SCTE. | standards

Interface Practices Subcommittee

AMERICAN NATIONAL STANDARD

ANSI/SCTE 125 2020

Hard Line Pin Connector Return Loss

NOTICE

The Society of Cable Telecommunications Engineers (SCTE) Standards and Operational Practices (hereafter called "documents") are intended to serve the public interest by providing specifications, test methods and procedures that promote uniformity of product, interoperability, interchangeability, best practices, and the long term reliability of broadband communications facilities. These documents shall not in any way preclude any member or non-member of SCTE from manufacturing or selling products not conforming to such documents, nor shall the existence of such standards preclude their voluntary use by those other than SCTE members.

SCTE assumes no obligations or liability whatsoever to any party who may adopt the documents. Such adopting party assumes all risks associated with adoption of these documents and accepts full responsibility for any damage and/or claims arising from the adoption of such documents.

NOTE: The user's attention is called to the possibility that compliance with this document may require the use of an invention covered by patent rights. By publication of this document, no position is taken with respect to the validity of any such claim(s) or of any patent rights in connection therewith. If a patent holder has filed a statement of willingness to grant a license under these rights on reasonable and nondiscriminatory terms and conditions to applicants desiring to obtain such a license, then details may be obtained from the standards developer. SCTE shall not be responsible for identifying patents for which a license may be required or for conducting inquiries into the legal validity or scope of those patents that are brought to its attention.

Patent holders who believe that they hold patents which are essential to the implementation of this document have been requested to provide information about those patents and any related licensing terms and conditions. Any such declarations made before or after publication of this document are available on the SCTE web site at https://scte.org.

All Rights Reserved ©2021 Society of Cable Telecommunications Engineers, Inc. 140 Philips Road Exton, PA 19341

<u>Title</u>	;		Page Number
ΝΟΤ	ICE		2
Table	e of Contents		3
1.	Introduction		4
	1.1. Execu	tive Summary	4
	1.2. Scope		4
	1.3. Benefi	ts	4
	1.4. Intend	ed Audience	4
	1.5. Areas	for Further Investigation or to be Added in Future Versions	4
2.	Normative Ref	erences	4
	2.1. SCTE	References	4
	2.2. Standa	ards from Other Organizations	4
	2.3. Publis	ned Materials	4
3.	Informative Re	ferences	5
	3.1. SCTE	References	5
	3.2. Standa	ards from Other Organizations	5
	3.3. Publis	ned Materials	5
4.	Compliance No	otation	5
5.	Abbreviations	and Definitions	5
	5.1. Abbrev	viations	5
	5.2. Definit	ions	6
6.	Equipment		6
7.	Set-Up		6
	7.1. Vector	Network Analyzer	6
	7.2. DUT C	connections	7
8.	Procedure		9
9.	Inspection		12
10.	Report		12
11.	11. Error Analysis 12		
12.	12. Airline Adapter Drawings13		

Table of Contents

List of Figures

Title	Page Number
Figure 1 - Calibration	7
Figure 2 - Interface Calibration	7
Figure 3 - Open End Gate	8
Figure 4 - Connect Precision Airline	8
Figure 5 - Open End of Airline Adapter	9
Figure 6 - Connect Load	9
Figure 7 - Adjust Gate to Center DUT	10
Figure 8 - Worst Case Return Loss	10
Figure 9 - Cable Impedance	

1. Introduction

1.1. Executive Summary

This test procedure applies as a method to measure the return loss of Hard Line Pin connectors.

1.2. Scope

This document describes a procedure to measure the Return Loss characteristics of a single Hard Line Pin Connector interfaced between hard line cable and a precision airline. It implements the time domaingating features of the network analyzers, which removes the interfaces, and far end termination from the DUT (device under test) measurement.

1.3. Benefits

This test procedure provides a common method that can be used by both manufacturers and end users to test whether Hard Line Pin connector models meet return loss specifications. Without such a common test procedure, the testing used to prove Hard Line Pin connector return loss performance can vary and lead to uncertainty as to whether the connector return loss specifications are being met.

1.4. Intended Audience

The intended audience for this test procedure are manufacturers, evaluation laboratories, and end user technician and engineers with the proper equipment to perform this testing.

1.5. Areas for Further Investigation or to be Added in Future Versions

At this time, there are no areas for further investigation for this test procedure.

2. Normative References

The following documents contain provisions, which, through reference in this text, constitute provisions of this document. At the time of Subcommittee approval, the editions indicated were valid. All documents are subject to revision; and while parties to any agreement based on this document are encouraged to investigate the possibility of applying the most recent editions of the documents listed below, they are reminded that newer editions of those documents might not be compatible with the referenced version.

