# SCTE. | standards

**Interface Practices Subcommittee** 

# AMERICAN NATIONAL STANDARD

# ANSI/SCTE 272 2021

# Standardized Loading for Reverse-Path Bit Error Ratio Testing

# NOTICE

The Society of Cable Telecommunications Engineers (SCTE) Standards and Operational Practices (hereafter called "documents") are intended to serve the public interest by providing specifications, test methods and procedures that promote uniformity of product, interoperability, interchangeability, best practices, and the long term reliability of broadband communications facilities. These documents shall not in any way preclude any member or non-member of SCTE from manufacturing or selling products not conforming to such documents, nor shall the existence of such standards preclude their voluntary use by those other than SCTE members.

SCTE assumes no obligations or liability whatsoever to any party who may adopt the documents. Such adopting party assumes all risks associated with adoption of these documents and accepts full responsibility for any damage and/or claims arising from the adoption of such documents.

NOTE: The user's attention is called to the possibility that compliance with this document may require the use of an invention covered by patent rights. By publication of this document, no position is taken with respect to the validity of any such claim(s) or of any patent rights in connection therewith. If a patent holder has filed a statement of willingness to grant a license under these rights on reasonable and nondiscriminatory terms and conditions to applicants desiring to obtain such a license, then details may be obtained from the standards developer. SCTE shall not be responsible for identifying patents for which a license may be required or for conducting inquiries into the legal validity or scope of those patents that are brought to its attention.

Patent holders who believe that they hold patents which are essential to the implementation of this document have been requested to provide information about those patents and any related licensing terms and conditions. Any such declarations made before or after publication of this document are available on the SCTE web site at https://scte.org.

All Rights Reserved © 2021 Society of Cable Telecommunications Engineers, Inc. 140 Philips Road Exton, PA 19341

# **Document Types and Tags**

Document Type: Specification

Document Tags:

| $\boxtimes$ Test or Measurement | □ Checklist | $\Box$ Facility  |
|---------------------------------|-------------|------------------|
| □ Architecture or Framework     | □ Metric    | □ Access Network |

 $\Box$  Procedure, Process or Method  $\Box$  Cloud

□ Customer Premises

# **Table of Contents**

#### Page Number Title NOTICE 2 Document Types and Tags 3 Table of Contents \_\_\_\_\_ 4 1. Introduction \_\_\_\_\_\_ 6 Executive Summary \_\_\_\_\_ 6 1.1. 1.2. Scope 6 1.3. Benefits\_\_\_\_\_\_6 Intended Audience 1.4. \_\_\_\_\_ 6 Areas for Further Investigation or to be Added in Future Versions \_\_\_\_\_\_6 1.5. 2. Normative References 6 2.1. SCTE References 6 \_\_\_\_\_ 6 Standards from Other Organizations \_\_\_\_\_ 6 2.2. Published Materials\_\_\_\_\_7 2.3. 3. Informative References 7 SCTE References \_\_\_\_\_ 3.1. \_\_\_\_\_7 3.2. Standards from Other Organizations \_\_\_\_\_7 3.3. Published Materials\_\_\_\_\_7 4. Compliance Notation 7 5. Abbreviations and Definitions 8 5.1. Abbreviations \_\_\_\_\_ 8 Definitions \_\_\_\_\_ 8 5.2. 6. Channel Loading Bandwidths \_\_\_\_\_ 8 9 Case 1: 1024 QAM OFDMA \_\_\_\_\_\_ 9 Case 2: SC-OAM 6.1. 5-42 MHz 6.1.1. 6.1.2. Case 2: SC-QAM \_\_\_\_\_\_ 9 D-0D IMHZ 10 6.2.1. Case 1: 1024 QAM OFDMA 10 6.2.2. Case 2: 50 QAM4 10 6.2 6.2.2. Case 2: SC-QAM \_\_\_\_\_ 10 5-85 MHz 11 6.3.1. Case 1: 1024 QAM OFDMA 11 6.3.2. Case 2: SC-QAM 11 5-204 MHz 11 6.3. b-204 MHZ 11 6.4.1. Case 1: 1024 QAM OFDMA 11 6.4.2. Case 2: SC-OAM 11 6.4. 6.4.2 Case 2: SC-QAM \_\_\_\_\_ 12 7. Modes of Operation \_\_\_\_\_ \_\_\_\_\_ 13 Continuous Mode \_\_\_\_\_\_13 7.1. 7.2 Burst Mode \_\_\_\_\_ 13 8. Error Correction \_\_\_\_\_\_ 14 8.1. BER \_\_\_\_\_ 14 Codeword Error Ratio 14 tion Settings 15 8.2. Modulation Settings 15 9.1. 1024 QAM OFDMA Modulation Settings 16 Depend to approximate 9. Modulation Settings 10. Report Template \_\_\_\_\_ 17

