

Data Standards Subcommittee

AMERICAN NATIONAL STANDARD

ANSI/SCTE 24-3 2016 (R2022)

IPCablecom 1.0 Part 3: Network Call Signaling
Protocol for the Delivery of Time-Critical Services over

Cable Television Using Data Modems

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 2

 NOTICE

The Society of Cable Telecommunications Engineers (SCTE) Standards and Operational Practices (hereafter called
“documents”) are intended to serve the public interest by providing specifications, test methods and procedures that
promote uniformity of product, interoperability, interchangeability, best practices, and the long term reliability of
broadband communications facilities. These documents shall not in any way preclude any member or non-member
of SCTE from manufacturing or selling products not conforming to such documents, nor shall the existence of such
standards preclude their voluntary use by those other than SCTE members.

SCTE assumes no obligations or liability whatsoever to any party who may adopt the documents. Such adopting
party assumes all risks associated with adoption of these documents and accepts full responsibility for any damage
and/or claims arising from the adoption of such documents.

NOTE: The user’s attention is called to the possibility that compliance with this document may require the use of an
invention covered by patent rights. By publication of this document, no position is taken with respect to the validity
of any such claim(s) or of any patent rights in connection therewith. If a patent holder has filed a statement of
willingness to grant a license under these rights on reasonable and nondiscriminatory terms and conditions to
applicants desiring to obtain such a license, then details may be obtained from the standards developer. SCTE shall
not be responsible for identifying patents for which a license may be required or for conducting inquiries into the
legal validity or scope of those patents that are brought to its attention.

Patent holders who believe that they hold patents which are essential to the implementation of this document have
been requested to provide information about those patents and any related licensing terms and conditions. Any such
declarations made before or after publication of this document are available on the SCTE web site at https://scte.org.

All Rights Reserved
© 2022 Society of Cable Telecommunications Engineers, Inc.

140 Philips Road
Exton, PA 19341

Note: DOCSIS® is a registered trademark of Cable Television Laboratories, Inc., and is used in this document

with permission.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 3

Document Types and Tags
Document Type: Specification
Document Tags:
☐ Test or Measurement ☐ Checklist ☐ Facility
☒ Architecture or Framework ☐ Metric ☐ Access Network
☐ Procedure, Process or Method ☐ Cloud ☒ Customer Premises

Document Release History

Release Date
SCTE 24-3 2000 3/28/2001
SCTE 24-3 2004 7/23/2004
SCTE 24-3 2006 5/19/2006
SCTE 24-3 2009 6/5/2009
SCTE 24-3 2016 10/7/2016

Note: This document is a reaffirmation of SCTE 24-3 2016. No substantive changes have been made to this
document. Information components may have been updated such as the title page, NOTICE text, headers, and
footers.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 4

Table of Contents
1 STATUS OF THIS DOCUMENT .. 7

1.1 REQUIREMENTS AND CONVENTIONS ... 7

2 REFERENCES ... 8

3 TERMS AND DEFINITIONS .. 10

4 ABBREVIATIONS AND ACRONYMS ... 14

5 SCOPE ... 21

6 INTRODUCTION ... 23

6.1 RELATION WITH H.323 STANDARDS ... 23
6.2 RELATION WITH IETF STANDARDS.. 24
6.3 RELATION TO RFC 3435 AND ABNF GRAMMAR .. 25

7 MEDIA GATEWAY CONTROL INTERFACE (MGCI) ... 26

7.1 MODEL AND NAMING CONVENTIONS ... 26
7.1.1 Endpoint Names ... 26
7.1.2 Call Names ... 28
7.1.3 Connection Names ... 28
7.1.4 Names of Call Agents and Other Entities ... 28
7.1.5 Digit Maps .. 28
7.1.6 Events and Signals ... 30

