SCTE STANDARDS

Interface Practices Subcommittee

AMERICAN NATIONAL STANDARD

ANSI/SCTE 86 2021

SCTE Recommended Optical Fiber Cable Types for Outside Plant Trunk and Distribution Applications

Notice

The Society of Cable Telecommunications Engineers (SCTE) Standards and Operational Practices (hereafter called "documents") are intended to serve the public interest by providing specifications, test methods and procedures that promote uniformity of product, interoperability, interchangeability, best practices, and the long term reliability of broadband communications facilities. These documents shall not in any way preclude any member or non-member of SCTE from manufacturing or selling products not conforming to such documents, nor shall the existence of such standards preclude their voluntary use by those other than SCTE members.

SCTE assumes no obligations or liability whatsoever to any party who may adopt the documents. Such adopting party assumes all risks associated with adoption of these documents and accepts full responsibility for any damage and/or claims arising from the adoption of such documents.

NOTE: The user's attention is called to the possibility that compliance with this document may require the use of an invention covered by patent rights. By publication of this document, no position is taken with respect to the validity of any such claim(s) or of any patent rights in connection therewith. If a patent holder has filed a statement of willingness to grant a license under these rights on reasonable and nondiscriminatory terms and conditions to applicants desiring to obtain such a license, then details may be obtained from the standards developer. SCTE shall not be responsible for identifying patents for which a license may be required or for conducting inquiries into the legal validity or scope of those patents that are brought to its attention.

Patent holders who believe that they hold patents which are essential to the implementation of this document have been requested to provide information about those patents and any related licensing terms and conditions. Any such declarations made before or after publication of this document are available on the SCTE web site at https://scte.org.

All Rights Reserved
© Society of Cable Telecommunications Engineers, Inc. 2021
140 Philips Road
Exton, PA 19341

Document Types and Tags

Document Type: Specification		
Document Tags:		
☐ Test or Measurement	☐ Checklist	☐ Facility
☐ Architecture or Framework	☐ Metric	☐ Access Network
☐ Procedure, Process or Method	☐ Cloud	☐ Customer Premises

Document Release History

Release	Date
SCTE 86 2003	2/24/2003
SCTE 86 2005	9/16/2005
SCTE 86 2010	2/1/2010

Note: Standards that are released multiple times in the same year use: a, b, c, etc. to indicate normative balloted updates and/or r1, r2, r3, etc. to indicate editorial changes to a released document after the year.

Table of Contents

<u>Title</u>		Page Number
Notic	e	2
Docu	ıment Types and Tags	3
Docu	ıment Release History	3
Table	e of Contents	
1.	Introduction	
	1.1. Executive Summary	5
	1.2. Scope	
	1.3. Benefits	
	1.4. Intended Audience	
	1.5. Areas for Further Investigation or to be Added in Future Versions	
2.	Normative References	
	2.1. SCTE References	
	2.2. Standards from Other Organizations	
_	2.3. Published Materials	
3.	Informative References	
	3.1. SCTE References	
	3.2. Standards from Other Organizations	
	3.3. Published Materials	
4.	Compliance Notation	
5.	Abbreviations and Definitions	
	5.1. Abbreviations	
^	5.2. Definitions	
6.	Characteristics of optical fibres and cables	
7	6.1. IEC and ITU-T fiber classifications	
7.	Cable construction	
	7.1. Cable mechanical characteristics	
	7.2. Cable environmental conditions	
	7.3. Fire Safety	
0	7.3.1. IEC fire safety recommendations	
8.	Cable construction	
		
	8.2. Cable elements	
	8.4. Armor	
	8.5. Identification of cable	
	8.6. Cable sealing	
	8.7. Considerations for installation	
9.	Test methods	
9.	9.1. IEC Test methods for cable elements	
	9.2. IEC Test methods for cable elements	
	9.3. IEC Test methods for cable environmental characteristics	
	9.4. IEC Test methods for cable environmental characteristics	
10		
10.	Cable types and applications	۱۵ 12
11	Guidance and installation techniques	
11.	11.1. ITU-T Optical cable installation reference recomendations	

1. Introduction

1.1. Executive Summary

Optical fiber cable is a key component of any service provider's passive optical network for telecommunications applications. Optical fiber cables comprise a significant portion of Hybrid Fiber Coax (HFC) networks in service today and current MSO fiber to the home (FTTH) networks. Ensuring the long-term reliability of these assets is a key performance component to the service providers and network operators.

