.8.4.7. Private Encryption Methods

Approximately half of the encryption_algorithm values have been reserved for private use. These values
will never be allocated by the specification. Private data of this nature is prone to misinterpretation, due to
its very nature. As a result, it is impossible to standardize a method of selecting user private algorithms
without some type of registration authority. Since there is no registration authority, the method of
coordinating algorithms has been left undefined.

The problem arises when two independent entities use the same encryption_algorithm value for different
algorithms. When a cue insertion device from entity A encrypts the section, and that section is received
by entity B, the decryption will not work. The equipment believes it is not authorized because of the CRC
failure, even though the same key has been entered at both ends.

7. Usage of fields in the Splice_Insert command

7.1. Usage of unique_program_id

This section describes the unique_program_id in the splice_insert() command. Implementers should
consider using the time_signal() command along with the segmentation_descriptor() and the
segmentation_UPID as an alternative that may give the implementor a well-defined identifier.

The reader should be familiar with SCTE 118 standards before reading further.

SCTE 118-1 provides the conceptual background and definitions, while SCTE 118-2 and SCTE 118-3
provide the normative provisions for implementation of systems facilitating "Program-Specific Ad
Insertion."

Block 1
Ciphertext

Distributed
Key C

Decr

Block 1 Plaintext

Distributed
Key B

Encr
Distributed
Key A

Decr

Block 2
Ciphertext

Distributed
Key C

Decr

Block 2 Plaintext

Distributed
Key B

Encr
Distributed
Key A

Decr

Block 3
Ciphertext

Distributed
Key C

Decr

Block 3 Plaintext

Distributed
Key B

Encr
Distributed
Key A

Decr

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 25

7.1.1. What is a "Program"?

Network content is typically divided into a series of programs. A program may be of almost any duration.
Most programs have a duration of thirty or sixty minutes. However, some programs may be only a few
minutes in length, such as news reports or sports updates, while others may be several hours long, such as
movies, sporting events, or special live awards programming.

7.1.2. What is a "program_id"?

A program_id is a "shorthand" way of identifying a specific instance of a program on a network. It is
delivered by the provider.

7.1.3. Why Should Programs Be Identified and Differentiated?

Some programs are of greater value to an advertiser than other programs. The relative value of the
program is unrelated to its length or its scheduled time; an advertiser values a program on the basis of its
ability to attract a particular audience.

While some advertisers may purchase commercial time on the basis of day parts (i.e., 10AM-4PM, 8PM-
11PM, etc.) other advertisers specify that their commercials must run in a specific program or even a
specific Break within a program. The programming may be scheduled regularly (such as news or episodic
shows), or it may be special, one-time programming, such as baseball games, awards programs or live
interviews.

Frequently special programs are purchased at rates in excess of surrounding, regular programs.
Advertisers that have agreed to pay these higher rates expect their commercial messages to run within the
special programming that they bought. They will not pay for commercials that run outside of these
programs.

7.1.4. Why Does the Time at Which a Program Is Scheduled Not Identify It?

Networks may change the program schedule at the last minute. Sometimes these changes are
communicated to the distributors before the schedules of the commercials are released to the headends;
occasionally, this information is not available until after program and commercial content have been
scheduled.

The changes to program schedules most frequently are the result of last minute unplanned changes in live
programming such as sporting events, awards shows and live news events coverage. These programs may
be scheduled at the last minute, may run longer or shorter than originally anticipated, or may be canceled
as the result of weather or other conditions.

If scheduled on the basis of "time" alone, an advertiser who was scheduled to run in a special program
may instead run in "regular" programming. In this event, the advertiser will not pay for the commercial
message. In a worst-case scenario, a local distributor may inadvertently bill the advertiser for the
commercial as though it did run in the special programming, even though it did not. This may result in
serious repercussions to the relationship with that client.

7.1.5. How Will a unique_program_id Alleviate Problems?

If a Splice Event is identified by a unique_program_id, vendors of sales/traffic systems (those computer
systems that schedule commercials specified by the ad sales department for their clients) will be able to
specify with each commercial the program within which it was intended to be played. They will also be

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 26

able to specify commercials that can be used to substitute (at no loss in revenue) those commercials if the
program is not broadcast at the time anticipated.

By providing this information, the vendors of the Ad Insertion Systems will be able to substitute an
appropriate advertising message if the unique_program_id of the Splice Event does not match the
unique_program_id of the commercial message scheduled for that time period. The addition of this field
and the implementation of the functionality will require some effort on the part of Ad Insertion System
vendors. This capability was never a part of older generation analog systems, but the functionality is
extremely important.

7.2. Avail Fields Usage

The reader should be familiar with SCTE 118 standards before reading further.

SCTE 118-1 provides the conceptual background and definitions, while SCTE 118-2 and SCTE 118-3
provide the normative provisions for implementation of systems facilitating "Program-Specific Ad
Insertion."

7.2.1. What is an Avail?

An Avail is an opportunity provided by the network to a local distributor to insert a commercial Event
into a program. The start of an Avail is indicated as a Splice Event in the programming stream. The
duration of the Avail may vary from a few seconds to several minutes.

Usually Avails are sixty seconds long, although Avails of ninety seconds or two minutes are not
uncommon. Since most commercial messages are thirty seconds in length, two or more of these are
normally inserted into each Avail.

7.2.2. How Many Avails Occur Within a Program?

A program's length is the most common predictor of the Avails that will occur within it. Usually, there is
one sixty-second Avail within any thirty-minute program. The exact number of Avails is known from the
program schedule provided by the network. While the number and length of the Avails may vary based on
the program, the program schedule allows the local advertising distributor to know in advance how many
Avails to expect within a program.

7.2.3. Why is it important to identify the Avails Within a Program?

In the simplest of all instances, an individual advertiser may have purchased a specific "position" within a
program; that is, it may be important for that message to run in the first, or the third, or the sixth position
within that program. An advertiser might specify (and pay a premium for) the "last avail" within a
basketball game, on the assumption that in a close game, viewers will be less likely to tune away.

In other instances, it may be that a variety of advertising sources (local or national/regional interconnect)
have arranged to divide the Avails within a program on a predetermined fashion between them. In this
case, it is important for each advertising entity to know which Avail is associated with a Splice Event so
that they can accurately keep their insertion schedules "in-sync" with the program.

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 27

7.2.4. How Do the Avail Fields Provide for This?

If each Avail within a program is uniquely identified, then sales and traffic systems as well as ad insertion
equipment vendors can associate the Avail identification with those commercials that are required to run
in a specific Avail.

If an Avail Splice Event is "missed" for any reason (whether a failure by the network or the local
advertising distributor), the subsequent Splice Event, with its specific Avail field id, will allow the
commercial insertions to be re-synchronized to the correct Event.

7.2.5. What Does the avails_expected Field Do?

This field provides a count of the total number of Avails that are be announced by the broadcaster in the
current Cue Message PID for the specified program. Providing this information allows the ad insertion
device to guarantee that its anticipated count of the number of Avails matches with the count being
executed by the network.

The value in the avail_num field could be larger than the value in the avails_expected field. This would
occur, for instance, if a sporting event ran longer than its allocated duration. If the network content
provider sent Cue Messages during this "over-run" period, the avail field would have a number greater
than that in the avails_expected field.

7.2.6. Conditional Avails

The following section describes methods for a Network Content Provider (Provider) to provide different
Local distributors (distributor) differing Avails. This might happen if a provider contracts one distributor
to have additional or different Avail structures than other distributors. Various ways that this can be
accomplished are described, and include the use of different Cue Message data streams or through the
filtering of Cue Messages before the distributor’s splicer, and through conditional scheduling of Ad
Insertion Systems based on the Avail structure published by the provider to an individual distributor. The
discussions and examples below are focused around the Messages as they are received by the distributor’s
splicer. It places no assumptions on the way in which the specific Cue Messages are generated, distributed
or conditionally delivered to the splicer.

In all of the below discussion, a full SCTE 118-1 Tier 2 implementation (from a Cue Message, SCTE
118-2 schedule and SCTE 118-3 standpoint) is assumed for the current program. Implementations that
are not Tier 2 should not be effected by the following discussion as avail_num and avails_expected will
be ignored by the Ad Insertion system. For each distributor implementing Tier 2 behavior for the
program, it is required that they are provided the scheduled Break structure in advance of the program in
order to appropriately match the Avails in the Cue Message. This is intended to be accomplished through
SCTE 118-2 and [SCTE 118-3].

NOTE: Reuse of non-zero avail numbers within a program is disallowed, as it would not unambiguously
identify two Avails with the same attributes within the same program.

In all cases, the Ad Insertion System and splicer should be tolerant of Cue Messages that are missed or are
received out of sequence. For example, an Ad Insertion System should be able to determine that Cue
Message with avail_num of 2 has been received and not the expected avail_num of 1, and should play the
appropriately scheduled spot. Because Avails have the concept of an active window, Avail 1 will
continue to live until its window expires (as described in SCTE 118-1 and SCTE 118-3), and an Ad
Insertion System should insert the appropriate spots if it sees avail_num 1 at a later time.

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 28

An example of possible ways for incrementing/skipping values is shown in the table below. For each of
the cells of the table, the two numbers (for example, 1 of 7) represent the values of the avail_num and
avails_expected fields of a Cue Message.

Method 1 would provide an distributor 7 Avails during a program. Methods 2, 3 and 4 would each
provide 5 Avails during the same program.

For Methods 2 & 3, neither Avail 3 nor Avail 5 is received in a format that may be interpreted or decoded
by the splicer.

Table 1 - Avail incrementing/skipping Example

AVAIL Method 1 Method 2 Method 3 Method 4
1 1 of 7 1 of 5 1 of 7 1 of 7
2 2 of 7 2 of 5 2 of 7 2 of 7
3 3 of 7 ---- ---- (3 of 7) rcvd but not scheduled
4 4 of 7 3 of 5 4 of 7 4 of 7
5 5 of 7 ---- ---- (5 of 7) rcvd but not scheduled
6 6 of 7 4 of 5 6 of 7 6 of 7
7 7 of 7 5 of 5 7 of 7 7 of 7

An distributor using Method 1 receives Cue Messages for all seven Avails. The avails_expected field
matches the contracted number of Avails. The avail_num field has no skipped values.

For an distributor using Method 2, only Cue Messages for the 5 Avails that are destined for that
distributor are received at the splicer, and when they are received, the avails_expected field advertises
only the 5 Avails that are scheduled. The avail_num field has no skipped values. This may be
accomplished, for example, through the transmission of two independent Cue Message data streams, with
selective tuning at each distributor.

For an distributor using Method 3, only Cue Messages for the 5 Avails that are destined for that
distributor are received at the splicer, but the avails_expected field is greater than the number of avails
that are authorized for that distributor. Additionally, there are skipped values in the avail_num field. This
example behavior can be accomplished through conditional delivery of the Cue Messages in the satellite
receiver.

For an distributor using Method 4, all Cue Messages for the 7 Avails are received at the splicer. The
avails_expected field and avail_num field appear exactly as they would for an distributor using Method 1.
The distributor using Method 4 controls the fact that they are not inserting on the 3rd and 5th Avail
through placing NULL schedule lines corresponding to Avail 3 of 7 and Avail 5 of 7 in the schedule file
provided to the Ad Insertion System.

7.2.6.1. Considerations of the Various Methods

Using an alternate data PID (as suggested in the narrative using Method 2), is the least error prone from
the trafficking side, as the avails_expected field matches the number of Avails contracted. As a result, the
provider is required to create different Cue Message data streams at each distributor. An additional benefit
of this method is that the Avail structure received by one distributor is not advertised through to other
distributors.

Using the conditional filtering of Cue Messages to the splicer (as suggested in the narrative using Method
3), each Cue Message is required to be properly targeted by the provider to the intended distributors. The

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 29

contracted Avail structure for the program is required to be accurately advertised to each distributor
(through SCTE 118-2) by the provider. At the distributor, the scheduling of the Avails is required to be
done so that the avail_num and avails_expected match the structure that they have contracted.

Using the conditional insertion based on schedule, the provider does no additional work besides
accurately advertising the Avail structure to each distributor (through SCTE 118-2). The distributor is
required to create NULL schedule lines for the Avails that they have not contracted. It involves a high
degree of trust in the execution of the contract between the provider and the distributor.

8. Cue Usage
The use of splice commands to update, modify, cancel and terminate Events is clarified in the sections
below.

8.1. Starting a Break

A Cue Message can be used to indicate to the server/splicer combination an opportunity to either splice
out of the network into an ad, or splice into network, out of an ad. The out_of_network indicator in the
“splice insert” command is set to “1” when exiting the network, and “0” when entering the network. The
splice point is derived from the splice_time() structure in splice_info_section(). When splicing out of
network, the Cue Message needs to reach the server/splicer combination at least four seconds prior to the
splice time. This can be referred to as having a four second “pre-roll”. The server/splicer combination
decides on the best splice point related to the splice time.

A Cue Message that indicates a splice out of network, and that is still outside the specified “pre-roll”
window, can be cancelled. A “cancel” is issued by sending a Cue Message with the
cancel_event_indicator flag set to “1”. If a “cancel” is received during the “pre-roll” or after the break has
started, the “cancel” request is ignored.

A splice out of network Event can be updated by an update Message without the need for a cancellation
of a previously transmitted Message for the same Splice Event. An Event can be updated several times.
The latest Message that adheres to the timing constraints given in terms of the “pre-roll” should be
considered valid by the splicer, superseding all earlier Messages for the same Splice Event.

The splice_insert command provides for an optional break_duration() structure to identify the length of
the break. It is recommended that the splice_insert messages include a break_duration() structure
whenever the out_of_network flag is set to 1. The use of the break_duration value is the preferred
method for determining when to end a break.

If an unplanned or unanticipated need to stop a break arises, and the timing is uncertain, sending a
“cancel” and a “stop” or “terminate” is acceptable. The splicer should react to whichever of the two
Messages is valid and ignore the other. The “stop” and “terminate” are described in the section below.

8.2. Ending a Break

There are three ways to end a break that is under way (in a playing state). They are described below. If the
process of switching back to network is already in progress or finished, or if the break isn’t in “pre-roll”
yet, then the “terminate” and/or “stop” should be ignored by the server/splicer combination.

• If a break_duration structure was included in the splice_insert command that signaled the start of
the break, then this structure can be used to specify the end of the break.

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 30

• A “terminate” command can be issued by sending a Message with the splice_immediate flag set
to “1” and the out_of_network_indicator flag set to “0” in splice_info_section(). The
server/splicer combination switches back to network immediately (as quickly as possible).

• A “stop” can be issued by sending a Message with the splice_immediate flag set to “0” and the
out_of_network_indicator flag set to “0” in splice_info_section(). The splice_time() is used as the
point in which to splice back to the network.

Note that these methods for determining break termination are not mutually exclusive or prioritized by the
standard. That is, ad insertion equipment vendors are free to develop precise termination policies based
on any combination of these mechanisms.

It is believed that some providers are using a “terminate” command to end every Avail (i.e. using a
“terminate” as a “stop” command). This is due to provider encoding system requirements to support both
digital and legacy analog insertion systems that operate under different “return to network” signaling
requirements. Splice immediate replaces the real time end-of-break switch required for legacy analog
systems that do not process “return to network” pre-roll. When the industry sunsets a requirement to
support analog DTMF or the necessity of “return to network” cue tones, this issue is easily resolved to
standard conformance. This is an unintended usage of the standard because the splice_immediate mode is
considered highly inaccurate and should be avoided as a normal end of break. If it is used, however, one
should make sure that the actual location of the Cue Message in the stream follows the end of the Avail in
the stream by at least 1ms.

8.3. Spot Sharing Within a Break

A Cue Message can be used to indicate an opportunity to insert multiple ads to several servers. In this
scenario, the splicer receives the Cue Message in the network stream, and passes it to each of the servers
using SCTE 30. The servers are responsible for the scheduling and arbitration. Each server should handle
the Cue Message in such a manner that it takes the proper spot position within the break. The end result is
a split break, where one server may take the first spot position in the break, and the second server takes
the next spot position, or some other combination of the two servers taking spot positions within the
break.

Typically current systems use schedule merging to implement spot sharing within a single break. This
seems to be a more reliable method than ensuring the splicer and servers can properly manage the
overlapping streams and accepting an insert for when the prior ad is supposed to end.