7.2 SDP USE .. 32
7.3 GATEWAY CONTROL FUNCTIONS ... 32

7.3.1 NotificationRequest ... 34
7.3.2 Notifications ... 39
7.3.3 CreateConnection .. 40
7.3.4 ModifyConnection .. 45
7.3.5 DeleteConnection (from the Call Agent) .. 47
7.3.6 DeleteConnection (from the Embedded Client) .. 49
7.3.7 DeleteConnection (Multiple Connections From the Call Agent) ... 49
7.3.8 Auditing.. 50
7.3.9 Restart in Progress ... 53

7.4 STATES, FAILOVER AND RACE CONDITIONS .. 55
7.4.1 Recaps and Highlights .. 55
7.4.2 Retransmission and Detection of Lost Associations ... 56
7.4.3 Race Conditions .. 59

7.5 RETURN CODES AND ERROR CODES .. 69
7.6 REASON CODES .. 70
7.7 USE OF LOCAL CONNECTION OPTIONS AND CONNECTION DESCRIPTORS .. 71

7.7.1 Remote IP and Port Negotiation .. 73

8 MEDIA GATEWAY CONTROL PROTOCOL ... 74

8.1 GENERAL DESCRIPTION .. 74
8.2 COMMAND HEADER .. 74

8.2.1 Command Line ... 74
8.2.2 Parameter Lines ... 76

8.3 RESPONSE HEADER FORMATS ... 87
8.3.1 CreateConnection .. 89
8.3.2 ModifyConnection .. 89

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 5

8.3.3 DeleteConnection ... 90
8.3.4 NotificationRequest ... 90
8.3.5 Notify ... 90
8.3.6 AuditEndpoint .. 90
8.3.7 AuditConnection .. 90
8.3.8 RestartInProgress ... 91

8.4 SESSION DESCRIPTION ENCODING .. 91
8.4.1 SDP Audio Service Use .. 91

8.5 TRANSMISSION OVER UDP .. 97
8.5.1 Reliable Message Delivery ... 97
8.5.2 Retransmission Strategy .. 98
8.5.3 Maximum Datagram Size, Fragmentation, and Reassembly ... 99

8.6 PIGGY-BACKING ... 99
8.7 TRANSACTION IDENTIFIERS AND THREE WAY HANDSHAKES ... 99
8.8 PROVISIONAL RESPONSES ... 100

9 SECURITY ... 102

APPENDIX I EVENT PACKAGES ... 103

I.1 ANALOG ACCESS LINES .. 103
I.2 LINE PACKAGE .. 103
I.3 VIDEO .. 108

APPENDIX II CONNECTION MODE ... 109

APPENDIX III DYNAMIC QUALITY-OF-SERVICE .. 114

III.1 INTRODUCTION .. 114
III.2 NCS/D-QOS STATE MACHINE .. 115

APPENDIX IV EXAMPLE COMMAND ENCODINGS .. 121

IV.1 NOTIFICATIONREQUEST ... 121
IV.2 NOTIFY ... 121
IV.3 CREATECONNECTION ... 121
IV.4 MODIFYCONNECTION .. 123
IV.5 DELETECONNECTION (FROM THE CALL AGENT) .. 124
IV.6 DELETECONNECTION (FROM THE EMBEDDED CLIENT) .. 124
IV.7 DELETECONNECTION (MULTIPLE CONNECTIONS FROM THE CALL AGENT) .. 124
IV.8 AUDITENDPOINT .. 124
IV.9 AUDITCONNECTION .. 125
IV.10 RESTARTINPROGRESS .. 126

APPENDIX V EXAMPLE CALL FLOW .. 127

APPENDIX VI COMPATIBILITY INFORMATION ... 133

VI.1 MGCP COMPATIBILITY .. 133

APPENDIX VII ABNF GRAMMAR FOR NCS .. 134

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 6

List of Figures
FIGURE 1 - RELATION TO H.323 STANDARDS ... 24
FIGURE 2 - RELATION TO IETF STANDARDS .. 25
FIGURE 3 - DIALED DIGITS – EXAMPLES .. 29
FIGURE 4 - RETRANSMISSION ALGORITHM ... 58
FIGURE 5 - QUARANTINE LIST PROCEDURES ... 62
FIGURE 6 - CONTROL OF MEDIA STREAMS BY CONNECTION MODE - GRAPHICAL REPRESENTATION .. 111
FIGURE 7 - GRAPHICAL REPRESENTATION OF CONNECTIONS.. 112
FIGURE 8 - INDIVIDUAL MEDIA STREAMS ON CONNECTIONS ... 112
FIGURE 9 - A TO B TO C INTERACTION .. 113
FIGURE 10 - NCS/D-QOS STATE DIAGRAM (1:2) .. 117
FIGURE 11 - NCS/D-QOS STATE DIAGRAM (2:2) .. 118