Optical cables are designed to protect the optical fibers from a variety of harmful effects that could degrade the ultimate service life of the network. The effects of mechanical stresses, such as those experienced during installation, must be considered. Environmental effects that typically manifest themselves post-installation, such as temperature changes and chemical exposure, should also be evaluated. In order to properly evaluate and compare different cable designs a test regime of standard performance requirements should be considered by network operators. Well-designed and properly installed cables will protect the optical fibers and ensure proper operation for 20 years or more.

1.2. Scope

The purpose of this document is to provide guidance in selection of a suitable outside plant (OSP) optical cable with respect to different application environments. This document will provide references to The International Electrotechnical Commission (IEC) and International Telecommunication Union (ITU-T) to provide recommended standards and procedures for outside plant optical fiber and cable.

1.3. Benefits

This document provides cross-references to industry wide accepted global standards

1.4. Intended Audience

This document is intended for engineers, technicians, systems engineers

1.5. Areas for Further Investigation or to be Added in Future Versions

None at this time.

2. Normative References

The following documents contain provisions, which, through reference in this text, constitute provisions of this document. At the time of Subcommittee approval, the editions indicated were valid. All documents are subject to revision; and while parties to any agreement based on this document are encouraged to investigate the possibility of applying the most recent editions of the documents listed below, they are reminded that newer editions of those documents might not be compatible with the referenced version.

2.1. SCTE References

No normative references are applicable.

2.2. Standards from Other Organizations

No normative references are applicable.

2.3. Published Materials

No normative references are applicable.

3. Informative References

The following documents might provide valuable information to the reader but are not required when complying with this document.

3.1. SCTE References

No informative references are applicable.

3.2. Standards from Other Organizations

No informative references are applicable.

3.3. Published Materials

No informative references are applicable.

4. Compliance Notation

shall	This word or the adjective " <i>required</i> " means that the item is an absolute requirement of this document.
shall not This phrase means that the item is an absolute prohibition of the	
Shuu noi	document.
forbidden	This word means the value specified shall never be used.
should	This word or the adjective "recommended" means that there may exist valid reasons in particular circumstances to ignore this item, but the full implications should be understood and the case carefully weighted before choosing a different course.
should not	This phrase means that there may exist valid reasons in particular circumstances when the listed behavior is acceptable or even useful, but the full implications should be understood and the case carefully weighed before implementing any behavior described with this label.
may	This word or the adjective "optional" means that this item is truly optional. One vendor may choose to include the item because a particular marketplace requires it or because it enhances the product, for example; another vendor may omit the same item.
deprecated	Use is permissible for legacy purposes only. Deprecated features may be removed from future versions of this document. Implementations should avoid use of deprecated features.

5. Abbreviations and Definitions

5.1. Abbreviations

IEC	The International Electrotechnical Commission
ISBE	International Society of Broadband Experts
SCTE	Society of Cable Telecommunications Engineers
FTTH	Fiber to the Home
HFC	Hybrid Fiber Coax
IEC	The International Electrotechnical Commission
ISBE	International Society of Broadband Experts
ITU	International Telecommunication Union
OSP	Outside Plant
SCTE	Society of Cable Telecommunications Engineers

5.2. Definitions

IEC	The International Electrotechnical Commission is an international
	standards organization that prepares and publishes international
	standards for all electrical, electronic and related technologies –
	collectively known as "electrotechnology"
ITU-T	The International Telecommunication Union, is a specialized agency
	of the United Nations responsible for all matters related to information
	and communication technologies.