9. Creation and Usage of Splice Descriptors

9.1. What are Descriptors

Descriptor is a term from the MPEG-2 systems standard. A descriptor is used to introduce new syntax
into an existing standard. It does so in a way that allows existing equipment to skip the new syntax. A
descriptor may optionally be included inside a section of information. Since a descriptor has a known
format, it may be skipped inside receiving equipment without causing a loss of synchronization during the
parsing process.

Another use of descriptors is to provide optional syntax. Like the new syntax, any existing equipment that
does not understand the optional information is able to skip the data.

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 31

9.1.1. The Problem

Standard descriptors have a problem when users create private descriptors for their own use. The problem
is that different users can use the same number for a descriptor tag, but have a completely different syntax
in the payload of the descriptor. This is not a problem if the receive equipment does not understand the
descriptor, but it is a problem when it tries to understand the wrong descriptor.

MPEG and DVB have solved this by introducing a descriptor specifically for solving this issue. MPEG
never formally described how to use the descriptor, but DVB did. Basically, the private_data_descriptor
has a 32-bit identifier that changes the “mode of understanding” in the receiver. When the device sees an
identifier that it understands, it will start accepting user private descriptor tags. When it sees an identifier
it does not understand, or before it sees any identifier, it stops accepting any user private tags.

This method works, but it suffers from a flaw, in that the private_data_descriptor was made optional
originally. So, many companies made devices that did not send (or receive) private data and the original
problem that should have been solved is not being used consistently. Also, it is not used at all in MPEG
since there was no rule enforced for the descriptor.

9.1.2. The Solution

The 32-bit identifier found in the splice_info_descriptors serves the same purpose. But, by having it
inside the descriptor header, it is made mandatory. The disadvantage is that it triples the size of the
header. Splice_info_sections are expected to be quite small, and easily fit inside a single transport packet,
so the extra header bytes should not be a detriment.

9.2. Registration

The identifier field in the descriptor header is used to scope the values of the splice_descriptor_tag and in
part, signal the format of the remainder of the descriptor. It is a managed number space conforming to the
format_identifier field defined in [13818-1]. The registration authority is located at: http://www.smpte-
ra.org. For all the SCTE defined descriptors, the field is set to the registered value, 0x43554549
(“CUEI”). “CUEI” is reserved only for descriptors defined in SCTE 35 and cannot be used for private
descriptors.

Once an identifier has been chosen, then the splice_descriptor_tag field is set to a secondary identifier that
defines the payload. This gives any company up to 256 private descriptors for their own use before they
need to create a new identifier.

9.3. Creating Compatible Private Descriptors

Once an identifier has been chosen, the payload of a private descriptor can be defined. The Table 8-2 of
the specification, SCTE 35, (reproduced below) represents the outline for all descriptors contained within
a splice_info_section. This includes all current and future descriptors that are defined by an SCTE
standard or by companies.

http://www.smpte-ra.org/
http://www.smpte-ra.org/

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 32

Table 2 - (of SCTE 35): splice_descriptor()

Syntax Bits Mnemonic
splice_descriptor() {
 splice_descriptor_tag 8 uimsbf
 descriptor_length 8 uimsbf
 identifier 32 uimsbf
 for(i=0; i<N; i++) {
 private_byte 8 uimsbf
 }
}

This splice_descriptor is an abstract structure -- it is a template for all actual descriptors. Below is an
example of how to create a new private descriptor.

Syntax Bits Mnemonic Value

my_provider_avail_descriptor() {
 splice_descriptor_tag 8 uimsbf 0x00
 descriptor_length 8 uimsbf 0x08
 identifier 32 uimsbf 0x4D594944 (“MYRI”)
 provider_avail_id 30 uimsbf
 reserved 2 bslbf “11”
}

The steps in designing a new descriptor are as follows:

Step 1: Register a new identifier if needed or select one you have permission to use. In this example, the
identifier is “MYRI”. Note: “MYRI” is an unregistered fictitious value.

Step 2: Choose a value for the splice_descriptor_tag field. Since this was the first descriptor defined for
“MYRI”, a value of zero was chosen.

Step 3: Define the private syntax. This is the body of the descriptor. In the template, the payload of the
descriptor is represented as a generic loop containing bytes of data. By using the descriptor_length field,
the device is able to skip the payload and continue processing the next descriptor.

In this example, the payload consists of exactly one defined field that contains 30 bits.

The only restrictions within the payload of a descriptor (everything after the identifier field) are that the
total payload must be a multiple of 8-bits, and that it comprises no more than 250 bytes total. Fields in the
payload of a descriptor may contain any number of bits. If the complete payload syntax that is required is
not a multiple of eight bits, then “reserved” bits are required to be inserted to pad the total to a multiple of
eight. Reserved bits are customarily set to one.

9.4. Using the avail_descriptor.

The provider_avail_id field is a 32-bit uimsbf value that may be utilized in multiple ways. One possible
way to use it is to carry a digital value equivalent to an analog DTMF tone sequence. Note that there is
also a specific DTMF_descriptor (see next section) which is intended to facilitate replication of DTMF
sequences at the output of an IRD and may be considered a superset of the avail_descriptor.

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 33

The current analog DTMF systems use 4 characters for the Analog Cue Tone. They have a three digit
code to identify the break. The fourth character is usually an asterisk (*) for a start tone indicating a pre-
specified pre-roll duration or a pound sign (#) for an immediate stop tone. An example is "635*".

Current analog systems use the values to indicate different types of cue information such as duration, time
of hour (e.g. top of hour), breaking news or private break.

It is recommended to utilize the other features of SCTE 35 that identify the start vs. stop nature of the Cue
Message and then to simply insert the identification code as a 32 bit integer number. For example if a
network used the character sequence "017*" as the ID for an Analog Cue Tone, insert the value 17 into
the provider_avail_id field and set the out_of_network_indicator bit in the Cue Message. The end
Message should use the same provider_avail_id as the start Message.

9.5. Using the DTMF Descriptor

The DTMF Descriptor is intended to be used by a receive device (for example, an IRD) that needs to
replicate cue tone sequences in a headend that match the timing of the digital triggers of the SCTE 35 Cue
Message.

In the past, an insertion Event could be signaled by a cue tone and simultaneously transmitted to the
receive device using proprietary means. This method could inherently guarantee that the two signaling
mechanisms communicated the same location for the Splice Point, assuming the correct pre-roll is
provided to the cue injector.

With the deployment of SCTE 224 and all-digital cueing systems, maintaining backward compatibility in
receive sites could become harder. At worst, a broadcaster would need to implement two different parallel
cueing systems for the same Avail. This can be eliminated with the DTMF Descriptor. With this
descriptor, the DTMF tone sequence can be delivered inside the Cue Message, and the two methods can
communicate the same Splice Point. But this time, the DTMF tone sequence is timed relative to the Cue
Message [see note in 8.2].

With the older systems, the Cue Message pre-roll was restricted to being identical with the Analog Cue
Tone pre-roll, in order to align both methods. When using the DTMF Descriptor, the pre-roll of the Cue
Message is less restricted in that it only needs to be equal or greater than the analog pre-roll and cue tone
emit time.

9.5.1. Pre-roll Timing

The pre-roll field in the DTMF Descriptor describes the amount of time before a Splice Point when a cue
tone sequence ends. Typical Analog Cue Tones would trigger a video splice to occur a fixed amount of
time after the end of the cue tone.

The cue tone sequence itself is typically generated by the receiving device, typically an IRD, but not
specifically restricted to an IRD and can be accommodated in a downstream device. The process is
implementation dependent, so the originator needs to know the worst case time any device in the network
takes to process a Cue Message containing the DTMF descriptor to emit a cue tone sequence.

For example:
• The tone sequence is 4 characters long
• Each character and space is 50 milliseconds long
• The Analog Cue Tone pre-roll is configured to be 7 seconds

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 34

• The receiving device requires 50 milliseconds to process the Cue Message

The device creating the Analog Cue Tones (e.g. IRD) will take 400 milliseconds to process the Cue
Message containing the DTMF descriptor and emit the cue tone. This means that the receiving device is
required to start emitting the cue tone a total of <pre-roll>+<emit time> seconds before the Splice Point in
order for the splice to be aligned in both the analog and digital systems. The originator sends the Cue
Message at least 7.4 seconds before the Splice Point to give the receiver adequate time to receive, process
and emit the cue tone sequence. The receiving device starts emitting the cue tone sequence 7.35 seconds
before the Splice Point and finishes exactly 7 seconds before the Splice Point.

9.5.2. DTMF Tone Sequence

The DTMF tone sequence is a field that may contain up to 7 DTMF digits. A typical tone sequence is
three numbers plus either a ‘*’ or a ‘#’ for a total of four digits. Some extra digits are provided in case
other systems used a different convention.

When a start Cue Message is generated, then the DTMF descriptor included with the Message is required
to have the start DTMF tone sequence (e.g. ‘123*’). When a stop Cue Message is generated, then a stop
DTMF tone sequence (e.g. ‘123#’) should be included.

9.5.3. SCTE 35 Operating Modes

SCTE 35 allows a number of operating modes. Depending on the application, some of these modes may
not be appropriate if the DTMF Descriptor is to be used.

The DTMF Descriptor needs to be present in a Cue Message in order to generate an Analog Cue Tone
sequence. If it is necessary to generate both a start and a stop cue tone sequence, then it is necessary to
send both a start and stop Cue Message each containing the appropriate DTMF descriptor. Most analog
cue systems do not use the stop message, so it is not necessary to send a stop Cue Message in such cases.

9.5.3.1. SCTE 35 Immediate mode

DTMF descriptors should not be used in immediate mode Cue Messages because immediate mode is
unique to Cue Messages and has no equivalent in analog.

9.6. Usage of Segmentation Descriptors

Segmentation descriptors can be applied to a number of digital video applications. These include splicing
of streams, on demand, TV Everywhere, ETV/OCAP, network monitoring and many others. The
following sections serve to provide guidelines for usage of segmentation descriptors for these
applications. Chapter 12 describes how to insert and use segmentation descriptor when using them for live
signaling of a broadcast feed.

9.6.1. Segmentation Descriptor Field Usage

A descriptor is uniquely identified using one the following combinations of values:

• segmentation_event_id, segmentation_upid
• segmentation_event_id, segmentation_upid, segment_num
• segmentation_event_id
• segmentation_event_id, segment_num

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 35

The lifetime of a descriptor identifier is dictated by other fields in the descriptor. A segment identifier
may be re-used once it is expired or explicitly ended.

An implementation may further qualify identifiers based on the Program the descriptor is received on.
Program, in this context, is as defined in SCTE 35. Other uses of the term Program in this section should
be interpreted in the context of a segmentation_descriptor. See Section 9.6.6.1 for additional methods to
establish the context of an identifier.

The segmentation_event_cancel_indicator should be used as defined in SCTE 35. See Section 9.6.6.2 for
additional details.

This chapter is limited to program mode identification but should be extensible to component mode
identification. Therefore, program_segmentation_flag should be set to 1.

The segmentation_duration_flag is required to be set to 1 for the duration field to apply. If the
segmentation_duration_flag is set to 1, the segmentation_duration field is required to be present.

If the duration field is included it applies to:

• Define expiration of a segment identified by a segmentation_type_id with a “start” (ex. Program
Start)

• Adjust the end time of a segment, initiated with a “start” segmentation_type_id, by sending a
segmentation_type_id of 0x01, Content Identification. The duration adjusts the expected “end” of
the segment from the specified time plus the duration.

• Where the duration was not specified on the “start” segment, define the expiration of a segment
identifier with a segmentation_type_id of 0x01, Content Identification. The duration sets the
expected “end” of the segment from the specified time plus the duration.

Depending on the command the specified time used in the calculation is the arrival time of the
splice_null() command or the pts_time adjusted by pts_offset in the time_signal() command.

Each segmentation_type_id of “start” has one or more complementary values to “end” the segment. An
unclosed segment occurs when the complementary segmentation_type_id value is not received as
expected. The following are cases resulting in an unclosed segment:

1. For programs, chapters, provider advertisement and distributor advertisement
segmentation_type_id values where a segmentation_type_id of “start” is received for another
identifier, if a segmentation_type_id with an “end” is not received prior to the duration an
unclosed segment should be assumed for that identifier. Program segments have additional
segmentation_type_id values to end the segment.

2. An unclosed segment should be assumed if the duration of a segmentation Event is reached prior
to receiving an “end” for that segment.

If Content Identification is to be utilized to extend the end time of a segment, the descriptor is required to
have a segmentation upid specified. This is required per SCTE 35.

The segmentation_upid_type, segmentation_upid_length and segmentation_upid will be applied as
described in SCTE 35. Unique_program_id is further described in section 7.1 of this document.

The segmentation_type_id values are defined in Table 9-8 in SCTE 35. The following values are expected
to appear in pairs:

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 36

• Program Start/End – Program end can be overridden by program early termination
• Chapter Start/End
• Provider Advertisement Start/End
• Distributor Advertisement Start/End
• Placement Opportunity Start/End
• Unscheduled_event_start/end

Exceptions to the Program item include the breakaway, resumption, planned runover and unplanned
runover. These exceptions only apply if inserted between Program Start and Program End/Early
Termination.

Where there are overlapping segments defined by start and end segmentation Events, each segment is
required to be uniquely identified to provide unique identification of each segment delimiter and related
exception segmentation Event for programs.
The following values can also be specified:

• Not Indicated
• Content Identification

As with avail_num and avails_expected, the value in the segment_num field could be larger than the
value in the segments_expected field. This would occur, for instance, if a sporting event ran longer than
its allocated duration. If the network content provider sent Cue Messages during the runover period, the
segment_num field would have a number greater than that in the segments_expected field.

9.6.2. Delivery of Segmentation Descriptors

Segmentation descriptors are delivered in the splice_info_table within splice_insert(), time_signal() or
splice_null() commands.

For time critical applications (e.g. real time splicing), time_signal commands should be used and should
arrive a minimum of 4 seconds in advance of the signaled time (pts_time as modified by pts_adjustment).

Multiple instances of segmentation_descriptors() may be included in a single splice_info_table by
utilizing the descriptor loop mechanism in the table syntax. This may save bandwidth by using a single
transport packet and a single splice_info_table for the multiple segmentation_descriptors(). The sender of
such co-located descriptors is responsible for ensuring that, for instance and among many things, if a
time_signal() command is used, that all descriptors in this table do pertain to the indicated and common
splice_time() value. An example of a usage of this mode would be to signal the end of a segment and the
beginning of the next segment by using two segmentation descriptors in the same splice_info_table with a
time_signal() command. If segmentation Events are split between splice_info_tables the order of delivery
of the splice_info_tables should deliver any “end” segmentation Events prior to new “start” segmentation
Events.

9.6.3. Processing of Segmentation Descriptors

Insertion equipment should operate normally in response to splice_insert() and other splice commands
even with the presence of segmentation descriptors delivered within time_signal() or splice_null()
commands.

Implementations should be prepared to handle the case where a segment end may be signaled with a
segment start signaled at the same position.

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 37

All descriptors delivered with the same splice_info_section delivered in a time_signal() or splice_null()
commands should apply to the same position in the stream and be processed in their entirety by the
implementation.

9.6.4. Specific Use Cases

The following sections address specific use cases and how programming, ad content and ad Avails should
be identified.

9.6.4.1. Delineation and Identification of Advertisements in Program
Feeds

For delineation of advertisements in Program feeds, use splice_null or time_signal() with a
segmentation_descriptor identifying the start of the advertisement. The command should be placed prior
to or at the beginning of the ad. Use splice_null() or time_signal() with a segmentation descriptor
identifying the end of the advertisement. Use of the time_signal() command is recommended particularly
if a high level of accuracy is desired.

An advertisement should be delineated by a pair of segmentation_type_id values of:

• Provider Advertisement Start/End
• Distributor Advertisement Start/End

For enhanced advertisements, the associated end command should occur no fewer than 4 seconds before
the end of the ad. This will allow the application environment to perform any necessary processing to
ensure that any on screen display elements or other application artifacts do not interfere with
entertainment or advertising content that follows. An enhancement may be implemented using the ETV or
OCAP technology.

For identification use splice_null() or time_signal() with a segmention_type_id value of 0x01, Content
Identification, standalone or in between “start”/“end” segmentation_type_id value pairs. The later is
useful for applications that may want periodic heartbeat to make sure they are still in the same
advertisement.

The following can be used to uniquely identify an advertisement.