# List of Figures

| Title                                   | Page Number |
|-----------------------------------------|-------------|
| Figure 1 - Continuous Mode Test Diagram | 13          |
| Figure 2 - Burst Mode Test Diagram      | 14          |

# 1. Introduction

#### 1.1. Executive Summary

This document defines the channel plans to be used when testing reverse path upstream bit error ratio.

#### 1.2. Scope

This document provides details on channel loading bandwidth and modulation specifics for pre/post bit error ratio (BER) measurements. This document is intended to be used in conjunction with ANSI/SCTE 132, "Test Method for Reverse Path (Upstream) Bit Error Ratio." This document does not detail the procedure to measure BER nor the test methodology. This document is intended for measurement of 75-ohm devices having type "F" or 5/8-24 KS connectors. See the Cable Telecommunications Testing Guidelines document, ANSI/SCTE 96, for a discussion of proper testing techniques.

For bit error ratio measurements in the forward path see ANSI/SCTE 121.

#### 1.3. Benefits

By creating a standardized channel loading plan along with modulation specifications, this document provides a standard means of testing, along with ANSI/SCTE 132, to measure upstream bit error ratio between various types of RF products.

#### 1.4. Intended Audience

The intended audience is any engineer or technician who is responsible for testing reverse path (upstream) bit error ratio.

#### 1.5. Areas for Further Investigation or to be Added in Future Versions

Additional DOCSIS 3.1 OFDMA channel plans may be added along with a possible mixture of DOCSIS 3.0 and 3.1 channel loading.

## 2. Normative References

The following documents contain provisions, which, through reference in this text, constitute provisions of this document. At the time of Subcommittee approval, the editions indicated were valid. All documents are subject to revision; and while parties to any agreement based on this document are encouraged to investigate the possibility of applying the most recent editions of the documents listed below, they are reminded that newer editions of those documents might not be compatible with the referenced version.

#### 2.1. SCTE References

• No normative references are applicable.

#### 2.2. Standards from Other Organizations

• No normative references are applicable.

## 2.3. Published Materials

• No normative references are applicable.

# 3. Informative References

The following documents might provide valuable information to the reader but are not required when complying with this document.

## 3.1. SCTE References

- ANSI/SCTE 96 2020: Cable Telecommunications Testing Guidelines
- ANSI/SCTE 121 2018: Test Method for Downstream Bit Error Rate
- ANSI/SCTE 132 2019: Test Method for Reverse Path (Upstream) Bit Error Ratio
- DOCSIS 3.1 PHY: SCTE 220-1 2016 DOCSIS 3.1 Part 1: Physical Layer Specification

#### 3.2. Standards from Other Organizations

• No informative references are applicable.

#### 3.3. Published Materials

• No informative references are applicable.

# 4. Compliance Notation

| shall      | This word or the adjective " <i>required</i> " means that the item is an |
|------------|--------------------------------------------------------------------------|
| snuu       | absolute requirement of this document.                                   |
| shall not  | This phrase means that the item is an absolute prohibition of this       |
| snuti not  | document.                                                                |
| forbidden  | This word means the value specified shall never be used.                 |
|            | This word or the adjective "recommended" means that there may exist      |
| should     | valid reasons in particular circumstances to ignore this item, but the   |
| snouia     | full implications should be understood and the case carefully weighted   |
|            | before choosing a different course.                                      |
|            | This phrase means that there may exist valid reasons in particular       |
| should not | circumstances when the listed behavior is acceptable or even useful,     |
| should not | but the full implications should be understood and the case carefully    |
|            | weighed before implementing any behavior described with this label.      |
|            | This word or the adjective "optional" means that this item is truly      |
|            | optional. One vendor may choose to include the item because a            |
| may        | particular marketplace requires it or because it enhances the product,   |
|            | for example; another vendor may omit the same item.                      |
|            | Use is permissible for legacy purposes only. Deprecated features may     |
| deprecated | be removed from future versions of this document. Implementations        |
|            | should avoid use of deprecated features.                                 |