6. Characteristics of optical fibres and cables

Optical fiber should be used as described in the following IEC and ITU-T documents. Guidance and recommendations should be provided on the following attributes:

- Transmission characteristics
- Fiber microbending
- Fiber macrobending

6.1. IEC and ITU-T fiber classifications

IEC	ІТU-Т
IEC 60793-2-50, B-652.B(dispersion unshifted)	ITU-T G.652.B
IEC 60793-2-50,B-652.D(dispersion unshifted)	ITU-T G.652.D
IEC 60793-2-50, B-654.A/B/C (cut-off shifted)	ITU-T G.654.A/B/C
IEC 60793-2-50, B-654.D (cut-off shifted)	ITU-T G.654.D
IEC 60793-2-50, B-654.E (cut-off shifted)	ITU-T G.654.E
IEC 60793-2-50, B-653.A/B (dispersion shifted)	ITU-T G.653.A/B
IEC 60793-2-50, B-655.C/D/E (non-zero dispersion shifted)	ITU-T G.655.C/D/E
IEC 60793-2-50, B-656 (wideband non-zero dispersion shifted)	ITU-T G.656
IEC 60793-2-50, B-657.A1/A2 (bending loss insensitive)	ITU-T G.657.A1/A2
IEC 60793-2-50, B-657.B2/B3 (bending loss insensitive)	ITU-T G.657.B2/B3

7. Cable construction

Since the first optical cable deployments in the 1970's a number of different optical cable designs have been developed. The basic aim of each of these designs is similar – to protect the optical fibers from damage during installation and over their useful service lifetime. Different application and considerations will determine specific preferences of one cable type over another. The cable designs in **Section 10** provide recommendations for the most commonly used cable in the telecommunication industry.

7.1. Cable mechanical characteristics

The ITU-T documents referenced in **Section 10** provide Guidance and recommendations on the following cable mechanical attributes:

- Bending
- Tensile strength
- Crush and impact
- Torsion

7.2. Cable environmental conditions

The ITU-T documents referenced in **Section 10** provide Guidance and recommendations on the following cable environmental attributes:

- Hydrogen gas
- Moisture permeation
- Water penetration
- Lightning
- Biotic damage
- Vibration
- Temperature variations

7.3. Fire Safety

In many countries, optical fiber cable for tunnel/duct installations are required to meet fire performance requirements or local government codes. Requirements for fire performance may differ in each country. Optical cables for tunnels/ducts should meet fire safety regulations in each country or in accordance with each telecommunication carrier or local government regulations. The following IEC documents can provide more information on fire safety testing recommendations

7.3.1. IEC fire safety recommendations

Tests for electric cables under fire conditions - Circuit integrity - Part 25: Procedures and requirements - Optical fibre cables
Tests on electric and optical fibre cables under fire conditions - Part 1-2: Test for vertical flame propagation for a single insulated wire or cable - Procedure for 1 kW pre-mixed flame
Tests on electric and optical fibre cables under fire conditions - Part 3- 24: Test for vertical flame spread of vertically-mounted bunched wires or cables - Category C
Test on gases evolved during combustion of materials from cables - Part 1: Determination of the halogen acid gas content
Test on gases evolved during combustion of materials from cables - Part 2: Determination of acidity (by pH measurement) and conductivity
Measurement of smoke density of cables burning under defined conditions - Part 1: Test apparatus
Measurement of smoke density of cables burning under defined conditions - Part 2: Test procedure and requirements

8. Cable construction

8.1. Fiber coatings

The ITU-T documents referenced in **Section 10** provide guidance and recommendations on the following cable construction attributes for fiber coatings

- Primary coating
- Secondary or buffer coating
- Fiber identification
- Removability of coating

8.2. Cable elements

The ITU-T documents referenced in **Section 10** provide guidance and recommendations on the following cable construction attributes for cable elements, which make up the cable core

- Fiber ribbon
- Slotted core
- Tube
- Micro-module
- Strength member
- Water blocking material
- Pneumatic resistance

8.3. Sheath

The ITU-T documents referenced in **Section 10** provide guidance and recommendations on the following cable construction attributes for cable sheath which may be of a composite construction and may include strength members

8.4. Armor

The ITU-T documents referenced in **Section 10** provide guidance and recommendations on the following cable construction attributes for cable armor. When additional tensile strength or protection from external damage (e.g., crush, impact, rodents) is required armoring should be provided

8.5. Identification of cable

The ITU-T documents referenced in **Section 10** provide guidance and recommendations on the following cable construction attributes for cable identification. It is recommended to provide a visual identification of optical fiber cables

8.6. Cable sealing

The ITU-T documents referenced in **Section 10** provide guidance and recommendations on the following cable construction attributes for cable sealing. It is recommended that an optical fiber cable should be provided with cable end-sealing and protection

8.7. Considerations for installation

The ITU-T documents referenced in **Section 10** and **Section 11** provide guidance and recommendations on the following cable construction attributes for cable installation based on application area.