• segmentation_event_id, segmentation_upid
• segmentation_event_id, segmentation_upid, segment_num
• segmentation_event_id – cannot be used if Content Identification is also used.
• segmentation_event_id, segment_num – cannot be used if Content Identification is also used

If included, segmentation_upid should identify the advertisement. The segmentation_upid_type of 0x03
(Ad-ID) is the recommended identification model for advertisements. If the advertisement does not have
an Ad-ID, the segmentation_upid_type of 0x01 (User Defined) is the recommended identification model.

To put an advertisement in full context the identifier for the advertisement and the [EIDR] for the
Video Service and the EIDR for the Movie or TV content should be passed in a segmentation_upid of
segmentation_upid_type of 0x0D (MID()). Segmentation_upid_type of 0xA is used to indicate an EIDR
value.

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 38

An implementation may insert more than one pair of descriptors in the case where multiple identifiers
need to be communicated.

9.6.4.2. Identifying Programs or Program Segments in Program Feeds

A segmentation descriptor can be used for delineation of a program or program segment in a Program
feed. The segmentation descriptor may be included with a time_signal() or splice_null() command. Use of
the time_signal() command is recommended particularly if a high level of accuracy is desired.

The program or program segment should be delineated by a pair of:
- Program Start/End

o Program end can be overridden by Program Early Termination
o Program Overlap Start should be used in place of Program Start in the case where a new

Program is starting while another program is still being delivered. For example, some
networks will split the screen and show the credits from the prior Program while the next
Program is starting. There can only be one active Program Overlap Start; therefore, a
Program Overlap Start is required to be followed by a Program End for one of the
programs.

- Chapter Start/End

See application of duration earlier in section 9.6.1.

The following can be used to uniquely identify a program:

- segmentation_event_id, segmentation_upid
- segmentation_event_id – cannot be used if Content Identification is also used.

If segmentation_upid is specified it should contain a valid identifier for the Program or Chapter within the
Program.

The following can be used to uniquely identify a program segment.
- segmentation_event_id, segmentation_upid, segment_num
- segmentation_event_id, segment_num – cannot be used if Content Identification is also used

If segmentation_upid is specified it should contain a valid identifier for the Program. The
segmentation_upid_type of 0x0A ([EIDR]) is the recommended identification model for TV or
Movie content.

To put a program in full context the identifier for the program and the EIDR for the Video Service should
be passed in a segmentation_upid of segmentation_upid_type of 0x0D (MID()). Segmentation_upid_type
of 0xA is use to indicate an EIDR value.

For identification use splice_null or time_signal with a segmention_type_id value of 0x01, Content
Identification, standalone or in between “start”/“end” segmentation_type_id value pairs. The later is
useful for applications that may want periodic heartbeat to make sure they are still in the same program or
program segment(s). See section 9.6.1 for addition information on use of segmentation_type_id value
0x01, Content Identification.

9.6.5. Identifying Placement Opportunities

A segmentation descriptor can be used for delineation of a placement opportunity in a Program feed. The
segmentation descriptor may be included with a splice_insert() or time_signal() command.

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 39

The placement opportunity should be delineated by a pair of Placement Opportunity Start/End. See
application of duration earlier in section 9.6.1.

The following can be used to uniquely identify a placement opportunity:
- segmentation_event_id, segmentation_upid

The following models can be applied to support a deterministic match between data in the segmentation
descriptor and data delivered out of band by a distributor.

1. CableLabs metadata Placement Opportunity or Signal identifiers
2. A unique pairing of segmentation_event_id and segmentation_upid

For the CableLabs Metadata model, the segmentation_upid should contain a valid CableLabs metadata
identifier for the placement opportunity. The segmentation_upid_type of 0x09 (ADI) is the recommended
identification model for placement opportunities. The actual segmentation_upid can be one of:

- Using signal identifiers
o For Placement Opportunity Start the SIGNAL:<identifier> for the start point
o For Placement Opportunity End the SIGNAL:<identifier> for the end point

- Using placement opportunity identifiers

For both Placement Opportunity Start/End the PO:<identifier> for the Placement Opportunity

Both SIGNAL and PO identifiers could be sent if both identifiers need to be communicated. If both are
passed a segmentation_upid_type of 0x0D (MID()) is used.

For the segmentation_event_id and segmentation_upid model, the pair should uniquely identify a
placement opportunity. If the pair is not globally unique, the out of band metadata shared between the
provider and the distributor should contain a time range constraint to ensure uniqueness.

To put a placement opportunity in full context the identifier [EIDR] for the program and the EIDR
for the Video Service should be passed in a segmentation_upid of segmentation_upid_type of 0x0D
(MID()). Segmentation_upid_type of 0xA is use to indicate an EIDR value.

For identification use splice_null or time_signal with a segmention_type_id value of 0x01, Content
Identification, standalone or in between “start”/“end” segmentation_type_id value pairs. The later is
useful for applications that may want periodic heartbeat to make sure they are still in the same program or
program segment(s). See section 9.6.1 for addition information on use of segmentation_type_id value
0x01, Content Identification.

9.6.6. Identifying Standalone Advertisements
Use time_signal() or splice_null() command with a segmentation_descriptor identifying the start of the
advertisement. Use time_signal() or splice_null() with a segmentation descriptor identifying the end of the
advertisement. If the advertisement is enhanced, the time_signal() command should be used and occur no
fewer than 4 seconds before the end of the advertising content file. Use of the time_signal() command is
recommended particularly if a high level of accuracy is desired.
The ad should be delineated by:

- A pair of Provider Advertisement Start/End
- A pair of Distributor Advertisement Start/End
- Provider Advertisement Start/Duration
- Distributor Advertisement Start/Duration

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 40

The following can be used to uniquely identify an advertisement.
- segmentation_event_id, segmentation_upid
- segmentation_event_id, segmentation_upid, segment_num
- segmentation_event_id – cannot be used if Content Identification is also used.
- segmentation_event_id, segment_num – cannot be used if Content Identification is also used

If segmentation_upid is specified it should contain a valid identifier for the advertisement.

Inclusion of segment_num may be useful in the case where there are related advertisements.

For identification use splice_null or time_signal with a segmention_type_id value of 0x01, Content
Identification, standalone or in between “start”/“end” segmentation_type_id value pairs. The later is
useful for applications that may want periodic heartbeat to make sure they are still in the same
advertisement. See Section 9.6.1 for addition information on use of segmentation_type_id value 0x01,
Content Identification.

9.6.6.1. Putting Segments in Context

Segmentation Descriptors can be used to put advertising or programming in context. For example,
advertisements may need to be associated with the entertainment content for measurement or other
processing. An embedded program may need to be measured within the context of another program.

The following use cases are addressed below:
- advertisements that are aired within a program
- advertisements that are aired prior to the start of a program or after the end of the program but is

considered advertising related to the program
- programming that is aired as part of another program (ex. news break)
- programming that is aired prior to the start of a program or after the end of the program but is

considered programming related to another program

To place advertisements that are delivered during a program within a program’s context, the segmentation
descriptor for an advertisement should occur within a Program Start/End descriptor. To ensure that
advertisements that are delivered prior to the start of the program or after the end of the program are
considered within the context of the program the Program Start should occur prior to the first
advertisement and the Program End should occur after the last advertisement. In the case where there is a
breakaway to another program, the advertisement should be aired prior to a Program Breakaway or after a
Program Resumption.

For programming that is as part of another program the Program Start/End of the embedded program
should appear between a program breakaway/resumption of the main program. For a program that is aired
prior to the start of the main program, the main program should have a start/breakaway pair prior to the
start of the embedded program. For a program that is aired following the main program, the main program
should end with a program breakaway, followed by the Program Start/End of the embedded program and
then a program end for the main program. An embedded program may have Program
Breakaway/Resumption and/or Chapter Start/End values in the same way as the main program.
Additional depth of embedded programming can be supported using this model.

SCTE 35 MID() structure can be utilized to package two or more identifiers in a particular instance of a
segmentation descriptor. For example, advertisements that are aired within a program can be identified by
including the [EIDR] video service identifier, the EIDR content identifier and an Ad-ID. The
following shows an example using an SCTE 35 XML representation to identify a 30 second ad in context
of the network and content.

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 41

<SegmentationDescriptor

 segmentationDuration="2700000"
 segmentationEventId="1207959671"
 segmentationEventCancelIndicator="0"
 segmentationTypeId="48" segmentNum="1"
 segmentsExpected="1"
 >

 <!-- EIDR of Video Service (Cartoon Network) -->
 <SegmentationUpid segmentationUpidType="10">14778BE5E3F6000000000000</SegmentationUpid>

 <!-- EIDR of Content (TV/Movie) (Lord of the Rings: The Fellowship of the Ring) -->
 <SegmentationUpid segmentationUpidType="10">1478E030107BC08ABF93AC79</SegmentationUpid>

 <!-- Ad Id (ABCD238Q000H) -->
 <SegmentationUpid segmentationUpidType="3">414243443233385130303048</SegmentationUpid>

 </SegmentationDescriptor>

The above can be converted to or from a bit stream representation as described in SCTE 35.

9.6.6.2. Use of segmentation_event_cancel_indicator

Section 9.3.3.5 of SCTE 35 provides semantics concerning segmenting content. Based on those
semantics, the behavior of a system receiving a Segmentation Descriptor with the
segmentation_event_cancel_indicator set to ‘1’, the identified segmentation Event and all segmentation
Events at lower logical levels should be considered invalid.

Starting at the lowest level of the hierarchy of programs, chapters and advertisements. If a cancel is
received for an advertisement, provider or distributor, the segmentation Event should be considered
invalid.

For chapters, a cancel applies to the designated chapter only. Canceling a chapter may result in gaps in
chapter numbers. SCTE 35 semantics permit reuse of an identifier so a chapter gap may be filled in at a
later time in the transmission. As overlapping chapters are allowed by SCTE 35, cancelling a chapter does
not affect any other chapters present.

For programs, a cancel applies to the designated program and any chapters and advertisement segments
within the program. Once canceled any segmentation Events associated with the program should be
considered invalid. Any embedded programs and their associated chapter or advertisement segments are
unaffected.

9.6.6.3. Handling of Unexpected segmentation_descriptor Information
or Sequences

If unexpected segmentation_descriptor information or sequences are received the segments being
described should be considered suspect. Any remedial action taken is out of scope of this recommended
practice. The following are provided as examples:

- Content Identification does not match values delivered in a start Message or in a previous Content
Identification Message. This applies to programs, provider advertisement and distributor
advertisement start segmentation Messages.

- The unique program identifier does not match between start and end Messages. For program
segmentation Messages this includes the supplemental segmentation Messages.

- A Program Start is received while a previous program is still active. As described in section
9.6.4.2 programs may be nested by sending a program breakaway for the active program. In this

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 42

case no program breakaway is received so the previous program segment should be considered
suspect.

- Cases where an end segmentation command is not received when anticipated should be dealt with
on a case by case basis. In the absence of duration certain rules can be applied assuming
knowledge of expected behavior. For example, advertisements during a scheduled entertainment
program will normally have a fixed structure (ex. several 30 second advertisements). Similarly, if
running a normal evening program schedule programs length is normally known in advanced (ex.
30 minutes, 60 minutes, etc.).

- Non-compliant information in a segmentation_descriptor is received. For example, the
segmentation_upid_type is not valid per Table 9-7 in SCTE 35.

10. Presentation Time Stamp considerations

10.1. Handling Time Base Discontinuities

It is stated in section 8.1.1 of SCTE 35 that a Cue Message that is sent just before a Time Base
Discontinuity (TBD), is not allowed to carry a splice_time expressed in the new time base that follows
after the TBD. One reason for this requirement is that it would otherwise be very difficult, in a re-
multiplexing operation, to preserve the validity of the splice_time field. Without this requirement, a
remux or re-stamping device, could find itself in a position where it needs the value of a PTS, which will
not arrive until hundreds of milliseconds later.

It was therefore decided that the splice_time field should always be expressed in the time base currently
in effect, i.e., where the Cue Message packet containing this field is inserted in the stream. Consequently
the Cue Message inserter is required to behave as if, even in the rare cases when it really knows
otherwise, there will not be a TBD during the “arm time”. The “arm time” is the time between the first
Cue Message referring to an Event and the Event itself.

The splice_time field might need to point to a picture that is located after the TBD. That picture will be
associated with a PTS expressed in the new time base. The Cue Message is not allowed to use that PTS
value. Instead it is required to use the PTS value that the picture would have been associated with if the
TBD did not exist or had been removed, e.g., by re-stamping of all time stamps following the TBD to the
old time base.

This simplifies the work of a simple remux, which passes the input timing through to its output (no
restamping of PTS and PCR and hence no removal of time base discontinuities present on its input).
Simple remultiplexers are responsible for preserving the validity of the splice time carried in the Cue
Message that they pass. It is therefore up to a simple remultiplexer to guarantee that a Cue Message is not
allowed to cross over a TBD boundary, since this would destroy the validity of the splice time in the Cue
Message.

Remultiplexers that continuously re-stamp the PCR and PTS in their output, and thereby automatically
remove time base discontinuities, are required to preserve the Cue Message splice_time validity. They are
required to be aware of which side of an arriving TBD the Cue Message is on in order to properly map the
Cue Message into the device’s output (and re-stamp the splice_time field accordingly).

For both simple and re-stamping remultiplexers, it is strongly recommended that the arm time is never
decreased while processing the stream and embedded Cue Messages (i.e. never add delay to the Cue
Message relative to the System Time Clock in the stream). Decreased arm time for a Cue Message that
already is at the lower limit of arm time recommendations or requirements might result in a violation of
these recommendations or requirements.

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 43

The splice_time field is carried in the possibly encrypted part of the Cue Message, making it potentially
inaccessible to a re-stamping device. If encryption is employed, the re-stamping device is required to
update the pts_adjustment field, which is provided in the non-encrypted part of the syntax for exactly this
purpose. When encryption is not employed, the re-stamping device may update the splice_time field
directly or may choose to modify the pts_adjustment field.

When there is a TBD during the arm-time, a device receiving and acting upon the Cue Message, e.g., a
splicer/server, is responsible for the translation between the old and the new time base. That means
translation of the splice_time carried in the Cue Message (adjusted according to the value of the
pts_adjustment field) to the new time base to obtain the PTS of the picture intended to splice at.

10.2. Cascaded Splicing Devices

SCTE 35 allows for cascaded splicer/servers since a splicer is just a form of a remultiplexer. Figure 8
illustrates the scenario, where two splicer/server combinations are cascaded to perform insertion. The
outer boundaries of the system are the same as in the single-splicer scenario. No direct communication
between the two servers is required.

Figure 8 - Cascading of Splicer / Server Devices

There are a few issues to be considered when cascading devices. These are addressed below.

10.2.1. Restamping Cue Messages

Splicers may handle their output timing (PCR, PTS) in several ways. If a splicer always passes the time
domain of the network feed thru to its output, even when an advertisement is replacing the network feed,
it does not need do any restamping of a passed-on Cue Message. If, however, a splicer always or
momentarily restamps PCRs and PTSs (at the moment of a Cue Message) the splicer is required to make
the passed-on Cue Message once again truthful. SCTE 35 has an unencrypted field, called
pts_adjustment, that allows the cue packet to be effectively restamped by altering this adjustment field
rather then having to access the pts_time() variable(s) and restamping each individually. This was
originally included in SCTE 35 for encrypted operation where an intermediate multiplexer/splicer would
not be able to decrypt the Message, but it would be restamping cue packets. This field, though, makes it
simpler for intermediate muxes in all cases. The splicer has to add the pts_adjustment field to all
pts_time() fields to get the actual splice time(s).

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 44

10.2.2. Cue Propagation

Splicers should have some form of configuration variable to allow for passing a time corrected Cue
Message, and they should also have the option to block the Cue Message from further propagation. It is
up to the network and the distributor to decide how far a Cue Message may propagate. The Cue Message
could go all the way to the set-top since the cable plant will most likely encrypt it. The set-top would then
be able to decrypt it as part of a closed system and this should prevent some forms of commercial killers.

10.2.3. Delay

Splicers typically cause some amount of delay in the MPEG stream. This is more of a concern when
splicers are cascaded since delays will accumulate. The only applications that would be very dependent
on delay would be simulcast operations and time-critical variables (Real-time stock quotes). It is thought
that the simulcast operations will not really be needed with high quality audio now in the system. Current
data delivered over the broadcast TV mechanism typically are time-delayed already and that fact is
usually stated clearly on the screen with the data. In either condition, current splicers typically add one to
two seconds of delay and this does not seem to concern the cable distributors at this point.