List of Tables
TABLE 1 - PACKAGES FOR EMBEDDED CLIENT END-POINT TYPES .. 31
TABLE 2 - LEGAL COMBINATIONS OF EVENTS AND ACTION .. 37
TABLE 3 - DEFAULT RESOURCE RESERVATION VALUES.. 43
TABLE 4 - RETURN CODE DEFINITIONS .. 69
TABLE 5 - REASON CODE DEFINITIONS .. 70
TABLE 6 - REQUESTED VERB CODINGS .. 75
TABLE 7 - EXAMPLE NAME CODING ... 76
TABLE 8 - PARAMETER DEFINITIONS ... 77
TABLE 9 - ASSOCIATION OF PARAMETERS WITH COMMANDS ... 78
TABLE 10 - DQOS RESOURCE RESERVATION PARAMETER VALUES ... 80
TABLE 11 - CONNECTION PARAMETERS .. 82
TABLE 12 - CONNECTION MODE ... 83
TABLE 13 - EVENT NAME EXAMPLES .. 83
TABLE 14 - EVENT RANGE AND WILDCARD NOTATION ... 83
TABLE 15 - "ALL" AND "‘CURRENT" CONNECTION NOTATION ... 83
TABLE 16 - REQUESTED EVENTS ACTIONS.. 84
TABLE 17 - REQUESTEDINFO PARAMETER VALUES .. 86
TABLE 18 - ASSOCIATION OF RESPONSE HEADER PARAMETERS AND COMMANDS ... 88
TABLE 19 - LINE PACKAGE CODES FOR EVENTS AND SIGNALS .. 104
TABLE 20 - CONTROL OF MEDIA STREAMS BY CONNECTION MODE .. 110
TABLE 21 - CLASSIFIERS FOR RESOURCE RESERVATION AND COMMIT: REMOTE CONNECTION DESCRIPTOR PROVIDED 114
TABLE 22 - CLASSIFIERS FOR RESOURCE RESERVATION AND COMMIT: REMOTE CONNECTION DESCRIPTOR NOT PROVIDED 115
TABLE 23 - STATES RELATED TO CONNECTION MODES AND DQOS RESERVATION PARAMETERS .. 116
TABLE 24 - EXAMPLE CALL FLOW .. 127

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 7

1 STATUS OF THIS DOCUMENT
This document is considered part of the IPCablecom 1.0 suite of standards. The document is based on MGCP 1.0
[1], which is an IETF Informational RFC.

1.1 Requirements and Conventions

Throughout this document, the words that are used to define the significance of particular requirements are
capitalized. These words are:

“MUST” This word or the adjective “REQUIRED” means that the item is an absolute
requirement of this specification.

“MUST NOT” This phrase means that the item is an absolute prohibition of this specification.
“SHOULD” This word or the adjective “RECOMMENDED” means that there may exist valid

reasons in particular circumstances to ignore this item, but the full implications should
be understood and the case carefully weighed before choosing a different course.

“SHOULD NOT” This phrase means that there may exist valid reasons in particular circumstances when
the listed behavior is acceptable or event useful, but the full implications should be
understood and the case carefully weighed before implementing any behavior
described with this label.

“MAY” This word or the adjective “OPTIONAL” means that this item is truly optional. One
vendor may choose to include the item because a particular marketplace requires it or
because it enhances the product, for example; another vendor may omit the same item.