2.1. SCTE References

• ANSI/SCTE 15 2019 Specification for Trunk, Feeder and Distribution Coaxial Cable

2.2. Standards from Other Organizations

• No normative references are applicable.

2.3. Published Materials

• No normative references are applicable.

3. Informative References

The following documents might provide valuable information to the reader but are not required when complying with this document.

3.1. SCTE References

• ANSI/SCTE 15 2019 Specification for Trunk, Feeder and Distribution Coaxial Cable

3.2. Standards from Other Organizations

• No informative references are applicable.

3.3. Published Materials

• No informative references are applicable.

4. Compliance Notation

shall	This word or the adjective " <i>required</i> " means that the item is an	
snuu	absolute requirement of this document.	
shall not	This phrase means that the item is an absolute prohibition of this	
shall hol	document.	
forbidden	This word means the value specified shall never be used.	
	This word or the adjective "recommended" means that there may exist	
should	valid reasons in particular circumstances to ignore this item, but the	
snoula	full implications should be understood and the case carefully weighted	
	before choosing a different course.	
	This phrase means that there may exist valid reasons in particular	
should wat	circumstances when the listed behavior is acceptable or even useful,	
should hol	but the full implications should be understood and the case carefully	
	weighed before implementing any behavior described with this label.	
	This word or the adjective "optional" means that this item is truly	
	optional. One vendor may choose to include the item because a	
may	particular marketplace requires it or because it enhances the product,	
	for example; another vendor may omit the same item.	
	Use is permissible for legacy purposes only. Deprecated features may	
deprecated	be removed from future versions of this document. Implementations	
_	should avoid use of deprecated features.	

5. Abbreviations and Definitions

5.1. Abbreviations

ANSI	American National Standards Institute
dB	decibel
Div	division
DUT	device under test
GHz	gigahertz

ANSI/SCTE 125 2020

Hz	hertz
MHz	megahertz
mU	milli units
ns	nanosecond
ps	picosecond
SCTE	Society of Cable Telecommunications Engineers
VNA	Vector Network Analyzer

5.2. Definitions

gating	Technique for selectively removing the response of a non-perfect	
	connector from return loss measurements.	
directivity	The figure of merit for how well a directional coupler separates	
	forward and reverse waves. The greater the directivity of the device,	
	the better the signal separation. System directivity is the vector sum of	
	all leakage signals appearing at the analyzer receiver input. The error	
	contributed by directivity is independent of the characteristics of the	
	test device and it usually produces the major ambiguity in	
	measurements of low reflection devices.	
return loss	The ratio of incident signal to reflected signal, expressed in dB	
network analyzer	An instrument for measuring the swept frequency response of a cable	
-	or cable/connector combination.	

6. Equipment

- Vector Network Analyzer (VNA), with Time Domain capability: Keysight E5061B with options 010 (time domain) and 237 (75 ohm ports) or equivalent.
- Type "N" 75-ohm Calibration Kit; Agilent 85036B, or equivalent.
- Flexible Precision Test Cables; Type "N", 75 ohm.
- 5/8"-24 female to "N"male, Precision Adapter, Return Loss, ≥ 40 dB.
- Hard line cable that meets the requirements of ANSI/SCTE 15 2019, 75 ohm, length, 15 inches $\pm 1/2$ inch; cable size matches that of pin connector being tested.
- 5/8"-24 female precision airline, Return Loss, ≥ 40 dB. See Airline Adapter Drawings in Section 8.0.
- 5/8"-24 male to "N"male, Precision Adapter, Return Loss, ≥ 40 dB.

7. Set-Up

7.1. Vector Network Analyzer

- Allow equipment to warm up per manufacturer's instructions.
- Preset
- IF Band Width = 3000 Hz
- Dual Chan = ON; Split Display = ON
- FORMAT CH 1 = Log Magnitude; CH 2 = Real
- START = 5 MHz; STOP = 3 GHz
- Number of Points = 801
- Set CH1 & CH2 to S11
- SYSTEM Transform -Low Pass Step

- Set frequency Low Pass
- CH 1 –Transform = OFF; Gate Start = 4.671 ns; Gate Stop = 6.451 ns (actual settings depend on the length of input line)

(Note: Wait to turn gate on until after calibration is completed and the first connection made. This will let you see the frequency response of the open/short/load standards of the test set up without gating. Gating can make it difficult to tell if a standard is connected correctly during calibration).