10.2.4. Logical Cascading

The potential need for cascaded splicers can be taken care of by the server/splicer API SCTE 30. Using
this API, one physical splicer can handle multiple servers doing Local/Regional/National advertising.
This logical cascading eliminates the need for having three physically cascaded splicers with their
additional delay.

11. Command Usage

11.1. Bandwidth Reservation Command

SCTE 35 now includes a splice_command_type for bandwidth_reservation. This command contains no
data, but the standard syntax allows for descriptors, although there are no standard descriptors that would
normally be used with this command.

The bandwidth reservation command is intended to be transmitted on the SCTE 35 PID continuously.
Any receive device is expected to ignore these Messages.

When a real Cue Message is generated, it is intended to replace a bandwidth reservation packet. The
bandwidth of the PID is expected to remain constant.

11.1.1. Why Use a Bandwidth Reservation Command?

There are at least three reasons for needing a continuous stream of packets on the SCTE 35 PID.

The first reason is for network debugging. One can easily determine that all remultiplexers and decoders
in the chain have been properly configured to pass the SCTE 35 PID. Without a continuous stream, one
has to wait for an actual ad to start or stop and try and capture the Message. On a live system, if the chain
is not configured correctly, then the Message will be lost.

The second reason is network reliability. With a continuous stream of data, if the stream stops for any
reason, one can detect it almost immediately. Hopefully it can then be fixed before a real SCTE 35 Cue
Message is sent and lost.

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 45

The third reason is for security. If a network wishes to scramble the SCTE 35 PID, then it is desirable to
have a continuous stream of data to scramble. If the PID really needs the security to stop theft of an Avail,
then encrypting or scrambling the Message is not enough. For example, if the PID contained only start
Messages then a receive device only needs to look for the presence of a packet on that PID to trigger an
ad insertion. The contents don’t really matter. With a continuous stream, the receiver would not know
which of the packets was the real start Message.

11.2. Heartbeat Messages

Heartbeats are similar to the bandwidth reservation command in function. The heartbeat is implemented
with a splice_null() command. Normally, a splice_null() is used to deliver descriptors to a splicing
device. However, the heartbeat Message has no descriptors.

11.2.1. Why Use a Heartbeat Message

The heartbeat Message is a “real” command, unlike the bandwidth reservation command. The bandwidth
reservation can be dropped by a receiving device (ex. IRD) if necessary. In these cases, a downstream
device (ex. a splicer) would only see “real” splice commands such as splice insert.

In some systems, it would be desirable for the splicer to know that the system is properly configured so it
can flag an error and get the problem fixed in a timely manner. The splice_null() is always expected to be
passed through to the splicer. In this way, the heartbeat fulfills the debugging and reliability roles
mentioned for the bandwidth reservation Messages.

Unlike the bandwidth reservation, the heartbeat is expected to be sent infrequently. It only needs to be
sent often enough that the receiving device (ex. splicer) does not trigger a warning. For example, the
SCTE 35 standard suggests this heartbeat could be sent every 5 minutes.

11.3. Time Signal Command

SCTE 35 includes a splice_command_type called time_signal() and the command is provided for
extensibility while preserving the precise timing allowed in the splice_insert() command. This is to allow
for new features not directly related to splicing utilizing the timing capabilities of SCTE 35 while causing
minimal impact to the splicing devices that conform to SCTE 35.

11.3.1. Uses for the Time Signal Command

The time_signal command was added to carry timing information for segmentation descriptors. Initially
the segmentation descriptor was to be a new command type similar to a splice insert, but it was decided
that it would be more flexible to just carry the essential timing information in the splice command and the
unique data to what that time Event was in a separate descriptor.

It would actually be possible to revise SCTE 35 to have a splice_insert descriptor, but that would cause
issues with all the legacy equipment in the field. The specification is now free to use the time_signal()
command with additional new descriptors to make SCTE 35 more extensible.

11.3.2. Practical Boundaries for splice_time() in time_signal()

While the 4 second pre-roll used for the splice_insert() command is a good suggestion for the time_signal
command, certain time signal commands that describe real time events could cause an immediate
command to be used. Devices that process the time_signal() command should be aware that this may
happen and process the command in the best possible manner.

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 46

When an immediate command needs to be implemented, it is recommended that methods such as using
encoder delay, additional delay in the broadcast path or other such methods to extend the amount of pre-
roll signaled and to allow downstream devices additional processing time. AVC encoders also require
some pre-roll time to insert an IDR frame at the appropriate time.

Devices processing a given feed may also be able to add a fixed amount of delay, typically a few seconds
depending on the processing needs of the device.

12. Implementing SCTE 35 for Signaling in Linear Content

• This section provides an overview on how to implement SCTE 35 for real-time signaling of linear
content delivery. This only describes how to use SCTE 35 signaling for in-band messages. It is
likely that an out-of-band metadata feed will be required to provide further information. That
metadata is not in the scope of this document. Possible formats for the out of band information
may includeSCTE 118-2, SMPTE [AMF0] "Action Message Format AMF0",
http://download.macromedia.com/pub/labs/amf/amf0_spec_121207.pdf

[BXF] or [SCTE 224] standards/specifications.

In order to detail the signaling one first needs to describe example provider’s and distributor’s system
architecture.

12.1. System Architecture - Provider
Figure 9 is a block diagram that shows the information flow through a typical provider’s
origination system. Note that there are other components such as routers, slate inserters, closed
caption, V-Chip, copy management, and service measurement data inserters that are omitted for
clarity. Their location in the broadcast stream can be important for other aspects of TVE to meet
regulatory requirements.

Figure 9 - System Architecture

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 47

12.1.1. Rights

The topic of content rights is quite complex and beyond the scope of this document. Who owns the rights
to a given content will vary often depending upon the type of material. For example, sports content rights
typically belongs not the provider, or even the team, but to the league. Movie contents may not belong to
the studio, rather to the production company which created the movie. Rights to air material over
traditional media may not include rights to stream that content over the web.

Signaling to facilitate rights management is present in the SCTE 35 segmentation descriptor. Readers
should be aware that for some content streaming rights might change depending on outside factors in
scheduling. Some providers have database management systems that contain rights information, others
rely upon rights management groups within their companies.

12.1.2. Programming

The programming group sets up the basic schedule or guide information.

12.1.3. Sports

The sports league delivers the providers sports programming group the information necessary for
blackouts including the teams that are playing, the city/venue of the event, if the local broadcaster has
picked up the event and possibly other items that will affect the rights associated with this program.

12.1.4. Ads

The ad system now has to keep track of which advertisers and ads are approved, or more likely
specifically not approved, for web usage.

12.1.5. Scheduling

The scheduling system takes input from all of the above systems to create the files that run automation. It
needs to put together the structure for the automation system to insert the Triggers. As there is usually a
master control operator watching these log files, this can be a difficult job to get the required information
in to the log without cluttering up the master control screen. When the master control operator moves an
event they need to move the appropriate cues along with the event, which sometimes may not happen.

Some of the events that need to be marked include;

1. Program start
2. Program end
3. Program Overlap start
4. Provider ad break
5. Local ad break (may be in provider ad break)
6. Individual ads

The scheduling (and possibly automation) systems also need to control the message tier. There are likely
to be contractual agreements that vary by distributor as to which messages they require and to what
services they provide.

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 48

12.1.6. Automation

• The automation system has the frame accurate control and playout of the network, or the ad
playout for live events. It knows the exact duration in frames of any clip that is running and can
signal the SCTE 224 inserter to frame accurately signal the transitions. Many of these systems
can also output a live [AMF0] "Action Message Format AMF0",
http://download.macromedia.com/pub/labs/amf/amf0_spec_121207.pdf

[BXF] feed that can be used to create the out-of-band metadata.

12.1.7. Master Control

Most networks have people either actively running the programming (typically live sports or news), or
monitoring the playback and taking action when issues arise.

There are a few companies that make master control systems that give the distributor a “programmable
button” that can be used to feed an SCTE 224 inserter that signals the event. These systems can also be
used when the director calls for an ad break to be cut short and signal a return from automation to master
control.

12.1.8. Live/Servers

This block represents where the audio/video feed is sourced.

12.1.9. SCTE 104

This block is the SCTE 224 VANC inserter. While it is possible to use IP or serial streams to signal an
encoder via SCTE 104, this RP recommends using the VANC approach. With this method the provider
has a fully described stream that can be sent to multiple consumers who all have the same frame accurate
information. Example consumers include the broadcast encoder, distributor mezzanine encoder, alternate
time zone delay systems. Note that not all HD-SDI equipment always records or passes all of the VANC
space.

12.1.10. Slate/Alternate Switch/Generator

While not in the diagram, some systems may require a separate slate generator that can be switched to
cover up the broadcast content when web delivery is not permitted. This operation will typically be
performed by the provider or distributor packager product in production.

12.1.11. Encoder

The encoder takes the SCTE 224 VANC data and translates it in to frame accurate Cue Messages that use
PTS time to indicate the location. If using AVC, the encoder is also required to insert I/IDR frames at the
locations signaled by Splice_Insert and Time_signal commands as defined in SCTE 172. The encoder
generates all of the required video and audio formats for broadcast and web streaming.

12.1.12. Packager

The packager takes the raw MPEG-2 Transport Streams with the multi-bitrate video and audio resolutions
and formats and prepares them to be streamed in whatever formats the provider supports. Some of these
formats include SmoothStreaming, RTMP, HDS and [DASH] .

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 49

The packager may also be required to insert a slate or alternate content for web blackouts and ads,
although not for regional (sports) blackouts. Some of this information may come from the TVE Live
metadata source.

On packager startup it should read the Live Metadata to find out the current state of the live stream and
any web restrictions. Alternatively if redundant packagers are utilized they can communicate between
themselves to ensure proper initialization and state.

12.1.13. Origin

The origin server is the primary source for all the content that the provider is putting in to the CDN. Some
origin servers can support server side ad stitching and network PVR functionality that can utilize the
SCTE 35 signaling for frame accurate operation.

12.1.14. CDN

The CDN provides the infrastructure for the content to be replicated, cached and distributed to the end
users.

Some of the stream stitching approaches to advertising and blackouts work with the CDN to allow for
their solutions to be scaled.

12.1.15. Distributor

The distributor mezzanine encoder is sometimes provided by an distributor to get a higher quality direct
feed. If the provider is using the VANC method as previously suggested, one should be aware that the
tiering mechanism in SCTE 224 is typically used by the provider’s satellite conditional access system and
a mezzanine encoder may be receiving all of the Triggers if the provider hasn’t implemented a parallel
conditional access solution.

12.1.16. Metadata Generation

Rather than take system bandwidth for in-band signaling, a larger metadata file that contains the detailed
rights and informative information about the live broadcast is typically sent out-of-band.

12.1.17. App Server

The various device applications require a server to supply configuration and guide information. This
server can use the live metadata feed to ensure that the information is accurate.

12.1.18. Clients

The client or network delivery system needs to manage the client startup for regional blackout or ad
playing use cases. The client or network sourcing the client may also have to provide geolocation
information to be able to respond to regional blackouts or other geo based rights restrictions.

12.2. System Architecture - Distributor

Figure 10 shows a typical MVPD signal flow and how the live signaling and metadata are consumed by
the distributor. CableLabs has developed two specifications [ESAM] and [SCTE 224] as specifications an
MVPD might use to manage this data within their plant. These specifications have some slight differences

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 50

over this generic diagram, but provide the same services by defining some of the interfaces in the diagram
below. They also add some management functions that are out of scope for this document.

Figure 10 - Example Distributor Architecture

12.2.1. Broadcast/Mezzanine

The content is delivered to the distributor typically via either a satellite link or a dedicated CDN
(“mezzanine”).

12.2.2. QAM/Satellite

This illustrates the path for sending the programming to the current set top. The distributor could use the
signaling information to update the start and end times on the set top DVR’s to provide accurate
recordings.

12.2.3. VOD/nPVR

The precise signaling and metadata allows for network PVR like services that are now accurate and allow
the provider to actually signal the distributor which version of the content that should be recorded. Many
providers will want to re-pitch a clean version of the content, but others may want to use the signaling to
dynamically switch the ad load post C3 to addressable.

12.2.4. Transcoder

Some distributors will use the provider’s transcoding service while others may want to transcode the
programming for their own web sites and apps.

The distributor’s transcoder generates the various streaming services they require. This transcoder uses
the Cue Messages to insert/retain IDR frames at the correct location and should also forward the messages
to the packager to allow it to perform the required functions.

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 51

As indicated in Section 3.2, CableLabs has defined Event Signaling and Management APIs [ESAM] for
processing the Cue Messages. It defines an SCTE 35 signal confirmation and conditioning interface
between the transcoder and an upstream signal processor, such as a POIS. This is used for
communicating the SCTE 35 information to alternate content (e.g., blackouts, emergency services, etc.)
and advertisement decision managers.

12.2.5. Packager

As with the broadcast packager, the distributor packager will be required to cover certain content with a
slate or an alternate content feed. Blackouts and alternate content information will be in the metadata file.

The [ESAM] specification also defines a packager interface. It defines a manifest confirmation and
conditioning interface. This interface informs the packager to alter the manifest accordingly for the client
to fetch the appropriate content for the subscriber. This and the previously described Transcoder
interfaces can work both synchronously and asynchronously.

12.2.6. Origin

The origin server is the primary source for all the content that the distributor is putting in to its
distribution plant.

12.2.7. Metadata Reader

This service offers access to the provider’s web site with the distributor’s credentials to get current
programming information for use by other parts of this system (for example, api.provider.com). It could
also provide the enhanced guide data to the nPVR or guide subsystems as well.

[SCTE 224] defines the event scheduling and notification interface, a web services interface for accessing
the provider’s metadata related to a program.

12.2.8. Player/App Server

The various device applications usually require some type of server to supply configuration and guide
information. This server can use the live metadata feed to ensure that the information is accurate.

12.2.9. MVPD Distribution

This is the MVPD’s distribution to its subscribers.

12.3. Extensions to Content Identification for Real Time Signaling

Content identification is described in Section 9.6, this section continues use cases for the restrictions bits
and additional guidelines when inserting SCTE 224 or SCTE 35 segmentation descriptors.

12.3.1. SCTE 35 Guidelines

Guidelines for inserting SCTE 35 commands:

1. SCTE 172 constraints should be followed when using AVC encoding the content.
2. Attempting to send two separate SCTE 35 commands that reference the same frame of video

should be avoided. This depends on your SCTE 35 insertion method, but if there is any

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 52

possibility that the equipment could attempt to put the messages referencing two adjacent or close
frames, this would cause encoding quality issues and likely not be the intended result.

3. The commands should be inserted at least a GOP distance apart. Having to insert I(DR) frames in
close proximity will hurt encode quality.

4. When using tier signaling for messages such as two different local ad break lengths, it is
recommended to insert the longer duration message first and then a second message at the
appropriate duration distance. An example would be sending a 90 second local break first, then
30 seconds later sending a 60 second local break. Both breaks would end on the same message (if
end messages were used), and could use the same splice_identifier. Alternatively if the cues are
being sent with a duration, then an end message may not be required. The encoder will ensure an
IDR frame insertion at the correct output based on Duration.

12.3.2. USAGE of SCTE 35 Restriction Bits

It is suggested that the provider should ALWAYS set the delivery_not_restricted flag to 0 indicating that
they reserve the right to restrict delivery on the content. When set to ‘0’ the distributor is required to
check the Out Of Band data and that data is the controlling element.

12.3.3. Web Restriction Use Cases

12.3.3.1. General

When a web restriction is indicated the default action is to replace the content with a slate. This is
typically done in a packager, but could be on the web encoder or transcoder. The slate to use for various
types of web blackouts can be defined in the out-of-band metadata. Typical slates that need to be provided
include;

1. Program blackout
2. Ad blackout
3. Technical difficulties
4. End of network day

Whatever device is inserting the slate will need to keep monitoring the input looking for Triggers and/or
Cue Messages with commands to remove the slate or possibly change the slate. The device should also be
able to insert a slate based on profile. An example would be that the slate is configurable to insert for
mobile phone profiles, but not for connected TV profiles. This would typically be used when an
individual ad is not permitted.