9. Test methods

9.1. IEC Test methods for cable elements

Tests to characterize the different types of cable elements for handling purposes can be referenced in the following IEC documents. IEC 60794-1-3xx series. The test methods include the following test procedures and can be referenced when needed.

IEC 60794-1-301	Bend test for cable elements
IEC 60794-1-302	Ribbon dimensions and geometry – Visual method
IEC 60794-1-303	Ribbon dimensions – Aperture gauge

Ribbon tear (separability)
Ribbon torsion
Tube kinking
Ribbon residual twist test
Bleeding and evaporation
Stripping
Stripping force stability of cabled optical fibres
Strippability of optical fibre ribbons
Strippability of buffered optical fibres
Tensile strength and elongation at break of buffer tubes
Elongation of buffer tubes at low temperature

9.2. IEC Test methods for cable mechanical characteristics

The mechanical characteristics of optical fiber cable can be referenced in the following IEC documents. IEC 60794-1-1xx series. The test methods include the following test procedures and can be referenced when needed.

IEC 60794-1-101	Tensile performance
IEC 60794-1-102	Abrasion
	Method A: Abrasion resistance of optical fibre cable sheaths
	Method B: Abrasion resistance of optical fibre cable markings
IEC 60794-1-103	Crush
	Method A: Plate/plate
	Method B: Mandrel/plate
IEC 60794-1-104	Impact
IEC 60794-1-105	Stripping force stability of cabled optical fibres
IEC 60794-1-106	Repeated bending
IEC 60794-1-107	Torsion
IEC 60794-1-108	Flexing
-	Snatch (deleted)
IEC 60794-1-110	Kink
IEC 60794-1-111	Bend
	Method A: Standard test procedure
	Method B: Alternative test procedure
-	Cut-through resistance (deleted)
IEC 60794-1-113	Shotgun damage
	Method A: Shotgun test
	Method B: Shotgun simulation
-	[Title unknown] (deleted)

IEC 60794-1-117	Bending stiffness
	Method A: Three-point bend
	Method B: Cantilever bend
	Method C: Buckling bend
IEC 60794-1-118	Bending under tension
IEC 60794-1-119	Aeolian vibration
IEC 60794-1-120	Cable coiling performance
IEC 60794-1-121	Sheath pull-off force for optical fibre cable for use in patch cords
IEC 60794-1-122	Buffered fibre movement under compression in optical fibre cables for use in patch cords
IEC 60794-1-123	Microduct route verification test
IEC 60794-1-124	Installation test for microduct cabling
IEC 60794-1-125	Rip cord functional test
IEC 60794-1-126	Galloping
IEC 60794-1-127	Indoor simulated installation test
IEC 60794-1-128	Cable and fibre mechanical reliability test
IEC 60794-1-129	Straight midspan access to optical elements
IEC 60794-1-130	Coefficient of friction between cables
IEC 60794-1-131	Microduct inner clearance test
IEC 60794-1-132	Creep Test (for ADSS)
IEC 60794-1-133	Multiple cable coiling and uncoiling performance
IEC 60794-1-134	Coefficient of dynamic friction between cables
IEC 60794-1-135	Sheave test (primarily for OPGW and OPAC)

9.3. IEC Test methods for cable environmental characteristics

The environmental characteristics of optical fiber cable can be referenced in the following IEC documents. IEC 60794-1-1xx series. The test methods include the following test procedures and can be referenced when needed

IEC 60794-1-201	Temperature cycling
IEC 60794-1-205	Water penetration
	Method A: (circumferential) Water penetration
	Method B: Water penetration (end-on)
	Method C: Water penetration (end-on, for cables with swellable water blocking material)
-	Deleted
IEC 60794-1-207	Nuclear radiation
IEC 60794-1-208	Pneumatic resistance
IEC 60794-1-209	Ageing