- CH 2 –Transform, Low Pass Step, Transform = ON; START = 0 ns; STOP = 15 ns; Gate Shape = Normal
- Scale/Div CH 1 = 10 dB; CH 2 = 5 mU

Install flexible precision test cable to port 1. See Figure 1

Perform an S11 - 1 PORT calibration at the end of the flexible cable with applicable test adapters included. Use OPEN, SHORT and the same LOAD to be used during the test. See Figure 1.

Figure 1 - Calibration

7.2. DUT Connections

Connect all interfaces required to adapt the near end of the hard line cable to the flexible cable connected to port 1, as shown in Figure 2.

Figure 2 - Interface Calibration

Figure 3 - Open End Gate (Plots are for reference only. Displayed frequency range settings may vary based on user test set up and requirements.)

Looking at the time domain, observe the open at the far end of the hard line cable and adjust the display to make the gate approximately centered on it. Turn the channel 1 gating on: CH 1 - Transform = OFF; GATE = ON; as shown in Figure 3.

Connect the DUT to the far end of the hard line cable and connect the floating center conductor followed by the threaded outer conductor of the airline to the DUT. Then connect the center and outer conductors of the airlines' other end to the 5/8" male to "N" male adapter as shown in Figure 4

Figure 4 - Connect Precision Airline

Figure 5 - Open End of Airline Adapter (Plots are for reference only. Displayed frequency range settings may vary based on user test set up and requirements.)

Observe open now at the end of the last adapter as shown in Figure 5

Connect the same load that was used during calibration as shown in Figure 6

Figure 6 - Connect Load

8. Procedure

Adjust gate as needed to center on DUT, as a minimum; allow 2-3 time constants before and after the 1st gate flag and second gate flag. For these settings, a time constant is equal to approximately 300 ps; therefore leave about 0.6-0.9 ns after the first gate start flag, before the first indication of the connector, and 0.6-0.9 ns after the end of the connector indicator before the gate stop flag as shown in Figure 7.

Figure 7 - Adjust Gate to Center DUT (Plots are for reference only. Displayed frequency range settings may vary based on user test set up and requirements.)

Use markers on CH 1 to indicate frequency range of interest and to display worst case return loss within that range as shown in Figure 8.

ANSI/SCTE 125 2020

1.57

The impedance of the cable can be measured by placing markers on the cable in the time domain (CH 2). Then change the format from real to smith chart, as shown in Figure 9.

9. Inspection

After a sweep has completed, use the markers to find the worst case (highest point) of the return loss. You may wish to put the analyzer into hold sweep mode.

Record the worst case return loss and frequency. Because the gating window includes all reflections from the test port to the test connector, there is no need to compensate for any gating signal loss.

10. Report

A typical report form should include the following information as a minimum:

Test technician:	Date of test:
Connector:	Cable:
Test start frequency:	Test stop frequency:
Worse case return loss:	dB @MHz

11. Error Analysis

11.1. An uncertainty analysis reveals two sources of errors in the measurement. The first source of error is due to the slight amount of energy reflected from the input connection, which is gated out of the response. Since a small amount of energy is reflected, not all the input signal is transmitted to the connector under test. The error due to this term can be determined by taking from the return loss spec of the input connector (30 dB).

Error1=20 \cdot log(1-p) = -0.3dB, where p = 10 - 30/20 = 0.032

11.2. The second source of error is due to the impedance of the Hard line cable connected to the connector under test. This cable becomes the reference impedance for the connector. If this cable is not exactly 75 ohms, the connector return loss will have some error in its measurement. This is an additive error, and the dB value depends upon the value of the connector being measured. Using the values from figure 9 in section 4.3, the reflection error for each of the input and output cable is

$$\rho_{in} = \left| \frac{74.7 - 75}{74.7 + 75} \right| = 0.002, \quad \rho_{out} = \left| \frac{74.8 - 75}{74.8 + 75} \right| = 0.0013$$

This is added to the linear reflection coefficient of the connector: Return loss = 33 dB, linear reflection = 0.022. Upper error limit for the reflection coefficient is

0.002+0.022+0.001=0.025, or 32 dB return loss. To this add Error1 from above to get overall maximum of 31.7 dB.

11.3 Reference Table: The table below gives maximum error limits for the case of using a 30 dB return loss input connector, and input and output cable impedance of 75 ohms \pm 0.5 ohms.

	Measured Return Loss	Upper limit maximum	Error Value
--	----------------------	---------------------	-------------

Т

33 dB	30.4 dB	2.6 dB
36 dB	32.6 dB	3.4 dB
40 dB	35.3 dB	4.7 dB

12. Airline Adapter Drawings

Note: Due to various design elements of the interfaces, the user shall consider adjusting the physical length of the pin to accommodate the design.

ANSI/SCTE 125 2020