Allowed – Web cleared, flag set to 1.

Not Allowed – Web not cleared, flag set to 0.

Program – Linear content

Ads – Linear ads running as part of the program

Slate – One of

1. Black (or other color)
2. Still image (network logo, be back soon)
3. Short repeating video or playlist – Pre-encoded and chunked or live
4. Alternate content - pre-encoded and chunked or live

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 53

12.3.3.2. Case 0 – Force Slate Up or Down

This case describes a realtime manual intervention blackout. In this case the blackout is considered a
higher priority than the other commands. A force slate can only be removed by another force slate
command. See 12.3.3.23 for removing or inserting a program slate that was positioned incorrectly.

Set UPID to 0x0C (MPU)

- length = 6

- <space>SL8 = 0x20534C38

- 2 byte slate identifier (to be looked up in metadata)

Set Delivery_not_restricted to 0

Set Web Delivery Allowed flag to 1 or 0 depending on if you want to remove or insert the slate.

Set segmentation_type_id to 0x00 (Not Indicated)

12.3.3.3. Case 1 – Program Allowed, ads Allowed

This case describes that the provider wants the web experience to be identical to broadcast. The provider
is likely not doing dynamic ad insertion and is probably interested in C3 ratings credit. This would imply
that there is proper tagging or marking within the content such as audio watermarks or id3 tags.

Web delivery allowed flag = 1 on start/end, program, placement_opportunity, provider and
distributor ads.

No slate.

12.3.3.4. Case 2 - Program Allowed all ads Not Allowed

This is the normal case for a provider that is doing dynamic ad insertion. Since the streaming Ad delivery
system will not likely match the duration exactly, the provider may require a slate to be put up that covers
all ads. Depending on the streaming ad insertion method, this could have the viewer return to a slate,
which is preferable to returning to the ending of a network ad.

Web delivery allowed flag = 1 on the start/end of program segmentation_type_ids

Web delivery allowed flag = 0 on placement_opportunity, provider and distributor ads.

Slate/alternate content on ads.

12.3.3.5. Case 3 – Program Allowed some ads Not Allowed

This use case describes a provider’s requirement that specific advertisements be blacked out. This would
be a derivative of use case 1 as the provider would be letting some ads play and not be blacked out with a
placement opportunity as in use case 2. The provider may or may not want dynamic ad replacement in
this scenario, although that would have to be described in the out of band metadata.

Web delivery allowed flag = 1 on start/end, program, placement_opportunity, provider and
distributor ads.

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 54

Web delivery allowed flag = 0 on start/end restricted ads using provider/distributor advertisement
segmentation type id.

12.3.3.6. Case 4 – Program Not Allowed, ads Allowed

In this case the program flag should override the ad flags and just keep the slate or alternate content
playing and downstream devices should ignore placement opportunities until the program ends. Some
providers may remove the placement opportunity descriptors, however the splice_insert command is used
for legacy linear ad insertion and needs to remain in the feed.

12.3.3.7. Case 5 - Program Not Allowed all ads Not Allowed

Almost same as case 4, if the Program is not allowed then ignore ads until program ends anyway.

12.3.3.8. Case 6 – Program Not Allowed some ads Not Allowed

Almost same as case 4, if the Program is not allowed then ignore ads until program ends anyway.

12.3.3.9. Case 7 – Program Allowed Program breakaway Allowed

Same as Case 1, nothing to blackout.

12.3.3.10. Case 8 – Program Not Allowed Program breakaway Allowed

Remove slate for breakaway until resumption.

12.3.3.11. Case 9 – Program Allowed Program breakaway Not Allowed

Insert Slate from breakaway to resumption. This is probably an unlikely use case.

12.3.3.12. Case 10 – Program Not Allowed Program breakaway Not
Allowed

Keep slate up, if in alternate content, keep programs alternate content.

12.3.3.13. Case 11 – Program Allowed Program Overlap Allowed

Same as Case 1.

12.3.3.14. Case 12 – Program Allowed Program Overlap Not Allowed

Bring a slate up since the start of the programming may have theme music for which rights are not
available. This use case should be caught in scheduling and the overlap disallowed. There are also issues
regarding the need to play the credits for the program just aired.

12.3.3.15. Case 13 – Program Not Allowed Program Overlap Allowed

Remove slate, credits should be OK, if not then the programming group should be catching this and
removing the program overlap.

12.3.3.16. Case 14 – Program Not Allowed Program Overlap Not Allowed

Keep slate/alternate content up. May be an issue here as to which alternate content to play at this time.

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 55

12.3.3.17. Case 15 – Part of program Not Allowed

TBD… Could use Chapter start/end, ContentID or Not Indicated with flags set to NOT. Since this is
scheduled the best option would be to use the Chapter Start/End construct with a web blackout set.

12.3.3.18. Case 16– Provider Allowed Distributor Not Allowed

There are some studio contracts that see TV Everywhere from the distributor as a re-syndication of their
programming and it can only be broadcast by the provider. This would allow embed players to play the
content but not an distributor site. There are also restrictions from some studios as to the amount of
provider or distributor branding that could cause this not to be played on an distributor site.

Use a regional blackout flag. In any distributor TVE metadata they see a full blackout and either a
slate or alternate content to display.

12.3.3.19. Case 17 – Blacked out Program, Running Alternate Content
from On Demand TVE

In this case we would have to assume that all ads will be dynamically served and therefore be OK.

12.3.3.20. Case 18 – Blacked out Program, Running Alternate Content
from Alternate Network

Assuming the alternate network was picked since all programming would be OK during the event. Still
may have sections blacked out (World cup soccer, Olympics.) Ads may not all be web safe.

12.3.3.21. Case 19 – End of Network Day

This case is used when a provider uses the same physical network for multiple virtual networks. It could
also be used in the unlikely event that a network is only transmitted a limited amount of time during the
day. Since many TV Everywhere apps use icons for the different networks, it is not desirable for the icon
for one network to actually start playing a different network (or ads from one network are not appropriate
for the other network).

Set segmentation_UPID_type to 0x0A [EIDRCB]

- length = 12

- 12 byte network identifier ([EIDR] Video Stream)

Set Delivery_not_restricted to 0

Set Web Delivery Allowed flag to 0 to insert the slate. (predefined in metadata)

Set segmentation_type_id to 0x51 (Network_End)

The Packager must publish each slate to the current networks publishing point. It will get a Network_Start
message if it is to start publishing the input feed to a new network.

12.3.3.22. Case 20 – Beginning of Network Day

Set segmentation_UPID_type to 0x0A [EIDRCB]

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 56

- length = 12

- 12 byte network identifier ([EIDR] [EIDR] Video Stream)

Set Delivery_not_restricted to 0

Set web_delivery_allowed_flag, no_regional_blackout_flag.

Set segmentation_type_id to 0x50 (Network_Start)

The Packager must also switch to the networks publishing point.

12.3.3.23. Case 21 – Program Blackout Override

When a Program Start or Program End message has been skipped and this is affecting the regional or web
blackout event, the Program Blackout Override may be used to reset the state of the program. After this
command is sent then the normal segmentation messages should work as expected.

Optionally setup segmentation_UPID information for the current program.

Set Delivery_not_restricted to 0 and associated flags for the intended settings for the program.

Set segmentation_type_id to 0x18 (Program Blackout Override)

12.3.4. Regional Blackout Use Cases

In a regional blackout case some viewers will be allowed to see the content, so it is not possible to cover
the content with a slate. The authentication, authorization and geolocation abilities of the player must
handle this type of content.

If the player does restrict the content it will find out what the slate/clip/alternate content is from the
metadata, as it also finds the blackout area the same way. An example of blackout metadata can be found
in [SCTE 224].

It is possible that an distributor will see an event that is blacked out across it’s footprint and it may make
sense for the packager to insert the alternate content at the source. This would make sense for use case 16
in the previous section.

A few use cases are presented to consider when developing methods to manage regional blackouts.

Case 1 – Mobile device behind a cable modem, no VPN detected

example iPad at home

Can this be used for authentication/authorization?

- Ignore location services setting? Unless required by league, then verify location/cable
modem?

Case 2 – Mobile device in the wild, location services enabled

- Moving detection? (Planes, Trains and Automobiles)

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 57

Case 3 – Mobile device in the wild, location services disabled

- Deny this device access to any content that had regional blackouts enabled.

Case 4 – PC/Laptop behind a cable modem

- VPN detection, is the user VPNing to their home?

Case 5 – PC/Laptop Anywhere VPN detected

- Deny content.

Case 6 - PC/Laptop Anywhere No VPN detected

- How reliable is the IP based location service.

12.3.5. Alternate Content

The appropriate alternate content will be described in the Live TVE Metadata feed. Not all providers will
support all varieties of alternate content and within a provider the individual networks will probably have
the final decision on how alternate content is used.

Example types of alternate content are described below. Since simulcast TVE is still a buffered or stored
stream, the types may blur in their definitions. A slate could actually be considered TVE On Demand
content.

The other consideration is where the alternate content is inserted. If the alternate content is being inserted
in to a web blackout, where no viewers are allowed to see the content, it can be inserted in front of the
encoder, in the encoder or in the packager. If the blackout is regional in nature, then the alternate content
needs to be inserted in the network or client.

12.3.5.1. Slate

A slate is typically a still image, usually with a network logo and some text such as “This channel will
resume at 6:00 AM”. A slate could also be a short video loop.

12.3.5.2. Alternate TVE Simulcast

When tuning to a blackout out section of content the viewer could be redirected to another one of the
provider’s TVE Live Simulcasts. This is similar to the current method used in broadcast where the IRD is
force tuned to a different channel.

This method could be confusing to the viewer, for example the viewer wants to watch a baseball game on
a sports network but winds up watching news. It would be useful for the client to be able to tell the viewer
that the selected channel is blacked out in his location and he is watching alternate content.

12.3.5.3. TVE On Demand Content

In order to keep the viewer more likely to stay on the provider’s content, the network could instead switch
the viewer to a similar piece of content that exists on the provider’s TVE On Demand library.

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 58

12.3.5.4. Menu

One of the advantages of the TVE environment is that if a viewer attempts to watch a stream that is
subject to some form of blackout, a menu could be brought up to offer the viewer a selection of alternate
content that they might want to view. The menu layout could also support an advertising location or video
clip while the viewer decides to recoup possible lost revenue.

The menu would easily be described in a short bit of XML in the TVE Live Metadata file.

12.3.6. Alternate Content Removal

An issue when alternate content is used is what to do once the viewer is on the content. If a slate is used it
makes perfect sense to return the player to the content when the blackout ends, if there are actually any
viewers that elected to watch a slate. If the viewer is now on some other alternate content, the viewer may
want to see the end of that content before deciding what to watch next.

12.3.7. Archive Use Cases

If a program does not have archive rights then it should not be recorded for nPVR or other purposes. That
would include not recording any ads no matter what the rights bits are set to until the program_end
occurs.

If Archive bit is not allowed, in program restart should be disabled.

12.3.8. Device Restriction Use Cases

Device restrictions must be enforced on the device level, so no slate/alternate content at the network level
similar to regional blackouts. Device restrictions can actually contain any of the chosen metadata
restriction types and can act as geographical or other restrictions as well.

13. Recommendations on carrying SCTE 35 in other than MPEG2
Transport Streams

SCTE 35 was initially developed to be frame accurate in delivering a Cue Message when inserted in to an
MPEG2 Transport Stream. SCTE 224 extended that to allow messages to be carried out of band or in HD-
SDI VANC data. When using SCTE 104 it is usually possible to refer to exact video frames which allows
104 to have the same frame accuracy.

With IP delivery and the necessity to move most of the data in to manifest files, alternate methods have
been devised to keep the accuracy when the data is removed from a transport stream.

13.1. General Comments on Transforming SCTE 35

Some initial conversion started by only moving a limited set of the SCTE 35 data to the external
representation. We urge the reader to use the below methods that move most or all of the entire command
and descriptor to the out of band method.

13.1.1. Time Base Conversions

Since SCTE 35 timing is based on the transport stream presentation time stamps (PTS) the timing has to
be converted to another method when put in a different format.

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 59

Many advertising management systems identify insertion or replacement opportunities by Normal Play
Time (NPT) value and implementations may choose to represent presentation times in this format. When
replacing an existing advertisement of the same duration, for example in a linear feed, the NPT values
used will typically include the advertising content. When inserting new advertisements, for example in
packaged VOD content, the NPT values typically do not reflect the advertising content.

When converting from PTS to NPT values, signaled discontinuities and rollovers in PCR/PTS must be
correctly handled so that NPT is continuously increasing across the entertainment content. The CableLabs
Content Encoding Profiles specification discusses conversion between PTS based timelines and NPT
based timelines and provides guidelines to ensure this conversion is consistent across implementations.

13.1.1.1. Guidelines for NPT Time Base Conversions

1. The first picture, in presentation order, of the first media segment should be NPT=0
2. An NPT reference should be resolved by adding the NPT as an offset to the PTS at NPT 0. The

NPT should be no more than 1 ms before the referenced picture.
3. For an Out Point, presentation should be up to but not including the referenced picture.
4. For an In Point, presentation should start with the referenced picture.
5. In the case of a timebase discontinuity that is indicated by the discontinuity_indicator in the

transport packet adaptation field, the discontinuity is the result of some upstream stream
manipulation. The system should assume that the upstream device has created a compliant stream
and the relative timing across the discontinuity has been maintained and recalculate the PTS
offset above by the following mechanism:

• The system should calculate the effective PCR in the original timebase of the first packet
containing a PCR in the new timebase.

• The difference between the calculated PCR and the new PCR carried after the
discontinuity_indicator should be applied to the active offset to create the new offset value.

• The new offset value should be used to convert all PTS values following the signaled
discontinuity to NPT values.

6. In the case where the discontinuity is not signaled, it is assumed to be the result of an error
upstream system. Since an unknown number of packets may be missing, the system should
continue to use the same offset value that was in effect prior to the discontinuity.

7. In the case of a rollover in any time-based value (PCR or PTS), NPT calculations should be
performed as if there were an infinite number of bits in the field, e.g. by virtually adding extra
bits to the existing value and carrying out the lost rollover bit before performing any calculation
of NPT.

13.1.1.2. Data Carriage

Some early implementations sought to carry only the information required for the specific purpose that
was being implemented at the time. This has created issues when more information is required at a later
date. Some of the recommended conversion methods include;

1. SCTE 224 - if you are converting back to a format that supports the method of carriage and
timing such as HD-SDI or Apple Pro-Res.

2. XML – using the SCTE 35 XML Schema. This method works well for formats that use XML to
express the stream metadata such as MPEG [DASH] .

3. Base64 – If you can indicate time by adding parameters or by the placement of the Base 64
encoded SCTE 35 table then this is an excellent method to use as it carries all the information in a
compact format.

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 60

13.1.1.3. Binary Data

BinaryData — Contains optional sequence of Base64 Binary coded data and a string identifying the data type.

For Cue Messages the signal acquisition system can process the message as follows:

1. Extract the entire SCTE 35 splice_info_section starting at the table_id and ending with the
CRC_32. (see table 8-1 in SCTE 35).

2. Base64 encode the value as in RFC4648.
3. Store in the BinaryData element for insertion in to the manifest file.

13.1.1.4. Adaptive Streaming Renditions

For systems that support adaptive streaming (such as RTMP, HDS, MPEG-[DASH] , etc.) it is important
that each rendition in an adaptive set carry the same set of SCTE 35 signals. These signals should match
both by signal or segment identifier and by presentation time.

For systems that require an audio-only fallback for each video adaptive set it is recommended that the
audio-only rendition also carry the same set of SCTE 35 signals that are carried within the video. This
guideline ensures that ad signaling continues to be received even when bandwidth conditions have forced
the client to select the audio-only fallback.

13.1.1.5. Content Conditioning

SCTE 35 places no requirements on content coding at signaled splice points although related
specifications and recommendations discuss constraints on video coding at signaled splice points. Events
signaled via SCTE 35 commands should correspond to Stream Access Points of type 1 or 2 as specified in
[DASH] and ISO Base Media File Format [ISOBMFF].

In particular, SCTE 172 provides specific coding requirements for clean exit and entry points for splicing
in AVC coded streams. Presentations that are using SCTE 35 signaling for advertisement insertion should
ensure that content meet these requirements.