Underwater cable resistance to hydrostatic pressure
Sheath shrinkage (cables intended for patch cords)
Temperature cycling of cables used for patch cords)
Microduct pressure-withstand
Cable UV resistance test
Cable external freezing test
Compound flow (Drip)
Cable shrinkage test (Fibre protrusion)
Mid-span temperature cycling test for exposed buffer tubes
Material compatibility

9.4. IEC Test methods for cable electrical characteristics

When electrical conductors or other metallic elements are incorporated in an optical fiber cable, verification of various electrical characteristics may be necessary. The electrical characteristics of optical fiber cable containing metallic elements can be referenced in the following IEC documents. IEC 60794-1-4xx series. The test methods include the following test procedures and can be referenced when needed

IEC 60794-1-401	Short-circuit test (for OPGW and OPAC)
IEC 60794-1-402	Lightning test method for optical aerial cables along electric power lines (OPGW and OPAC
IEC 60794-1-403	Electrical continuity test of cable metallic elements

10. Cable types and applications

The following recommendations from the ITU-T describes characteristics, construction and test methods of optical fiber cables based on different application areas. The methods of examining whether the cables have these required characteristics are found in the following list of ITU-T recommendations. Each recommendation will cover:

- Characteristics of the optical fiber and cables required for the application area
- Cable construction based on application area
- Test methods recommended for each cable type based on IEC test procedures

10.1. ITU-T Optical cable reference recomendations

ITU-T L.100	Optical fiber cables for duct and tunnel application
ITU-T L.101	Optical fiber cables for buried application
ITU-T L.102	Optical fiber cables for aerial application
ITU-T L.103	Optical fiber cables for indoor applications
ITU-T L.104	Small count optical fiber cables for indoor applications

ITU-T L.105	Optical fiber cables for drop applications
ITU-T L.106	Optical fiber cables: Special needs for access network
ITU-T L.107	Optical fiber cable construction for sewer duct applications
ITU-T L.108	Optical fiber cable elements for microduct blowing-installation application
ITU-T L.109	Construction of optical/metallic hybrid cables
ITU-T L.110	Optical fiber cables for direct surface application
ITU-T L.111	Optical fiber cables for in-home applications

11. Guidance and installation techniques

The ITU-T following Recommendations gives information about the methodologies recommended to install fiber optic cables in various types of installation procedures. nine countries on this matter.