The legal/regulatory classification of IP-based voice communications provided over cable networks and otherwise,
and the legal/regulatory obligations, if any, borne by providers of such voice communications, are not yet fully
defined by appropriate legal and regulatory authorities. Nothing in this specification is addressed to, or intended to
affect, those issues. In particular, while this document uses standard terms such as “call,” “call signaling,”
“telephony,” etc., it will be evident from this document that while an IPCablecom network performs activities
analogous to these PSTN functions, the manner by which it does so differs considerably from the manner in which
they are performed in the PSTN by telecommunications carriers. These differences may be significant for
legal/regulatory purposes.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 8

2 REFERENCES
The following documents contain provisions which, through reference in this text, constitute provisions of this
standard. At the time of Subcommittee approval, the editions indicated were valid. All documents are subject to
revision, and while parties to agreement based on this standard are encouraged to investigate the possibility of
applying the most recent editions of the documents listed below, they are reminded that newer editions of those
documents might not be compatible with the referenced version.

[1] IETF RFC 3435, F. Andreasen, B. Foster, Media Gateway Control Protocol (MGCP) Version 1.0, January
2001.

[2] IETF RFC 1889, RTP: A Transport Protocol for Real-Time Applications, January 1996.

[3] IETF RFC 1890, RTP Profile for Audio and Video Conferences with Minimal Control, January 1996.

[4] IETF RFC 2327, SDP: Session Description Protocol, April 1998.

[5] IETF RFC 2974, SAP - Session Announcement Protocol, October 2000.

[6] IETF RFC 2543, Session Initiation Protocol, March 1999.

[7] IETF RFC 2326, Real-time Streaming Protocol (RTSP), April 1998.

[8] ITU-T Recommendation Q.761, Functional Description of the IDSN User Part of Signalling System No. 7,
(Malaga-Torremolinos, 1984; modified at Helsinki, 1993).

[9] ITU-T Recommendation Q.762, General Function of messages and Signals of the IDSN User part of
Signalling System No. 7, (Malaga-Torremolinos, 1984; modified at Helsinki, 1993).

[10] ITU-T Recommendation H.323, Visual Telephone Systems and Equipment for Local Area Networks Which
Provide a Non-guaranteed Quality-of-Service, November 2000.

[11] ITU-T Recommendation H.225, Call Signaling Protocols and Media Stream Packetization for Packet Based
Multimedia Communications Systems, November 2000.

[12] ITU-T Recommendation H.245, Line Transmission of Non-telephone Signals, July 2001.

[13] IETF RFC 1825, Security Architecture for the Internet Protocol, August 1995.

[14] IETF RFC 1826, IP Authentication Header, August 1995.

[15] IETF RFC 1827, Encapsulating Security Payload (ESP), August 1995.

[16] Stevens, W. Richard, TCP/IP Illustrated, Volume 1, The Protocols, Addison-Wesley, 1994.

[17] RTP Parameters, http://www.Iana.org/assignments/rtp-parameters/.

[18] Bellcore, Bellcore Notes on the Networks, SR-2275.

[19] ANSI/SCTE 24-02 2016, IPCablecom 1.0 Part 2: Audio Codec Requirements for the Provision of Bi-
directional Audio Service over Cable Television Networks Using Cable Modems.

[20] ANSI/SCTE 24-04 2016, IPCablecom 1.0 Part 4: Dynamic Quality of Service for the Provision of Real-Time
Services over Cable Television Networks Using Data Modems.

[21] ANSI/SCTE 24-10 2016, IPCablecom 1.0 Part 10: Security Specification.

[22] IETF RFC 2821, J. Klensin, Editor, Simple Mail Transfer Protocol, April 2001.

[23] IETF RFC 1122, Requirements for Internet Hosts -- Communication Layers, October 1989.

[24] IETF RFC 1034, Domain Names – Concepts and Facilities, November 1987.

[25] IETF RFC 2045, Multipurpose Internet Mail Extensions Part 1, November 1996.

[26] IETF RFC 2234, Augmented BNF for Syntax Specifications: ABNF, November 1997.