For HLS content, there is an additional requirement that HLS transport stream segment boundaries align
with these exit and entry points. Specifically, the entry point must correspond to the start of an HLS
segment, and the exit point must correspond with the end of an HLS segment.

13.1.2. Ad Signaling for RTMP
Ad signaling for RTMP is achieved by embedding SCTE 35 cue data within an RTMP AMF
message, which is sent within the RTMP data channel.
The syntax of the signal message conforms to the object and field types defined in AMF0
The name of the AMF message shall be “onAdCue”. It will contain the following fields:

Field Name

Field Type Required? Description

cue String Required Shall be a string carrying the
base64 binary SCTE 35 cue
that this Cue Message
represents.

type String Required Shall be "scte35".

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 61

duration Number Required Shall be the duration of the
splice or segment, if known.
This field shall be 0 when the
duration is not known.
Units are fractional seconds.

elapsed Number Optional When the signal is being
repeated in order to support
tune in, this field shall be the
amount of presentation time
that has elapsed since the
splice began.
Units are fractional seconds.
This value may exceed the
original specified duration of
the splice or segment.

time Number Required Shall be the time of the splice,
in presentation time. Units are
fractional seconds.

13.1.3. AD Signaling for Microsoft Smooth Streaming

There is a Microsoft Smooth Streaming example in the [ESAM] specification. This RP may recommend a
method in a future release.

13.1.4. AD Signaling for MPEG-DASH

13.1.4.1. Associating DASH Periods with SCTE 35

Many of the events that can be signaled by SCTE 35 align with [DASH] Periods. In particular,
advertisement insertion or replacement will be simplified if the insertion takes place at Period boundaries.
Advertisement insertion points may not correspond to a regular cadence of fixed length Media Segment
boundaries, and the inserted content may have different attributes, both of which are enabled by Periods.

When content containing SCTE 35 events is prepared for DASH delivery, Periods should be created that
correspond to the SCTE 35 events.

13.1.4.2. Period Availability

In a dynamic [DASH] MPD, for example a live service, segment availability times are determined by the
MPD timeline. Periods are time delimited parts of the presentation and DASH allows the availability
times for individual Periods to override the presentation defaults (“early availability”). Since advertising
content is typically available in advance of the playout time, specifying early availability for Periods
containing ad content allows network or client based Ad Insertion Systems to prefetch the ad content.

13.1.4.3. Seamless Period Transitions

[DASH] allows content attributes, for example codec type, to change at Period boundaries and provides
no guarantee of seamless Period transitions. A seamless transition across a Period boundary places
requirements on receiver capabilities and content conditioning (as described in 13.1.1.5) In general,
Period transitions that involve changes in codec type or encoding parameters are unlikely to be seamless.

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 62

Periods should make use of the AssetIdentifier descriptor to indicate Periods that belong to the same
asset. This may be used by clients or network elements to differentiate between entertainment and ad
content.

13.1.4.4. Use of SCTE 35 with DASH Events

[DASH] provides event signaling mechanisms that enable events to carried in the MPD, or in-band in
Media Segments as Event Message Box (`emsg`) structures. Both methods may be used together, for
example MPD events may be used to carry the contents of Cue Messages and in-band events used to
signal the client that a revised MPD containing the Cue Message is available.

MPD level events are carried in an EventStream element at the Period level of the MPD.

The presence of in-band events is signaled in the MPD by an InbandEventStream element at the
AdaptationSet or Representation level.

Multiple uses of the event mechanisms may occur in a presentation, each described by unique
EventStream or InbandEventStream elements.

SCTE 35 commands use PTS values to locate event in the media timeline. DASH events are based on a
timeline specified in the EventStream. The Event Message box and EventStream described above may
continue to use PTS derived values by specifying @timescale value of 90000.

However many advertising management systems identify insertion or replacement opportunities by
Normal Play Time (NPT) value and implementations may choose to represent event times in this format.
Please refer to 12.1.1.1 for further discussion of timebase conversion.

Conversions should take into account any adjustment signaled via the pts_adjust field.

For MPD-based events, the correct time of the message should be signaled via the presentationTime
attribute. For inband events the correct time of the message should be signaled via the
presentation_time_delta field of the ‘emsg’ box. In either case, event processors should use event times
signaled in DASH constructs and not rely on PTS times that are carried in the Cue Message.

13.1.4.5. Carriage of Cue Messages as Events in the MPD

When a new Period is created as the result of an SCTE 35 the content of the SCTE 35 command should
be carried in an Event element at the Period-level of the MPD. For advertisement insertion applications,
the SCTE 35 commands carry metadata that are used by ad decision systems to determine what ad content
will be presented to the viewer. Making this metadata available in the MPD allows a client or network
device to pass the relevant metadata to an ad decision or delivery service without having to parse the
SCTE 35 command.

Each Period created as the result of an SCTE 35 signal should contain an XML representation of the
SpliceInfoSection of the Cue Message that resulted in the creation of the Period.

For example
 xmlns:scte35="urn:scte:scte35:2013a"

 <Period>

 <EventStream schemeIdUri="urn:scte:scte35:2013a:xml" value="1002"

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 63

timescale="1000">
 <Event presentationTime="0" duration="60000" id="1">
 <scte35:SpliceInfoSection scte35:ptsAdjustment="0"
scte35:tier="22">
 <scte35:SpliceInsert
 scte35:spliceEventId="111"
 scte35:spliceEventCancelIndicator="false"
 scte35:outOfNetworkIndicator="true"
 scte35:uniqueProgramId="65535"
 scte35:availNum="1"
 scte35:availsExpected="2"
 scte35:spliceImmediateFlag="false">
 <scte35:Program>
 <scte35:SpliceTime scte35:ptsTime="122342"/>
 </scte35:Program>
 <scte35:BreakDuration scte35:autoReturn="false"
scte35:duration="5400000"/>
 </scte35:SpliceInsert>
 <scte35:AvailDescriptor scte35:providerAvailId="332"/>
 </scte35:SpliceInfoSection>
 </Event>
 </EventStream>
 .
 .

 </Period>

The EventStream element defines the [DASH] event stream carrying the Cue Messages. The
schemeIdUri attribute used to signal that the event stream is made up of XML-encoded Cue Messages is
“urn:scte:scte35:2013a:xml”. The value attribute should match the PID value of the original Cue
Messages. If multiple SCTE 35 streams are present, value may be used to differentiate among them.

Each Event element contains an XML-encoded representation of the Cue Message in the form of a
SpliceInfoSection element as defined in SCTE 35. The id attribute for each event shall be unique for each
message in the presentation.

13.1.4.6. Carriage of Cue Messages as Events in Media Segments

 In-band events are carried in Media Segments as `emsg` structures. The `emsg` structures appear at the
beginning of a Media Segment, so that [DASH] clients do not need to parse entire Media Segments to
detect them. The presence of in-band events is signaled in the MPD by an InbandEventStream element

Similar to events sent in the MPD, the schemeIdUri attribute used to signal that the in-band event stream
is made up of XML-encoded Cue Messages is “urn:scte:scte35:2013a:xml”, and the value attribute should
match the PID value of the original Cue Messages. The message_data field of each ‘emsg’ box contains
an XML-encoded representation of the Cue Message in the form of a SpliceInfoSection element as
defined in SCTE 35. The id field for each event shall be unique for each message in the presentation.

Two [DASH] -specific events are defined that are processed directly by a DASH client: MPD Validity
Expiration and MPD Patch. Both signal to the client that the MPD with a specific publish time can only
be used up to a certain media presentation time. This mechanism may be used when preparing live
content for DASH delivery. When a Cue Message is detected an MPD Validity Expiration message
should be placed in the corresponding Media Segment(s) and the MPD updated with a new Period

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 64

corresponding to the SCTE 35 signaled event. A client that is operating with the previous version of the
MPD will detect this in-band event and request the updated MPD.

13.1.5. Ad Signaling for HLS

Manipulation of the HLS M3U8 manifest can be used to provide seamless ad insertion. The manifest
may be modified to include targeted ads prior to delivery to the player, or the manifest may be modified at
the player before delivery to the device’s video playback engine. This mechanism allows for seamless
playback without buffering or other interruptions in the playback experience. There may be reasons that a
vendor implements client side ad insertion such as implementing companion ads. This typically would
need a secure player implementation to ensure the ad segments play out correctly.

Ad cues and other signaling metadata are placed into the HLS M3U8 manifest file using HLS tags and
attribute lists. The format of each attribute list shall be as defined in HLS.

The HLS signals are encoded as M3U tags with all attributes encoded as part of an attribute list as defined
in HLS.

Attribute type values used in this specification correspond to AttributeValue data types defined in HLS as
follows:

Attribute Type AttributeValue Data Type

Number decimal-floating-point

String quoted-string

The general method of operation has tags marking the beginning and end of each signaled sequence of
content segments. In this way it is possible to signal placement opportunities, local (distributor) avails and
provider advertisements.

This method can also be used to control stream blackouts using manifest manipulation on the server so
restricted content is never sent to the viewer.

13.1.5.1. HLS Cue Tags

The #EXT-SCTE35 is the only tag proposed by this recommended practice.

Tag Name Attributes Description

#EXT-SCTE35 CUE
ID
TIME

Tag representing an embedded SCTE 35
binary cue. The cue data SHALL be encoded
in Base64 as defined in section 6.8 of
RFC4648 with W3C recommendations. The
client or manifest manipulator should Base64
decode the string then apply SCTE 35 from
Table 7-1 to read the message.

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 65

Attribute Name Attribute Type Required Description
CUE String Required The SCTE 35 binary cue encoded in

Base64 as defined in section 6.8 of
RFC4648 with W3C recommendations.

ID String Optional A unique value identifying this cue.
TIME Double Optional The presentation time corresponding to

the splice or segment.
Units are fractional seconds.

13.1.5.2. Sample HLS Playlist

The SCTE 35 Base64 examples are all the same command and are not representative of the actual SCTE
35 that would likely be at the particular position.

#EXTM3U

#EXT-X-TARGETDURATION:10

#EXT-X-VERSION:3

#EXT-X-MEDIA-SEQUENCE:00001

#EXTINF:9.9,

http://server-host/path/file44.ts

#EXTINF:4.2,

http://server-host/path/file45.ts

#EXT-SCTE35: CUE=”/DAIAAAAAAAAAAAQAAZ/I0VniQAQAgBDVUVJQAAAAH+cAAAAAA==” (SCTE 35 command raw
base64 encoded)

#EXTINF:10,
stream_med_00001.ts

#EXTINF:4,
stream_med_00002.ts

#EXT-SCTE35: CUE=”/DAIAAAAAAAAAAAQAAZ/I0VniQAQAgBDVUVJQAAAAH+cAAAAAA==”

#EXTINF:6,
stream_med_00003.ts

#EXTINF:10,
stream_med_00004.ts

#EXTINF:10,
stream_med_00005.ts

#EXTINF:4,
stream_med_00006.ts
#EXT-SCTE35: CUE=”/DAIAAAAAAAAAAAQAAZ/I0VniQAQAgBDVUVJQAAAAH+cAAAAAA==”

#EXTINF:6,
stream_med_00007.ts

#EXTINF:10,
stream_med_00008.ts

http://server-host/path/file45.ts

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 66

#EXTINF:10,
stream_med_00009.ts

#EXTINF:4,
stream_med_00010.ts

#EXT-SCTE35: CUE=”/DAIAAAAAAAAAAAQAAZ/I0VniQAQAgBDVUVJQAAAAH+cAAAAAA==”

#EXTINF:5.8,

http://server-host/path/file46.ts

#EXTINF:9.9,

http://server-host/path/file47.ts

#EXTINF:6,
stream_med_00011.ts

#EXTINF:10,
stream_med_00012.ts

#EXTINF:10,
stream_med_00013.ts

#EXTINF:4,
stream_med_00014.ts

#EXT-SCTE35: CUE=”/DAIAAAAAAAAAAAQAAZ/I0VniQAQAgBDVUVJQAAAAH+cAAAAAA==”

#EXTINF:6,

stream_med_00015.ts

#EXTINF:10,
stream_med_00016.ts

#EXTINF:10,
stream_med_00017.ts

#EXTINF:10,
stream_med_00018.ts

#EXTINF:10,
stream_med_00019.ts

#EXTINF:10,
stream_med_00020.ts

#EXTINF:4,

stream_med_00021.ts

#EXT-SCTE35: CUE=”/DAIAAAAAAAAAAAQAAZ/I0VniQAQAgBDVUVJQAAAAH+cAAAAAA==”

#EXTINF:6,
stream_med_00022.ts

#EXTINF:10,
stream_med_00023.ts

#EXTINF:10,
stream_med_00024.ts

#EXTINF:4,

http://server-host/path/file46.ts

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 67

stream_med_00025.ts

#EXT-SCTE35: CUE=”/DAIAAAAAAAAAAAQAAZ/I0VniQAQAgBDVUVJQAAAAH+cAAAAAA==”

#EXTINF:6,
stream_med_00026.ts

#EXT-SCTE35: CUE=”/DAIAAAAAAAAAAAQAAZ/I0VniQAQAgBDVUVJQAAAAH+cAAAAAA==”

#EXTINF:10,
stream_med_00027.ts

#EXTINF:10,
stream_med_00028.ts

#EXTINF:10,
stream_med_00029.ts

#EXTINF:10,
stream_med_00030.ts

14. Additional Information

14.1. Considerations for Evaluation of MPEG-2 Splicing Devices

14.2. Overview

The purpose of this section is to provide a means for understanding the performance of MPEG-2 splicing
products with respect to current MPEG-2 standards. This is an informational section intended solely for
clarification.

MPEG-2 splicers represent an emerging technology whose detailed capabilities and limitations tend to be
quite dependent on their operating environment and are not generally well understood. In order to specify
what capabilities a splicer should have and what level of performance it should achieve, it is necessary to
know what factors typically affect splicer performance and identify the context in which a splicer is
intended to operate. For example, it is meaningless to discuss issues such as frame accuracy without
clearly identifying the conditions under which the accuracy is to be measured. It is also useful to know
what general technological approach is used by a splicer, since this can provide insight into its general
capabilities and limitations.

14.2.1. Splicer Technology

Currently, there are several approaches to MPEG-2 splicing, each with its own advantages and
disadvantages. The following is an attempt to categorize these approaches.

14.2.1.1. Transport Stream Splicing

Transport Stream (TS) splicers operate at the MPEG-2 transport stream level and simply switch from one
transport packet stream to another. A TS splicer will typically perform PID re-mapping, but will not
modify the VBV state of the stream associated with PTS/DTS re-stamping.

A TS splicer does not have knowledge of the state of the elementary streams it is splicing. In order to
produce a result that maintains decoder integrity at all times, a TS splicer is required to operate on streams
that have been conditioned to ensure that the Splice Points chosen meet certain requirements (e.g. by
adhering to SMPTE [312]).

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 68

Because they operate only on TS data and assume that the stream has been properly conditioned (and that
they are only instructed to splice at valid points), TS splicers are the simplest form of splicer to
implement.

14.2.1.2. Elementary Stream Splicing

PES splicers operate at the MPEG-2 elementary stream (ES) level and modify the elementary stream data
as necessary to perform a splice. This enables them to modify the VBV state of video streams as
necessary and to properly handle situations such as splicing 3:2 pull down material. It also enables them
to mute audio streams at Splice Points to avoid the popping typically associated with hard edits.

Because they have the ability to modify elementary stream data on the fly, PES splicers do not have the
content restrictions that TS splicers have in order to achieve the same level of performance.

14.2.1.3. Picture Level Splicing

14.2.1.4. Partial Re-Coding

Picture level splicers move a level deeper than PES splicers by operating on the picture data contained
within the video elementary stream. Picture level data is not de-compressed and re-compressed, but
certain other operations, such as re-quantization, can be performed to manage the bit rate and VBV state
of the stream. This type of splicer is more complex than a PES splicer but can outperform it in certain
situations because of the finer degree of bit stream control it possesses. Additionally, special
consideration is required to be given to avoiding picture quality loss.

14.2.1.5. Complete Re-Coding

Re-coding splicers actually decode the MPEG data, perform the splice in base band, and re-encode the
result. These splicers embody an MPEG decoder and encoder per channel and are the most expensive to
implement. Additionally, special consideration is required to be given to avoiding picture quality loss.

14.2.1.6. I-Frame Generation

I-frame generation is not a type of splicer itself, as much as it is a possible splicer feature. Splicers with
this capability can produce I-frames at any point in the stream. TS splicers certainly do not have this
capability, whereas re-coders certainly do. Both PES and picture level splicers may have this capability.