# 5. Abbreviations and Definitions

# 5.1. Abbreviations

| BER    | bit error ratio                                |
|--------|------------------------------------------------|
| CIN    | carrier to intermodulation noise ratio         |
| FEC    | forward error correction                       |
| OFDMA  | orthogonal frequency division multiple access  |
| CMTS   | cable modem termination system                 |
| СМ     | cable modem                                    |
| kHz    | kilohertz                                      |
| MHz    | megahertz                                      |
| MSO    | multiple system operator                       |
| QAM    | quadrature amplitude modulation                |
| SC-QAM | single carrier quadrature amplitude modulation |
| SCTE   | Society of Cable Telecommunications Engineers  |
| RFoG   | RF over Glass                                  |

## 5.2. Definitions

| bit error ratio (BER)                           | The ratio of error bits to the total number of bits transmitted. BER is normally expressed as the negative exponent of a number (e.g. $1 \times 10^{-7}$ means that 1 out 10,000,000 bits is in error).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| forward error correction<br>(FEC)               | A system of error control for data transmission wherein the receiving<br>device has the capability to detect and correct any character or code<br>block that contains fewer than a predetermined number of symbols in<br>error.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| symbol rate                                     | The number of symbols transmitted over a given time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| carrier to intermodulation<br>noise ratio (CIN) | The ratio of the CW carrier to the noise-like signals generated by the<br>non-linearity of a broadband transmission system carrying a<br>combination of analog signals and digitally modulated signals. These<br>distortion products are analogous to the CSO and CTB products<br>generated by analog carriers, but due to the pseudo random nature of<br>the digital modulation signals, appear as a noise-like interference.<br>When CIN products fall within the analog portion of the spectrum,<br>their effect on the analog signal is similar to increasing thermal<br>(random) noise. Since CIN is a distortion product, its contribution is<br>dependent on the output signal level. |

# 6. Channel Loading Bandwidths

ANSI/SCTE 132 specifies that digital loading can consist of individual QAM channels or broadband simulated digital noise loading. This document details the use of individual QAM channel loading and does discuss simulated digital loading.

Four return path bandwidths are specified:

- 5-42 MHz Common in North America
- 5-65 MHz Common in Europe

- 5-85 MHz Being used by MSOs to increase upstream capacity
- 5-204 MHz Enabled by DOCSIS 3.1; being evaluated by MSOs to increase upstream capacity

When testing each of these bandwidths, the RF spectrum is comprised of individual QAM channels, with three channels being used for test (low, mid and high band).

QAM channels will intermodulate with each other creating composite intermodulation noise (CIN) underneath each QAM channel. Third order products will accumulate in the mid-band region and second order products will peak at the upper and lower frequencies. Testing at three frequencies will ensure measurements are made where intermodulation interference is maximized.

Four types of modulation are typically used for data transmission: 16, 64, 256 QAM and OFDMA will be defined herein.

#### 6.1. 5-42 MHz

#### 6.1.1. Case 1: 1024 QAM OFDMA

When testing the bandwidth 5-42 MHz with OFDMA, the channel loading and configurations listed in Table 1 *shall* be used.

#### Table 1 - Test Channels for 5-42 MHz 1024 QAM OFDMA Loading Configuration

| 5-42 MHz 1024 QAM |                                    |       |           |           |  |
|-------------------|------------------------------------|-------|-----------|-----------|--|
| Channel Center    | Subcarrier Channel Channel Channel |       |           |           |  |
| Frequency         | Spacing Width Start Sto            |       |           |           |  |
| (MHz)             | (kHz)                              | (MHz) | Frequency | Frequency |  |
|                   | ()                                 | (MHz) |           |           |  |
| 23.4              | 50                                 | 36.8  | 5         | 41.8      |  |

#### 6.1.2. Case 2: SC-QAM

When testing the bandwidth 5-42 MHz, the channel loading and configurations listed in Table 2 *shall* be used. The test channels for each frequency plan are highlighted.