[27] IETF RFC 2833, RTP Payload for DTMF Digits, Telephony Tones and Telephony Signals, May 2000.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 9

[28] GR-506, LSSGR: Signaling for Analog Interfaces, November 1996.

[29] ITU-T Recommendation T.30, Procedures for Document Facsimile Transmission in the General Switched
Telephone Network, April 1999.

[30] ITU-T Recommendation V.8, Procedures for Starting Sessions of Data Transmission over the Public
Switched Telephone Network, November, 2002.

[31] ITU-T Recommendation V.21, 300 Bits Per Second Duplex Modem Standardized for Use in the General
Switched Telephone Network, 1984.

[32] ITU-T Recommendation V.25, Automatic Answering Equipment and General Procedures for Automatic
Calling Equipment on the General Switched Telephone Network Including Procedures for Disabling of Echo
Control Devices for both Manually And Automatically Established Calls, October 1996.

[33] ITU-T Recommendation V.18, Operational and interworking requirements for DCEs operating in the text
telephone mode, November 2000.

[34] ANSI/SCTE 24-05 2016, IPCablecom 1.0 Part 5: Media Terminal Adapter (MTA) Device Provisioning
Requirements for the Delivery of Real-Time Services over Cable Television Using Cable Modems.

[35] IETF RFC 2474, Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers,
December 1998.

[36] IETF RFC 3264 An Offer/Answer Model with Session Description Protocol (SDP), June 2002.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 10

3 TERMS AND DEFINITIONS
The following is a list of terms and definitions used by IPCablecom 1.0:

Access Control Limiting the flow of information from the resources of a system only to authorized
persons, programs, processes, or other system resources on a network.

Active A service flow is said to be “active” when it is permitted to forward data packets. A
service flow must first be admitted before it is active.

Admitted A service flow is said to be “admitted” when the CMTS has reserved resources (e.g.,
bandwidth) for it on the DOCSIS® network.

A-link A-Links are SS7 links that interconnect STPs and either SSPs or SCPs. ‘A’ stands for
“Access.”

Asymmetric Key An encryption key or a decryption key used in public key cryptography, where
encryption and decryption keys are always distinct.

Audio Server An Audio Server plays informational announcements in IPCablecom network. Media
announcements are needed for communications that do not complete and to provide
enhanced information services to the user. The component parts of Audio Server
services are Media Players and Media Player Controllers.

Authentication The process of verifying the claimed identity of an entity to another entity.
Authenticity The ability to ensure that the given information is without modification or forgery and

was in fact produced by the entity that claims to have given the information.
Authorization The act of giving access to a service or device if one has permission to have the access.
Cipher An algorithm that transforms data between plaintext and ciphertext.
Ciphersuite A set which must contain both an encryption algorithm and a message authentication

algorithm (e.g., a MAC or an HMAC). In general, it may also contain a key-
management algorithm, which does not apply in the context of IPCablecom.

Ciphertext The (encrypted) message output from a cryptographic algorithm that is in a format that
is unintelligible.

Cleartext The original (unencrypted) state of a message or data. Also called plaintext.
Confidentiality A way to ensure that information is not disclosed to anyone other than the intended

parties. Information is encrypted to provide confidentiality. Also known as privacy.
Cryptanalysis The process of recovering the plaintext of a message or the encryption key without

access to the key.
Cryptographic
algorithm

An algorithm used to transfer text between plaintext and ciphertext.

Decipherment A procedure applied to ciphertext to translate it into plaintext.
Decryption A procedure applied to ciphertext to translate it into plaintext.
Decryption key The key in the cryptographic algorithm to translate the ciphertext to plaintext.
Digital certificate A binding between an entity’s public key and one or more attributes relating to its

identity, also known as a public key certificate.
Digital signature A data value generated by a public-key algorithm based on the contents of a block of

data and a private key, yielding an individualized cryptographic checksum.
Downstream The direction from the headend toward the subscriber location.
Encipherment A method used to translate plaintext into ciphertext.
Encryption A method used to translate plaintext into ciphertext.
Encryption Key The key used in a cryptographic algorithm to translate the plaintext to ciphertext.
Endpoint A Terminal, Gateway or Multipoint Conference Unit (MCU).