14.2.2. Environment

In order to characterize splicer behavior, it is necessary to identify the environment(s) in which a splicer is
expected to operate. Different splicer architectures and implementations will have different levels of
performance in different situations.

In the context of this discussion, the environment describes the type of MPEG-2 Program content that the
splicer is expected to process and how this content is delivered to and produced by the splicer.

Although the mechanism used to control the splicer can have a direct effect on its performance in certain
areas (frame accuracy), control issues have been left outside the scope of this discussion.

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 69

14.2.2.1. Video Elementary Stream

There are several issues relating to the composition of a video elementary stream that can have a
significant impact on splicer behavior.

14.2.2.2. Hierarchical Subsets of MPEG-2 Streams - Profile @ Level

The profile and level of a video elementary stream determine how different types of splicers behave.
Because they do not operate on elementary streams, TS splicers do not care what profile or level stream is
being spliced. Other types of splicers may care to varying degrees. For example, a PES splicer may scale
from MP@ML to MP@HL without significant hardware impact, whereas a picture-level or re-coding
splicer may be substantially more expensive.

The profile/level combinations that are likely to be of most interest are: MP@ML (Main Profile @ Main
Level) and MP@HL (Main Profile @ High Level).

It is worth noting that the spatial resolution may change between clips being spliced together, and while
this should not be a problem for good splicer implementations, decoders may not be able to properly
handle the switch, resulting in a non-seamless splice.

14.2.2.3. Data Stream Structure - GOP Structure

There are three issues relating to GOP structure that have an impact on splicer behavior. The first is
whether the GOP is open or closed. An open GOP can be problematic for splicers because it starts with B-
frames that reference the previous GOP; if a splice occurs at a GOP boundary, the anchor frame
referenced by the B-frames will not exist in the output stream. This may be important to certain types of
splicers.

The second issue relating to GOP structure is the number of B-frames used between anchor frames. If a
splicer is commanded to splice between anchor frames, this number determines how far the nearest
anchor frame is from the Splice Point. Some splicers may need to ensure that either an in- or out-point (or
both) occur on anchor frames, so this issue can affect splicer behavior.

Another issue is whether "progressive refresh" is used. In progressive refresh systems, no I-frames appear
in the stream (I-macroblocks are used instead). The absence of an I-frame can pose a serious problem for
splicers that are not able to generate I-frames on demand.

14.2.2.4. Bit Rate

Streams can be encoded at a constant bit rate (CBR) or a variable bit rate (VBR). Splicers may be
expected to splice between CBR sources with the same bit rate; CBR sources with different bit rates; or
VBR sources.

Splicing between VBR sources is significantly more complex than splicing between similar bit rate CBR
sources. A splicer designed only to handle CBR sources may have problems handling VBR data.

14.2.2.5. Splice Points

Different splicer architectures may place different constraints on the placement of Splice Points. A
transport stream splicer may require that streams be SMPTE [312] conditioned, while other splicers may
require that in-points and out-point occur on I-frames or anchor frames.

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 70

When instructed to splice at a point not meeting their requirements, different splicers may behave very
differently. Some may have no problem under any conditions; others may adjust the position of the Splice
Point in the stream, insert a transition sequence between clips, or create a non-seamless splice.

14.2.2.6. Audio Elementary Streams

Audio elementary streams are considerably simpler than their video counterparts, but producing clean
audio splices that are properly synchronized with video can be challenging. Issues such as the encoding
type, bit rate, and sample rate all affect how well splicers (and set-tops) can do their job.

14.2.2.7. Stream Type

The two most widely used audio types are MPEG-1 Layer II and Dolby AC-3. AC-3 uses a greater frame
duration that may have an impact on A-V synchronization accuracy in some splicers. Splicing between
dissimilar stream types can be problematic.

14.2.2.8. Bit Rate / Sample Rate

The sample rate and bit rate can be different between clips. These changes affect the selection of the
Splice Point and are required to be properly accounted for by the splicer.

14.2.2.9. Data Streams

The handling of data streams associated with a Program can be difficult. In a generic sense, splicers can
simply choose to switch a data stream at a PES boundary closest to the Splice Point, or choose not to
switch a data stream at all. However, certain types of data streams may be related to the A-V content in
such a way that a "hard-cut" without performing type-specific processing on the stream may be
inadequate.

14.2.2.10. Multiplex Type

Once the characteristics of the Programs being processed by a splicer have been identified, it will be
necessary to look at the characteristics of the multiplex that contains these Programs, since splicers will
typically be used to operate on one or more Programs within a multiplexed stream.

14.2.2.11. Statistical Multiplexing

Multiplexes can be created with fixed bit rate allocations for Programs they contain, or they can be
created using statistical multiplexing, where the bit rate of the Programs they contain is allowed to vary.
In the latter case, a statistical multiplexer (stat-mux) is used to ensure that the aggregate bit rate of all
Programs contained within a multiplex does not exceed a certain bound.

On the input side, if a splicer can handle VBR streams, it can handle a statistically multiplexed input. On
the output side, statistical multiplexing can provide a significant challenge for a splicer.

Statistical re-multiplexing can be a complex operation whose behavior and performance can potentially
be more difficult to characterize than splicing itself. Different stat-mux architectures take different
approaches to limiting the aggregate bit rate of a multiplex, and a single stat-mux is likely to employ
multiple techniques depending on the state of multiplex it is processing.

Some stat-muxes may be designed to limit transient overages in aggregate bit rate, while others may be
designed to perform well when presented with long-term overages. The evaluation of image quality in a

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 71

variety of situations is likely to be a key issue, with stat-muxes tending to introduce time-varying spatial
or temporal artifacts (or both) when dealing with more severe bit rate overages.

A classification of stat-mux types is outside the scope of this document. However, it is at least useful to
note whether a given splicer is capable of producing a statistically multiplexed output or not. (Splicers
that do not directly produce a statistically multiplexed output can still be effectively used in a statistically
multiplexed environment through the use of an external stat-mux.)

14.2.2.12. Multi-Channel
Multiplexes carrying HD signals may contain a mixture of HD and SD Programs. In addition to
splicing between HD Programs, a splicer may be called upon to splice between a single HD
Program to multiple SD Programs. In this situation, the splicer conditions the Programs so that a
downstream decoder can switch between the HD Program and one of multiple SD Programs.
This type of behavior is also useful in an SD-only world when dealing with certain kinds of
targeted advertising schemes.

In addition to specifying the MPEG-2 profiles and levels that a splicer can process, it is also
useful to note whether splicing between profiles and/or multi-channel splicing is supported by a
particular splicer.

14.2.3. Splicer Performance

There are numerous metrics that can be used to evaluate the performance of MPEG-2 processing
equipment. Many of these metrics are commonly applied to devices such as encoders and re-multiplexers,
and they can be applied to splicers as well (e.g. PCR jitter, etc.). This section concentrates on those
metrics that have particular relevance to splicers.

14.2.3.1. Seamlessness

Seamless splicing is taken to mean different things by different people. Because of this, it is important to
define what seamless means more clearly and to acknowledge that there are in fact different levels of
"seamless" splicing behavior. The following definitions are recommended by this guide:

near-seamless splice n. A synonym for non-seamless splice.

Non-seamless splice n. A splice which is not a seamless splice: it is either not visually seamless or not
syntactically seamless. May cause a momentary freeze, blank screen, or motion judder. Many non-
seamless splices may appear to be seamless to some viewers; whether it is good enough is subjective. The
appearance of the splice usually depends on the relationship between the two spliced streams at the time
of the splice.

seamless splice n. A splice which is both syntactically seamless and visually seamless.

splice (1) n. The process of leaving one bitstream and joining another. (2) v. The act of such joining. (3)
n. The place in the resulting bitstream where the joint has been made.

syntactically seamless splice n. A splice which results in a bitstream which meets the syntactic and
semantic requirements of MPEG-2 Systems spec [13818-1] and Video spec [13818-2] Not necessarily a
visually seamless splice (possibly due to insertion of transition frames).

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 72

transition sequence, transition frames n. A short bitstream sequence of frames synthesized by a splicer
to interpose between the end of the old stream and the beginning of the new stream, usually to control
buffer levels.

visually seamless splice n. A splice which results in an unbroken sequence of decoded frames such that
the last frame of the old stream is followed by the first frame of the new stream without intervening

transition frames. This kind of splice may or may not be a syntactically seamless splice. Visual
performance may depend on decoder characteristics that are not defined by MPEG-2.
The environment within which a splicer is operating can have a significant effect on how seamless a
splice it is able to make. Even a TS splicer can perform a seamless splice on a SMPTE [312] conditioned
stream when commanded to splice exactly at the conditioned Splice Point. However, many types of
splicers may have a problem producing a visually seamless splice between Programs that contain no I-
frames. Some splicers can take advantage of variable bit rate coding or delay to produce visually seamless
splices. Therefore it is important to note under what circumstances a given splicer will produce a splice
with a given level of artifacts.

14.2.3.2. Frame Accuracy

Frame accuracy describes whether the transition between sequences occurs at exactly the frame specified.
Assuming that a given splicer can be commanded to splice at an exact frame, the issue is whether the
splicer can perform the splice at exactly the desired point.

As discussed in prior sections, splicers will typically place some restrictions on the types of frames that
can be used for in-points and out-points. Hence, when discussing the frame accuracy of a splicer, it is
important that the condition under which the accuracy is to be determined is specified. For example,
almost any splicer can be frame accurate when commanded to splice at pre-conditioned Splice Points,
whereas only splicers that can produce I-frames on demand can be frame accurate when commanded to
splice in a situation where neither the in-point or out-point are anchor frames. Other splicers can be frame
accurate when commanded to splice where the out-point is an anchor frame and the in-point is an I-frame.

Unfortunately, there are different views among the manufacturers regarding what constitutes “frame
accurate”. Therefore it is important to articulate what the range of possible circumstances is and how the
Splice Point might be adjusted in these circumstances.

14.2.3.3. Delay

While minimum fixed delay is important to the design of re-transmission facilities, certain splicers may
be able to take advantage of variable delay to improve the quality of their splices in situations where the
appropriate in-points and out-points do not appear at opportune times.

It would be useful to identify the upper limit of acceptable delay for a given type of facility, as well as
whether variable delay is acceptable, and if so how much. Facilities at different points in the broadcast
chain may have very different requirements; for example, an origination facility may be very sensitive to
delay variations, whereas the last re-transmission facility before reaching the home may be quite
insensitive to delay variations.

14.2.3.4. MPEG-2 Compliance of Output Stream from Splicer

Just as the input network stream should comply with the MPEG-2 System Specification ISO/IEC [13818-
1] the output transport stream from the splicer/headend (after the processing of Cue Messages and
appropriate ad-insertion) that is processed by the subsequent splicer or the set-top box should comply

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 73

with the MPEG-2 Conformance Specification ISO/IEC [13818-4], Digital Video Service Multiplex and
Transport System Standard for Cable Television SCTE 54 as well as the SCTE Network Interface
Specification SCTE 40. Even though the network streams may not have many discontinuities (such as
sequence_end_codes or time base changes), the output streams from the splicers may include one or more
discontinuities that are allowed by MPEG. These may include termination of a video sequence using
seq_end_code followed by a new sequence with different coded frame size or bit rate or changes to and
from film mode in addition to time base discontinuities signaled by the PCR discontinuity flag. Splicers
and set-top boxes that comply with the MPEG-2 Conformance Standard and Digital Video Service
Multiplex and Transport System Standard for Cable Television are expected to process the discontinuities
in the transport streams described below. The following italicized text related to handling of
discontinuities by the set-top box is reproduced from ISO/IEC 13818-4 and should serve as a guideline
for splicers on compliance of output stream after the splicing operation:

Additional constrains to AVC and HEVC are documented in SCTE 172

Handling of decoder discontinuities (Sequence concatenation; decoding discontinuities;
splicing; format changes).
In compliant Transport Streams, at any audio access unit boundary or any video sequence
boundary, the following discontinuities in the decoding process parameters can occur:

• For video, any parameter set in the sequence header or lower layer headers, such as
profile/level, frame rate, bit rate, GOP parameters, picture format, etc.;

• For audio, any parameter such as audio layer, bit rate, sample rate, etc.;
• For both video and audio, the decoding time of the first access unit after the boundary

can be larger than would have been expected had the boundary not been present. This
can happen independently for all, some, or one of the elementary streams of a program.
It may or may not be indicated by the presence of extra information referring to a
seamless or non-seamless splice point.

Assuming any combination of change(s) in decoding process parameter(s) which lead(s) to
parameter values that are supported by the decoder under test, the decoder under test shall:

• Maintain correct presentation synchronization between the different elementary streams
of the program;

• Not produce unacceptable audio or video artifacts, such as chirps, blocking etc.
However, when a decoding discontinuity occurs, there may not be any data to present
during some time interval. At such instants, audio decoders are recommended to mute
and video decoders to freeze frame/field.

In addition, when a phase shift in display timing of video (after the discontinuity) is indicated
by the PTS (I.E the difference between the current PTS and the previous one is not an exact
integer number of frame periods) decoders can continue the display process without any
discontinuity in the vertical timing. This involves re-mapping the decoded video on the
display process, which may require some additional memory (than what is specified in the T-
STD model). On the other hand, decoders can also resynchronize (genlock) by directly
adjusting the vertical display timing to the decode timing, thereby allowing for a
discontinuity in the phase of the vertical display timing. This may result in a visible
resynchronization effect on display devices. Both these implementations are allowed in
compliant decoders.

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 74

Here are some examples of set top behavior under different splicing conditions:

1. If the input stream (output from the headend or the splicer to the set top) fully complies with
video syntax, the transport T-STD and time base continuity (i.e. no PCR discontinuities and PTS
continues in phase) before and after the point where insertion occurs, the set top should change
over to the new sequence in a seamless fashion. This includes sequence header changes at the
insertion points where coded frame size or bit rate or quantizer matrices change. Frame rate
changes will result in resynchronization and possibly a reset of some set-top boxes.

2. If a PCR discontinuity appears before the start of the inserted sequence (and there is still
compliance with the T-STD), the set top will acquire the new sequence with some display artifact
which accounts for the phase shift of the time base.

3. If the input stream breaks the T-STD at the point where the sequence changes (i.e. the inserted
sequence overflows the T-STD buffer), the set top may reset as the input is no longer ‘compliant'.

4. The case where no time base discontinuity is signaled and the inserted sequence starts off with a
new time base is also non-compliant, and the set-top box may reset.

The Cue Message standards require the transport stream going to the next splicer or a set-top box to fully
comply with the MPEG-2 transport and video specifications and in this case there should be no error in
the output of the set-top box. Even though set-top boxes handle errors, they will not likely be able to
handle 'non-compliant' streams gracefully. All MPEG compliant set-top boxes are required to handle
changes of the video resolution after a seq_end_code and changes to parameters in the seq_header that
follows (such as quantization matrices, bit rate, frame size, aspect ratio, low delay etc). Processing PMT
changes might incur a larger delay compared to the changes in video stream only, since the PMT
processing is often done in firmware whilst the video changes are typically done in an ASIC.

14.3. Ad Timing Recommendations

This section of the recommended practice considers the components of a system at the provider’s
location, or the distributor’s location that could contribute to variations in digital ad insertion timing.
This section also recommends monitoring and alarming of ad insertion timing variations.

14.3.1. Provider Issues

There are several factors that can affect provider timing. One factor is playout server and related
equipment timing. All playout servers must be locked to the automation system, or GPI system. Triggers
come several seconds before an ad insertion opportunity. The Trigger has a preroll and the resultant Cue
Message contains a specific splice time. A common method for Triggers get inserted in a VANC frame
in the uncompressed domain. The encoder inserts the Cue Message according to the information
contained in the Trigger.

14.3.1.1. Ad Markers

One possible way to ensure that the Cue Message points to the correct location in the stream is for the
encoder manufacturer use VITC or some other data inserted in to the VANC by the playout server to sync
up where an ad has to be inserted.