#### Table 2 - Test Channels for 5-42 MHz Loading Configuration

| 5-42 MHz 16 QAM |         |           |           |  |  |
|-----------------|---------|-----------|-----------|--|--|
| Channel Center  | Channel | Channel   | Channel   |  |  |
| Frequency       | Width   | Start     | Stop      |  |  |
| (MHz)           | (MHz)   | Frequency | Frequency |  |  |
|                 |         | (MHz)     | (MHz)     |  |  |
| 6.6             | 3.2     | 5         | 8.2       |  |  |
| 9.8             | 3.2     | 8.2       | 11.4      |  |  |
| 13              | 3.2     | 11.4      | 14.6      |  |  |
| 16.2            | 3.2     | 14.6      | 17.8      |  |  |
| 19.4            | 3.2     | 17.8      | 21        |  |  |
| 22.6            | 3.2     | 21        | 24.2      |  |  |
| 25.8            | 3.2     | 24.2      | 27.4      |  |  |
| 29              | 3.2     | 27.4      | 30.6      |  |  |
| 32.2            | 3.2     | 30.6      | 33.8      |  |  |
| 35.4            | 3.2     | 33.8      | 37        |  |  |
| 38.6            | 3.2     | 37        | 40.2      |  |  |

| 5-42 MHz 64 QAM |         |           |           |  |
|-----------------|---------|-----------|-----------|--|
| Channel         | Channel | Channel   | Channel   |  |
| Center          | Width   | Start     | Stop      |  |
| Frequency       | (MHz)   | Frequency | Frequency |  |
| (MHz)           |         | (MHz)     | (MHz)     |  |
| 8.2             | 6.4     | 5         | 11.4      |  |
| 14.6            | 6.4     | 11.4      | 17.8      |  |
| 21.9            | 6.4     | 18.7      | 25.1      |  |
| 27.6            | 3.2     | 26        | 29.2      |  |
| 32.4            | 6.4     | 29.2      | 35.6      |  |
| 38.8            | 6.4     | 35.6      | 42        |  |

| 5-42 MHz 256 QAM |         |           |           |  |  |
|------------------|---------|-----------|-----------|--|--|
| Channel          | Channel | Channel   | Channel   |  |  |
| Center           | Width   | Start     | Stop      |  |  |
| Frequenc         | (MHz)   | Frequency | Frequency |  |  |
| y (MHz)          |         | (MHz)     | (MHz)     |  |  |
| 8.2              | 6.4     | 5         | 11.4      |  |  |
| 14.6             | 6.4     | 11.4      | 17.8      |  |  |
| 21.9             | 6.4     | 18.7      | 25.1      |  |  |
| 27.6             | 3.2     | 26        | 29.2      |  |  |
| 32.4             | 6.4     | 29.2      | 35.6      |  |  |
| 38.8             | 6.4     | 35.6      | 42        |  |  |

#### 6.2. 5-65 MHz

#### 6.2.1. Case 1: 1024 QAM OFDMA

When testing the bandwidth 5-65 MHz with OFDMA, the channel loading and configurations listed in Table 3 *shall* be used.

| Table 3 - | <b>Test Channe</b> | ls for 5-65 MHz | : 1024 QAM C | OFDMA Loadin | q Configuration |
|-----------|--------------------|-----------------|--------------|--------------|-----------------|
|           |                    |                 |              |              | 3               |

| 5-65 MHz 1024 QAM     |                                   |       |           |           |
|-----------------------|-----------------------------------|-------|-----------|-----------|
| <b>Channel Center</b> | Subcarrier Channel Channel Channe |       |           |           |
| Frequency             | Spacing Width Start Sto           |       |           |           |
| (MHz)                 | (kHz)                             | (MHz) | Frequency | Frequency |
|                       | ()                                |       | (MHz)     | (MHz)     |
| 35                    | 50                                | 60    | 5         | 65        |

## 6.2.2. Case 2: SC-QAM

When testing the bandwidth 5-65 MHz, the following channel loading and configurations in Table 4 *shall* be used. The test channels for each frequency plan are highlighted.