11.1. ITU-T Optical cable installation reference recomendations

ITU-T L.150 Installation of optical fibre cables in the access network – Aerial, Duct, Direct Buried ITU-T L.151 Installation of Optical Fibre Ground Wire (OPGW) cable ITU-T L.152 Use of trenchless techniques for the construction of underground infrastructures for telecommunication cable installation ITU-T L.153 Mini-trench installation technique ITU-T L.154 Micro-trench installation technique ITU-T L.155 Low impact trenching technique for FTTx networks ITU-T L.156 Air-assisted installation of optical fibre cables ITU-T L.157 Optical fibre cable installation by floating technique ITU-T L.158 Installation of optical fibre cables along railways ITU-T L.159 Installation of optical fibre cables inside sewer ducts ITU-T L.160 Optical cabling shared with multiple operators in buildings ITU-T L.161 Protection of telecommunication cables and plant from biological attack ITU-T L.162 Microduct technology and its applications		
ITU-T L.152 Use of trenchless techniques for the construction of underground infrastructures for telecommunication cable installation ITU-T L.153 Mini-trench installation technique ITU-T L.154 Micro-trench installation technique ITU-T L.155 Low impact trenching technique for FTTx networks ITU-T L.156 Air-assisted installation of optical fibre cables ITU-T L.157 Optical fibre cable installation by floating technique ITU-T L.158 Installation of optical fibre cables along railways ITU-T L.159 Installation of optical fibre cables inside sewer ducts ITU-T L.160 Optical cabling shared with multiple operators in buildings ITU-T L.161 Protection of telecommunication cables and plant from biological attack ITU-T L.162 Microduct technology and its applications	ITU-T L.150	Installation of optical fibre cables in the access network – Aerial, Duct, Direct Buried
telecommunication cable installation ITU-T L.153 Mini-trench installation technique ITU-T L.154 Micro-trench installation technique ITU-T L.155 Low impact trenching technique for FTTx networks ITU-T L.156 Air-assisted installation of optical fibre cables ITU-T L.157 Optical fibre cable installation by floating technique ITU-T L.158 Installation of optical fibre cables along railways ITU-T L.159 Installation of optical fibre cables inside sewer ducts ITU-T L.160 Optical cabling shared with multiple operators in buildings ITU-T L.161 Protection of telecommunication cables and plant from biological attack ITU-T L.162 Microduct technology and its applications	ITU-T L.151	Installation of Optical Fibre Ground Wire (OPGW) cable
ITU-T L.154 Micro-trench installation technique ITU-T L.155 Low impact trenching technique for FTTx networks ITU-T L.156 Air-assisted installation of optical fibre cables ITU-T L.157 Optical fibre cable installation by floating technique ITU-T L.158 Installation of optical fibre cables along railways ITU-T L.159 Installation of optical fibre cables inside sewer ducts ITU-T L.160 Optical cabling shared with multiple operators in buildings ITU-T L.161 Protection of telecommunication cables and plant from biological attack ITU-T L.162 Microduct technology and its applications	ITU-T L.152	
ITU-T L.155 Low impact trenching technique for FTTx networks ITU-T L.156 Air-assisted installation of optical fibre cables ITU-T L.157 Optical fibre cable installation by floating technique ITU-T L.158 Installation of optical fibre cables along railways ITU-T L.159 Installation of optical fibre cables inside sewer ducts ITU-T L.160 Optical cabling shared with multiple operators in buildings ITU-T L.161 Protection of telecommunication cables and plant from biological attack ITU-T L.162 Microduct technology and its applications	ITU-T L.153	Mini-trench installation technique
ITU-T L.156 Air-assisted installation of optical fibre cables ITU-T L.157 Optical fibre cable installation by floating technique ITU-T L.158 Installation of optical fibre cables along railways ITU-T L.159 Installation of optical fibre cables inside sewer ducts ITU-T L.160 Optical cabling shared with multiple operators in buildings ITU-T L.161 Protection of telecommunication cables and plant from biological attack ITU-T L.162 Microduct technology and its applications	ITU-T L.154	Micro-trench installation technique
ITU-T L.157 Optical fibre cable installation by floating technique ITU-T L.158 Installation of optical fibre cables along railways ITU-T L.159 Installation of optical fibre cables inside sewer ducts ITU-T L.160 Optical cabling shared with multiple operators in buildings ITU-T L.161 Protection of telecommunication cables and plant from biological attack ITU-T L.162 Microduct technology and its applications	ITU-T L.155	Low impact trenching technique for FTTx networks
ITU-T L.158 Installation of optical fibre cables along railways ITU-T L.159 Installation of optical fibre cables inside sewer ducts ITU-T L.160 Optical cabling shared with multiple operators in buildings ITU-T L.161 Protection of telecommunication cables and plant from biological attack ITU-T L.162 Microduct technology and its applications	ITU-T L.156	Air-assisted installation of optical fibre cables
ITU-T L.159 Installation of optical fibre cables inside sewer ducts ITU-T L.160 Optical cabling shared with multiple operators in buildings ITU-T L.161 Protection of telecommunication cables and plant from biological attack ITU-T L.162 Microduct technology and its applications	ITU-T L.157	Optical fibre cable installation by floating technique
ITU-T L.160 Optical cabling shared with multiple operators in buildings ITU-T L.161 Protection of telecommunication cables and plant from biological attack ITU-T L.162 Microduct technology and its applications	ITU-T L.158	Installation of optical fibre cables along railways
ITU-T L.161 Protection of telecommunication cables and plant from biological attack ITU-T L.162 Microduct technology and its applications	ITU-T L.159	Installation of optical fibre cables inside sewer ducts
ITU-T L.162 Microduct technology and its applications	ITU-T L.160	Optical cabling shared with multiple operators in buildings
3)	ITU-T L.161	Protection of telecommunication cables and plant from biological attack
ITH T L 400	ITU-T L.162	Microduct technology and its applications
110-1 L.163 Criteria for optical cable installation with minimal existing infrastructure	ITU-T L.163	Criteria for optical cable installation with minimal existing infrastructure