Another possible way to ensure that the Cue Message points to the correct location is the use of ad
markers. Ad markers can be inserted in the provider-inserted ads so both provider and distributor can
verify timing. An ad marker could be an embedded SCTE 224 marker in the SDI ad video that translates
to an immediate Trigger. This marker could be tracked all the way through the encoded video by
verifying that the frame that contains this marker is the first frame that appears after the point in the
stream indicated by the Cue Message. That verification could be performed either by the encoder, or a

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 75

piece of monitoring equipment that monitors the output of the encoder. In either case, if the marker
appears in the wrong place in the video stream, an alarm could be sent to the provider to alert them that
there is a timing variation.

A method for inserting ad markers to identify the location of a Cue Message is through the use of
timecodes as ad markers. If the first frame of every ad was identified by timecode 00:00:00:00, a
monitoring system could very easily identify the first frame of every ad. The method for inserting
timecode in compressed ads would be according to the codec being used to compress each ad.

Another method for identifying the correct location of a Cue Message is to monitor timecode
discontinuities. The last frame of a network displayed before the switch to an ad and the first frame of an
ad after the switch to an ad will be discontinuous. A problem with this method is that there is no way of
knowing whether the ad was clipped during the insertion.

14.3.1.2. Ad Timing Monitoring

Provider video distribution practices are another possible source of timing variations. Video distribution
practices that may cause timing variation include the following.

There are two different paths for video and metadata. Video that typically originates from a playback
device takes a separate path than the metadata that typically originates from an automation system. Any
variation in the timing of either path could result in a timing variation. Some examples are:

• Replacing any component in either the video or metadata path with a different model,
manufacturer, or even a software update.

• Having 2 different paths (A path and B path) and switching from one path to another path. For
example, if there are 2 video paths and a switch is made due to problems in the primary path,
there could be timing variations due to the different equipment in the backup path. The same is
true for the metadata path.

14.3.2. Distributor Monitoring

At the local ad insertion point, the distributor has several pieces of equipment that could contribute to
timing variation. Server splicer synchronization is one such area. This is discussed in the next section.

Another possible source of timing variation is a distributor’s mezzanine encoder. It is possible that the
Cue Message inserted by the provider ends up with the wrong timing after the mezzanine encoder is used
to produce the video and audio to be carried on the distributor’s distribution plant. For these reasons, a
monitoring system at the distributor is also recommended. As with the provider’s monitoring system, a
monitoring system located at the distributor generates an alarm to notify the distributor that a variation in
timing has been detected.

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 76

14.3.3. Cue Timing Monitoring Points

The following is a version of [DVS 839] that shows where the timing variations may occur and where
there are possible monitoring points.

Figure 11 - Cue Timing Monitoring Points

The following monitoring locations, “M1” through “M6”, are highlighted in Figure 11.

Location “M1” of the drawing monitors the provider’s video/audio distribution system. This monitoring
system should be placed after the distribution equipment and before the compression equipment. These
issues are discussed in section 0

• Splicer Timing.
• Location “M2” of the drawing monitors the provider’s compression system. This monitoring

system should be placed after the compression equipment and before the transmission equipment.
This monitoring point is important because we must ensure that the precise timing carried in the

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 77

Trigger of the uncompressed stream is translated correctly into the corresponding Cue Message of
the compressed stream.

• Location “M3” of the drawing monitors the distributor’s initial satellite or terrestrial signal
receiving point. It is important to monitor this point in order to ensure that the timing is checked
at the earliest possible point in the distributor’s signal distribution path in order to catch any
errors not caught by the provider.

• Location “M4” of the drawing monitors the distributor’s signal receiving and processing
equipment. This monitoring system should be placed after the distributor’s signal receiving and
transcoding/encoding equipment. This position is usually tested when the system is deployed;
therefore, ongoing monitoring may not be needed. This position should be monitored when
changes in configuration, system reboots, or software upgrades are performed.

• Location “M5” of the drawing monitors the distributor’s regional signal distribution equipment.
This monitoring system should be placed after the distributor’s signal distribution equipment to
the regional ad insertion headend location and before the local headend distribution equipment. It
will monitor the input to the regional ad insertion splicer.

• Location “M6” of the drawing monitors the distributor’s local signal distribution equipment. This
monitoring system should be placed after the distributor’s signal distribution equipment to the
local ad insertion headend location. It will monitor the input to the local ad insertion splicer.

Note: The reason that regional and local ad insertion locations are monitored separately is to ensure that
distribution equipment, re-multiplexers, or any component between the regional and local systems are not
causing any variations in timing.

14.3.3.1. Ad Timing System Monitoring Requirements

An ad timing monitoring system should verify that all Cue Messages contain accurate timing information.
If the timing information is found to be inaccurate at any recommended monitoring point, the entity that
discovers the timing problem must notify the provider and or distributor as appropriate so that the
underlying issue gets resolved. The following are requirements for an ad timing monitoring system. This
is not a comprehensive list, each provider and distributer must define their own error detection and
reporting procedures.

• Provide real-time monitoring for Triggers in uncompressed streams and Cue Messages in
compressed streams

• Provide timing verification, and fault notification in real-time when any variation in ad timing is
detected. Ad timing is performed by comparing the Triggers, or Cue Messages with markers in
the ad in accordance with 14.3.1.1 Ad Markers.

• Timing variations should be determined by following these steps:
• Look at a Trigger, or Cue Message, determine the correct position of the first frame of the ad.

It is not good enough to merely ensure that the Trigger, or Cue Message points to a black
video frame, it must be confirmed that the Trigger, or Cue Message appears before the first
frame of the ad when going into an ad break.

• Look at the exact frame pointed to in this Trigger, or Cue Message.
• Is the Trigger, or Cue Message pointing to the first frame of the ad?

• If not, send an alarm to the provider

Note: Consult with SCTE 224 regarding other types of Triggers. For example, some systems contain out
of band Triggers delivered by other methods like GPI (General Purpose Input) Triggers which are used
when co-timing to analog cue tone systems.

ANSI/SCTE 67 2017

AMERICAN NATIONAL STANDARD ©SCTE 78

Figure 12 - Example Cue Timing Monitoring

	Table of Contents
	1. Introduction
	1.1. Executive Summary
	1.2. Scope
	1.3. Benefits
	1.3.1. Improvements in Ad Timing Synchronization

	2. Informative References
	2.1. SCTE References
	2.2. Standards from Other Organizations
	2.3. Published Materials

	3. Compliance Notation
	4. Abbreviations and Definitions
	4.1. Abbreviations
	4.2. Definitions

	5. Overview
	5.1. Example SCTE 35 Decoder

	6. Application Guidelines
	6.1. Practical Boundaries for splice_time() in splice_insert()
	6.2. System Delays
	6.2.1. SCTE 104 Insertion Delays
	6.2.2. Encoder Delays
	6.2.3. Transmission Delays
	6.2.4. Splicer/Multiplexor Delays

	6.3. Splice Time Accuracy
	6.3.1. Splicer Timing
	6.3.1.1. Using SCTE 130
	6.3.1.2. Using the SCTE 30 asset_id_descriptor

	6.4. Splice_event_id Usage and Uniqueness
	6.5. Use of splice_schedule() Command
	6.6. Component Splice Mode
	6.6.1. Erroneous Component Splice Commands

	6.7. Pre-Roll Functionality - Accomplishing a Pre-Roll Function
	6.8. Conditional Access and Cue Encryption
	6.8.1. What to Encrypt
	6.8.2. Operation in a Cue Insertion Device
	6.8.3. Operation in an Ad Insertion Device
	6.8.4. Theory of Operation
	6.8.4.1. Encryption Verses Scrambling
	6.8.4.2. Standard Encryption Methods
	6.8.4.3. Section Stuffing
	6.8.4.4. DES Electronic Codebook (ECB) Algorithm
	6.8.4.5. DES Cipherblock Chaining (CBC) Algorithm
	6.8.4.6. Triple-DES ECB Mode (EDE Method) Algorithm
	6.8.4.7. Private Encryption Methods

	7. Usage of fields in the Splice_Insert command
	7.1. Usage of unique_program_id
	7.1.1. What is a "Program"?
	7.1.2. What is a "program_id"?
	7.1.3. Why Should Programs Be Identified and Differentiated?
	7.1.4. Why Does the Time at Which a Program Is Scheduled Not Identify It?
	7.1.5. How Will a unique_program_id Alleviate Problems?

	7.2. Avail Fields Usage
	7.2.1. What is an Avail?
	7.2.2. How Many Avails Occur Within a Program?
	7.2.3. Why is it important to identify the Avails Within a Program?
	7.2.4. How Do the Avail Fields Provide for This?
	7.2.5. What Does the avails_expected Field Do?
	7.2.6. Conditional Avails
	7.2.6.1. Considerations of the Various Methods

	8. Cue Usage
	8.1. Starting a Break
	8.2. Ending a Break
	8.3. Spot Sharing Within a Break

	9. Creation and Usage of Splice Descriptors
	9.1. What are Descriptors
	9.1.1. The Problem
	9.1.2. The Solution

	9.2. Registration
	9.3. Creating Compatible Private Descriptors
	9.4. Using the avail_descriptor.
	9.5. Using the DTMF Descriptor
	9.5.1. Pre-roll Timing
	9.5.2. DTMF Tone Sequence
	9.5.3. SCTE 35 Operating Modes
	9.5.3.1. SCTE 35 Immediate mode

	9.6. Usage of Segmentation Descriptors
	9.6.1. Segmentation Descriptor Field Usage
	9.6.2. Delivery of Segmentation Descriptors
	9.6.3. Processing of Segmentation Descriptors
	9.6.4. Specific Use Cases
	9.6.4.1. Delineation and Identification of Advertisements in Program Feeds
	9.6.4.2. Identifying Programs or Program Segments in Program Feeds

	9.6.5. Identifying Placement Opportunities
	9.6.6. Identifying Standalone Advertisements
	9.6.6.1. Putting Segments in Context
	9.6.6.2. Use of segmentation_event_cancel_indicator
	9.6.6.3. Handling of Unexpected segmentation_descriptor Information or Sequences

	10. Presentation Time Stamp considerations
	10.1. Handling Time Base Discontinuities
	10.2. Cascaded Splicing Devices
	10.2.1. Restamping Cue Messages
	10.2.2. Cue Propagation
	10.2.3. Delay
	10.2.4. Logical Cascading

	11. Command Usage
	11.1. Bandwidth Reservation Command
	11.1.1. Why Use a Bandwidth Reservation Command?

	11.2. Heartbeat Messages
	11.2.1. Why Use a Heartbeat Message

	11.3. Time Signal Command
	11.3.1. Uses for the Time Signal Command
	11.3.2. Practical Boundaries for splice_time() in time_signal()

	12. Implementing SCTE 35 for Signaling in Linear Content
	12.1. System Architecture - Provider
	12.1.1. Rights
	12.1.2. Programming
	12.1.3. Sports
	12.1.4. Ads
	12.1.5. Scheduling
	12.1.6. Automation
	12.1.7. Master Control
	12.1.8. Live/Servers
	12.1.9. SCTE 104
	12.1.10. Slate/Alternate Switch/Generator
	12.1.11. Encoder
	12.1.12. Packager
	12.1.13. Origin
	12.1.14. CDN
	12.1.15. Distributor
	12.1.16. Metadata Generation
	12.1.17. App Server
	12.1.18. Clients

	12.2. System Architecture - Distributor
	12.2.1. Broadcast/Mezzanine
	12.2.2. QAM/Satellite
	12.2.3. VOD/nPVR
	12.2.4. Transcoder
	12.2.5. Packager
	12.2.6. Origin
	12.2.7. Metadata Reader
	12.2.8. Player/App Server
	12.2.9. MVPD Distribution

	12.3. Extensions to Content Identification for Real Time Signaling
	12.3.1. SCTE 35 Guidelines
	12.3.2. USAGE of SCTE 35 Restriction Bits
	12.3.3. Web Restriction Use Cases
	12.3.3.1. General
	12.3.3.2. Case 0 – Force Slate Up or Down
	12.3.3.3. Case 1 – Program Allowed, ads Allowed
	12.3.3.4. Case 2 - Program Allowed all ads Not Allowed
	12.3.3.5. Case 3 – Program Allowed some ads Not Allowed
	12.3.3.6. Case 4 – Program Not Allowed, ads Allowed
	12.3.3.7. Case 5 - Program Not Allowed all ads Not Allowed
	12.3.3.8. Case 6 – Program Not Allowed some ads Not Allowed
	12.3.3.9. Case 7 – Program Allowed Program breakaway Allowed
	12.3.3.10. Case 8 – Program Not Allowed Program breakaway Allowed
	12.3.3.11. Case 9 – Program Allowed Program breakaway Not Allowed
	12.3.3.12. Case 10 – Program Not Allowed Program breakaway Not Allowed
	12.3.3.13. Case 11 – Program Allowed Program Overlap Allowed
	12.3.3.14. Case 12 – Program Allowed Program Overlap Not Allowed
	12.3.3.15. Case 13 – Program Not Allowed Program Overlap Allowed
	12.3.3.16. Case 14 – Program Not Allowed Program Overlap Not Allowed
	12.3.3.17. Case 15 – Part of program Not Allowed
	12.3.3.18. Case 16– Provider Allowed Distributor Not Allowed
	12.3.3.19. Case 17 – Blacked out Program, Running Alternate Content from On Demand TVE
	12.3.3.20. Case 18 – Blacked out Program, Running Alternate Content from Alternate Network
	12.3.3.21. Case 19 – End of Network Day
	12.3.3.22. Case 20 – Beginning of Network Day
	12.3.3.23. Case 21 – Program Blackout Override

	12.3.4. Regional Blackout Use Cases
	12.3.5. Alternate Content
	12.3.5.1. Slate
	12.3.5.2. Alternate TVE Simulcast
	12.3.5.3. TVE On Demand Content
	12.3.5.4. Menu

	12.3.6. Alternate Content Removal
	12.3.7. Archive Use Cases
	12.3.8. Device Restriction Use Cases

	13. Recommendations on carrying SCTE 35 in other than MPEG2 Transport Streams
	13.1. General Comments on Transforming SCTE 35
	13.1.1. Time Base Conversions
	13.1.1.1. Guidelines for NPT Time Base Conversions
	13.1.1.2. Data Carriage
	13.1.1.3. Binary Data
	13.1.1.4. Adaptive Streaming Renditions
	13.1.1.5. Content Conditioning

	13.1.2. Ad Signaling for RTMP
	13.1.3. AD Signaling for Microsoft Smooth Streaming
	13.1.4. AD Signaling for MPEG-DASH
	13.1.4.1. Associating DASH Periods with SCTE 35
	13.1.4.2. Period Availability
	13.1.4.3. Seamless Period Transitions
	13.1.4.4. Use of SCTE 35 with DASH Events
	13.1.4.5. Carriage of Cue Messages as Events in the MPD
	13.1.4.6. Carriage of Cue Messages as Events in Media Segments

	13.1.5. Ad Signaling for HLS
	13.1.5.1. HLS Cue Tags
	13.1.5.2. Sample HLS Playlist

	14. Additional Information
	14.1. Considerations for Evaluation of MPEG-2 Splicing Devices
	14.2. Overview
	14.2.1. Splicer Technology
	14.2.1.1. Transport Stream Splicing
	14.2.1.2. Elementary Stream Splicing
	14.2.1.3. Picture Level Splicing
	14.2.1.4. Partial Re-Coding
	14.2.1.5. Complete Re-Coding
	14.2.1.6. I-Frame Generation

	14.2.2. Environment
	14.2.2.1. Video Elementary Stream
	14.2.2.2. Hierarchical Subsets of MPEG-2 Streams - Profile @ Level
	14.2.2.3. Data Stream Structure - GOP Structure
	14.2.2.4. Bit Rate
	14.2.2.5. Splice Points
	14.2.2.6. Audio Elementary Streams
	14.2.2.7. Stream Type
	14.2.2.8. Bit Rate / Sample Rate
	14.2.2.9. Data Streams
	14.2.2.10. Multiplex Type
	14.2.2.11. Statistical Multiplexing
	14.2.2.12. Multi-Channel

	14.2.3. Splicer Performance
	14.2.3.1. Seamlessness
	14.2.3.2. Frame Accuracy
	14.2.3.3. Delay
	14.2.3.4. MPEG-2 Compliance of Output Stream from Splicer

	14.3. Ad Timing Recommendations
	14.3.1. Provider Issues
	14.3.1.1. Ad Markers
	14.3.1.2. Ad Timing Monitoring

	14.3.2. Distributor Monitoring
	14.3.3. Cue Timing Monitoring Points
	14.3.3.1. Ad Timing System Monitoring Requirements