#### Table 4 - Test Channels for 5-65 MHz Loading Configuration

| 5-65 MHz 16 QAM |         |           |           |  |  |
|-----------------|---------|-----------|-----------|--|--|
| Channel Center  | Channel | Channel   | Channel   |  |  |
| Frequency       | Width   | Start     | Stop      |  |  |
| (MHz)           | (MHz)   | Frequency | Frequency |  |  |
|                 |         | (MHz)     | (MHz)     |  |  |
| 7.8             | 3.2     | 6.2       | 9.4       |  |  |
| 11              | 3.2     | 9.4       | 12.6      |  |  |
| 14.2            | 3.2     | 12.6      | 15.8      |  |  |
| 17.4            | 3.2     | 15.8      | 19        |  |  |
| 20.6            | 3.2     | 19        | 22.2      |  |  |
| 23.8            | 3.2     | 22.2      | 25.4      |  |  |
| 27              | 3.2     | 25.4      | 28.6      |  |  |
| 30.2            | 3.2     | 28.6      | 31.8      |  |  |
| 33.4            | 3.2     | 31.8      | 35        |  |  |
| 36.6            | 3.2     | 35        | 38.2      |  |  |
| 39.8            | 3.2     | 38.2      | 41.4      |  |  |
| 43              | 3.2     | 41.4      | 44.6      |  |  |
| 46.2            | 3.2     | 44.6      | 47.8      |  |  |
| 49.4            | 3.2     | 47.8      | 51        |  |  |
| 52.6            | 3.2     | 51        | 54.2      |  |  |
| 55.8            | 3.2     | 54.2      | 57.4      |  |  |
| 59              | 3.2     | 57.4      | 60.6      |  |  |
| 62.2            | 3.2     | 60.6      | 63.8      |  |  |

| 5-65 MHz 64 QAM |         |           |           |  |  |  |
|-----------------|---------|-----------|-----------|--|--|--|
| Channel Center  | Channel | Channel   | Channel   |  |  |  |
| Frequency       | Width   | Start     | Stop      |  |  |  |
| (MHz)           | (MHz)   | Frequency | Frequency |  |  |  |
|                 |         | (MHz)     | (MHz)     |  |  |  |
| 9.4             | 6.4     | 6.2       | 12.6      |  |  |  |
| 15.8            | 6.4     | 12.6      | 19        |  |  |  |
| 22.2            | 6.4     | 19        | 25.4      |  |  |  |
| 28.6            | 6.4     | 25.4      | 31.8      |  |  |  |
| 35              | 6.4     | 31.8      | 38.2      |  |  |  |
| 41.4            | 6.4     | 38.2      | 44.6      |  |  |  |
| 47.8            | 6.4     | 44.6      | 51        |  |  |  |
| 54.2            | 6.4     | 51        | 57.4      |  |  |  |
| 60.6            | 64      | 57.4      | 63.8      |  |  |  |

| 5-65 MHz 256 QAM |         |           |           |  |  |  |
|------------------|---------|-----------|-----------|--|--|--|
| Channel Center   | Channel | Channel   | Channel   |  |  |  |
| Frequency        | Width   | Start     | Stop      |  |  |  |
| (MHz)            | (MHz)   | Frequency | Frequency |  |  |  |
|                  |         | (MHz)     | (MHz)     |  |  |  |
| 9.4              | 6.4     | 6.2       | 12.6      |  |  |  |
| 15.8             | 6.4     | 12.6      | 19        |  |  |  |
| 22.2             | 6.4     | 19        | 25.4      |  |  |  |
| 28.6             | 6.4     | 25.4      | 31.8      |  |  |  |
| 35               | 6.4     | 31.8      | 38.2      |  |  |  |
| 41.4             | 6.4     | 38.2      | 44.6      |  |  |  |
| 47.8             | 6.4     | 44.6      | 51        |  |  |  |
| 54.2             | 6.4     | 51        | 57.4      |  |  |  |
| 60.6             | 6.4     | 57.4      | 63.8      |  |  |  |

#### 6.3. 5-85 MHz

#### 6.3.1. Case 1: 1024 QAM OFDMA

When testing the bandwidth 5-85 MHz with OFDMA, the channel loading and configurations listed in Table 5 *shall* be used.

#### Table 5 - Test Channels for 5-85 MHz 1024 QAM OFDMA Loading Configuration

| 5-85 MHz 1024 QAM                                 |         |       |           |           |  |  |
|---------------------------------------------------|---------|-------|-----------|-----------|--|--|
| Channel Center Subcarrier Channel Channel Channel |         |       |           |           |  |  |
| Frequency                                         | Spacing | Width | Start     | Stop      |  |  |
| (MHz)                                             | (kHz)   | (MHz) | Frequency | Frequency |  |  |
|                                                   | (       |       | (MHz)     | (MHz)     |  |  |
| 45                                                | 50      | 80    | 5         | 85        |  |  |

#### 6.3.2. Case 2: SC-QAM

When testing the bandwidth 5-85 MHz, the channel loading and configurations in Table 6 *shall* be used. The test channels for each frequency plan are highlighted.

| 5-85 MHz 16 QAM |         |           |           |  |
|-----------------|---------|-----------|-----------|--|
| Channel Center  | Channel | Channel   | Channel   |  |
| Frequency       | Width   | Start     | Stop      |  |
| (MHz)           | (MHz)   | Frequency | Frequency |  |
|                 |         | (MHz)     | (MHz)     |  |
| 6.6             | 3.2     | 5         | 8.2       |  |
| 9.8             | 3.2     | 8.2       | 11.4      |  |
| 13              | 3.2     | 11.4      | 14.6      |  |
| 16.2            | 3.2     | 14.6      | 17.8      |  |
| 19.4            | 3.2     | 17.8      | 21        |  |
| 22.6            | 3.2     | 21        | 24.2      |  |
| 25.8            | 3.2     | 24.2      | 27.4      |  |
| 29              | 3.2     | 27.4      | 30.6      |  |
| 32.2            | 3.2     | 30.6      | 33.8      |  |
| 35.4            | 3.2     | 33.8      | 37        |  |
| 38.6            | 3.2     | 37        | 40.2      |  |
| 41.8            | 3.2     | 40.2      | 43.4      |  |
| 45              | 3.2     | 43.4      | 46.6      |  |
| 48.2            | 3.2     | 46.6      | 49.8      |  |
| 51.4            | 3.2     | 49.8      | 53        |  |
| 54.6            | 3.2     | 53        | 56.2      |  |
| 57.8            | 3.2     | 56.2      | 59.4      |  |
| 61              | 3.2     | 59.4      | 62.6      |  |
| 64.2            | 3.2     | 62.6      | 65.8      |  |
| 67.4            | 3.2     | 65.8      | 69        |  |
| 70.6            | 3.2     | 69        | 72.2      |  |
| 73.8            | 3.2     | 72.2      | 75.4      |  |
| 77              | 3.2     | 75.4      | 78.6      |  |
| 80.2            | 3.2     | 78.6      | 81.8      |  |
| 83.4            | 3.2     | 81.8      | 85        |  |

#### Table 6 - Test Channels for 5-85 MHz Loading Configuration

| 5-85 MHz 64 QAM |         |           |           |  |  |
|-----------------|---------|-----------|-----------|--|--|
| Channel         | Channel | Channel   | Channel   |  |  |
| Center          | Width   | Start     | Stop      |  |  |
| Frequency       | (MHz)   | Frequency | Frequency |  |  |
| (MHz)           |         | (MHz)     | (MHz)     |  |  |
| 8.2             | 6.4     | 5         | 11.4      |  |  |
| 14.6            | 6.4     | 11.4      | 17.8      |  |  |
| 21              | 6.4     | 17.8      | 24.2      |  |  |
| 27.4            | 6.4     | 24.2      | 30.6      |  |  |
| 33.8            | 6.4     | 30.6      | 37        |  |  |
| 40.2            | 6.4     | 37        | 43.4      |  |  |
| 45              | 3.2     | 43.4      | 46.6      |  |  |
| 49.8            | 6.4     | 46.6      | 53        |  |  |
| 56.2            | 6.4     | 53        | 59.4      |  |  |
| 62.6            | 6.4     | 59.4      | 65.8      |  |  |
| 69              | 6.4     | 65.8      | 72.2      |  |  |
| 75.4            | 6.4     | 72.2      | 78.6      |  |  |
| 81.8            | 6.4     | 78.6      | 85        |  |  |

| 5-85 MHz 256 QAM |         |           |           |  |  |
|------------------|---------|-----------|-----------|--|--|
| Channel          | Channel | Channel   | Channel   |  |  |
| Center           | Width   | Start     | Stop      |  |  |
| Frequenc         | (MHz)   | Frequency | Frequency |  |  |
| y (MHz)          |         | (MHz)     | (MHz)     |  |  |
| 8.2              | 6.4     | 5         | 11.4      |  |  |
| 14.6             | 6.4     | 11.4      | 17.8      |  |  |
| 21               | 6.4     | 17.8      | 24.2      |  |  |
| 27.4             | 6.4     | 24.2      | 30.6      |  |  |
| 33.8             | 6.4     | 30.6      | 37        |  |  |
| 40.2             | 6.4     | 37        | 43.4      |  |  |
| 45               | 3.2     | 43.4      | 46.6      |  |  |
| 49.8             | 6.4     | 46.6      | 53        |  |  |
| 56.2             | 6.4     | 53        | 59.4      |  |  |
| 62.6             | 6.4     | 59.4      | 65.8      |  |  |
| 69               | 6.4     | 65.8      | 72.2      |  |  |
| 75.4             | 6.4     | 72.2      | 78.6      |  |  |
| 81.8             | 6.4     | 78.6      | 85        |  |  |

#### 6.4. 5-204 MHz

#### 6.4.1. Case 1: 1024 QAM OFDMA

When testing the bandwidth 5-204 MHz with OFDMA, the channel loading and configurations listed in Table 7 *shall* be used.

| 5-204 MHz 1024 QAM                   |                                |                           |                               |                              |  |  |
|--------------------------------------|--------------------------------|---------------------------|-------------------------------|------------------------------|--|--|
| Channel Center<br>Frequency<br>(MHz) | Subcarrier<br>Spacing<br>(kHz) | Channel<br>Width<br>(MHz) | Channel<br>Start<br>Frequency | Channel<br>Stop<br>Frequency |  |  |
| 50                                   | 50                             | 00                        | (MHz)                         | (MHz)                        |  |  |
| 156                                  | 50                             | 96                        | 108                           | 204                          |  |  |

# Table 7 - Test Channels for 5-204 MHz 1024 QAM OFDMA Loading Configuration

#### 6.4.2. Case 2: SC-QAM

When testing the bandwidth 5-204 MHz with SC-QAM, the channel loading and configurations listed in Table 8 *shall* be used. The test channels for each frequency plan are highlighted.

|                  | 5-20       | 4 MHz 64 C | AM       |          |
|------------------|------------|------------|----------|----------|
| C hannel C enter | Modulation | C hannel   | C hannel | C hannel |
| Frequency        | Rate (kHz) | W idth     | S tart   | S top    |
| (MHz)            |            | (MHz)      | Fequency | Fequency |
|                  |            |            | (MHz)    | (MHz)    |
| 8.2              | 5120       | 6.4        | 5        | 11.4     |
| 14.6             | 5120       | 6.4        | 11.4     | 17.8     |
| 21               | 5120       | 6.4        | 17.8     | 24.2     |
| 27.4             | 5120       | 6.4        | 24.2     | 30.6     |
| 33.8             | 5120       | 6.4        | 30.6     | 37       |
| 40.2             | 5120       | 6.4        | 37       | 43.4     |
| 46.6             | 5120       | 6.4        | 43.4     | 49.8     |
| 53               | 5120       | 6.4        | 49.8     | 56.2     |
| 59.4             | 5120       | 6.4        | 56.2     | 62.6     |
| 65.8             | 5120       | 6.4        | 62.6     | 69       |
| 72.2             | 5120       | 6.4        | 69       | 75.4     |
| 78.6             | 5120       | 6.4        | 75.4     | 81.8     |
| 85               | 5056.941   | 6          | 82       | 88       |
| 91               | 5056.941   | 6          | 88       | 94       |
| 97               | 5056.941   | 6          | 94       | 100      |
| 103              | 5056.941   | 6          | 100      | 106      |
| 109              | 5056.941   | 6          | 106      | 112      |
| 115              | 5056.941   | 6          | 112      | 118      |
| 121              | 5056.941   | 6          | 118      | 124      |
| 127              | 5056.941   | 6          | 124      | 130      |
| 133              | 5056.941   | 6          | 130      | 136      |
| 139              | 5056.941   | 6          | 136      | 142      |
| 145              | 5056.941   | 6          | 142      | 148      |
| 151              | 5056.941   | 6          | 148      | 154      |
| 157              | 5056.941   | 6          | 154      | 160      |
| 163              | 5056.941   | 6          | 160      | 166      |
| 169              | 5056.941   | 6          | 166      | 172      |
| 175              | 5056.941   | 6          | 172      | 178      |
| 181              | 5056.941   | 6          | 178      | 184      |
| 187              | 5056.941   | 6          | 184      | 190      |
| 193              | 5056.941   | 6          | 190      | 196      |
| 199              | 5056 941   | 6          | 196      | 202      |

#### Table 8 - Test Channels for 5-204 MHz with Standard 64 QAM Loading Configuration

# 7. Modes of Operation

The channel configurations listed in section 6 may be tested with both continuous and burst mode test sources.

## 7.1. Continuous Mode

Test equipment is commercially available which supports both 16 and 64 QAM upstream testing. This test equipment is continuous mode only.





#### 7.2. Burst Mode

Burst mode better simulates real world conditions and can 'stress" the test system during turn on/turn off. This is especially critical when testing systems such as RFoG, which trigger off the burst/data of the CM sources. Burst mode testing requires a system with a CMTS and configured cable modems. Modulation settings are detailed in section 9.0.



#### Figure 2 - Burst Mode Test Diagram

## 8. Error Correction

Both commercially available test equipment and CMTSs can provide pre and post error correction error ratio data. Both are meaningful as they provide a measurement of the quality of the signal and the ability of the CMTS to correct for errors. Ideally post-EQ BER should be 0, although DOCSIS specifications allow for some post errors.

#### 8.1. BER

Commercially available test equipment can provide both pre and post FEC BER. Examples of this test equipment are the Sunrise Telecom CM2000 Upstream Signal Generator and AT2500RQv Spectrum/QAM analyzer.

#### 8.2. Codeword Error Ratio

The Codeword Error Ratio is the ratio of the number of uncorrectable or unreliable code words to the total number of code words sent without errors, with corrected errors and with uncorrectable or unreliable errors. When using cable modems and a CMTS to make upstream measurements, the CMTS measures and counts the code words received with correctable and uncorrectable or unreliable errors. The

#### ANSI/SCTE 272 2021

codeword error ratio is related to the bit error ratio, but the bit error ratio can only be estimated from the codeword error ratio as a codeword error can contain one or more bit errors. The codeword error ratio is calculated as follows:

Computation of Codeword Error Rate, Rc:

$$R_{C} = \frac{(E_{U} - E_{U0})}{(E_{U} - E_{U0}) + (E_{C} - E_{C0}) + (C - C_{0})}$$

Where:

Eu is the value of the count of code words with uncorrectable errors;

Ec is the value of the count of code words with correctable errors and;

C is the value of the count of code words without errors.

'0' subscript denotes initial starting counts.

## 9. Modulation Settings

Table 9 lists the modulation settings for 16 and 64 QAM configurations when testing with cable modems in burst mode.

| MODULATION                | 16 QAM | 64 QAM |
|---------------------------|--------|--------|
| Diff Encoding             | OFF    | OFF    |
| Preamble Length           | 96     | 64     |
| FEC CW Length             | 130    | 75     |
| Guard Time                | 8      | 8      |
| Interleaver Depth         | 1      | 1      |
| Interleaver Block<br>Size | 1536   | 1536   |
| Preamble Type             | QPSK1  | QPSK1  |
| Interleaver Step Size     | 0      | 0      |
| TCM Encoding              | OFF    | OFF    |

Table 9 – 16 and 64 QAM Modulation Settings

| Max Burst    | 6    | 4     |
|--------------|------|-------|
| Channel Type | TDMA | ATDMA |

Note: Use an edgeQAM for the 256-QAM testing (continuous mode)

# 9.1. 1024 QAM OFDMA Modulation Settings

Modulator settings for 1024 QAM OFDMA *shall* be as shown in Table 10.

| Sub Carrier Spacing | Sample Rate | # Sub Carriers |
|---------------------|-------------|----------------|
| 25 kHz              | 102.4 MHz   | 3840           |
| 50 kHz              | 102.4 MHz   | 1920           |

## Table 10 - 1024 QAM Modulation Settings

# 10. Report Template

| Device<br>Under Test       |          |                |                 |                         |                                              |                              |                                    |
|----------------------------|----------|----------------|-----------------|-------------------------|----------------------------------------------|------------------------------|------------------------------------|
| Date                       |          |                |                 |                         |                                              |                              |                                    |
| Modulation<br>Rate         |          |                |                 |                         |                                              |                              |                                    |
| Modulation<br>Order        |          |                |                 |                         |                                              |                              |                                    |
|                            | RF Level | Pre FEC<br>BER | Post FEC<br>BER | Codeword<br>Error Ratio | Uncorrectable<br>or unreliable<br>Code Words | Correctable<br>Code<br>Words | Code<br>Words<br>Without<br>Errors |
| Test<br>Frequency<br>(MHz) |          |                |                 |                         |                                              |                              |                                    |
|                            |          |                |                 |                         |                                              |                              |                                    |
|                            |          |                |                 |                         |                                              |                              |                                    |
|                            |          |                |                 |                         |                                              |                              |                                    |
|                            |          |                |                 |                         |                                              |                              |                                    |

# Table 11 - BER Tabular Dynamic Range