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 11

Errored Second Any 1-second interval containing at least one bit error.
Event Message A message capturing a single portion of a connection.
F-link F-Links are SS7 links that directly connect two SS7 end points, such as two SSPs. ‘F’

stands for “Fully Associated.”
Flow [DOCSIS Flow] (a.k.a. DOCSIS-QoS “service flow”) A unidirectional sequence of packets associated

with a Service ID (SID) and a QoS. Multiple multimedia streams may be carried in a
single DOCSIS Flow.

Flow [IP Flow] A unidirectional sequence of packets identified by OSI Layer 3 and Layer 4 header
information. This information includes source/destination IP addresses,
source/destination port numbers, protocol ID. Multiple multimedia streams may be
carried in a single IP Flow.

Gateway Devices bridging between the IPCablecom IP Voice Communication world and the
PSTN. Examples are the Media Gateway, which provides the bearer circuit interfaces
to the PSTN and transcodes the media stream, and the Signaling Gateway, which sends
and receives circuit switched network signaling to the edge of the IPCablecom
network.

H.323 An ITU-T recommendation for transmitting and controlling audio and video
information. The H.323 recommendation requires the use of the ITU-T H.225 and
ITU-T H.245 protocol for communication control between a “gateway” audio/video
endpoint and a “gatekeeper” function.

Header Protocol control information located at the beginning of a protocol data unit.
Integrity A way to ensure that information is not modified except by those who are authorized

to do so.
IntraLATA Within a Local Access Transport Area.
Jitter Variability in the delay of a stream of incoming packets making up a flow such as a

voice communication.
Kerberos A secret-key network authentication protocol that uses a choice of cryptographic

algorithms for encryption and a centralized key database for authentication.
Key A mathematical value input into the selected cryptographic algorithm.
Key Exchange The swapping of public keys between entities to be used to encrypt communication

between the entities.
Key Management The process of distributing shared symmetric keys needed to run a security protocol.
Key Pair An associated public and private key where the correspondence between the two are

mathematically related, but it is computationally infeasible to derive the private key
from the public key.

Keying Material A set of cryptographic keys and their associated parameters, normally associated with
a particular run of a security protocol.

Keyspace The range of all possible values of the key for a particular cryptographic algorithm.
Latency The time, expressed in quantity of symbols, taken for a signal element to pass through

a device.
Link Encryption Cryptography applied to data as it travels on data links between the network devices.
Network Layer Layer 3 in the Open System Interconnection (OSI) architecture that provides network

information that is independent from the lower layers.
Network
Management

The functions related to the management of data across the network.

Network
Management OSS

The functions related to the management of data link layer and physical layer
resources and their stations across the data network supported by the hybrid fiber/coax
system.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 12

Nonce A random value used only once that is sent in a communications protocol exchange to
prevent replay attacks.

Non-Repudiation The ability to prevent a sender from denying later that he or she sent a message or
performed an action.

Off-Net Call A communication connecting an IPCablecom subscriber out to a user on the PSTN.
On-Net Call A communication placed by one customer to another customer entirely on the

IPCablecom Network.
One-way Hash A hash function that has an insignificant number of collisions upon output.
Plaintext The original (unencrypted) state of a message or data. Also called cleartext.
Pre-shared Key A shared secret key passed to both parties in a communication flow, using an

unspecified manual or out-of-band mechanism.
Privacy A way to ensure that information is not disclosed to anyone other than the intended

parties. Information is usually encrypted to provide confidentiality. Also known as
confidentiality.

Private Key The key used in public key cryptography that belongs to an individual entity and must
be kept secret.

Proxy A facility that indirectly provides some service or acts as a representative in delivering
information, thereby eliminating the need for a host to support the service.

Public Key The key used in public key cryptography that belongs to an individual entity and is
distributed publicly. Other entities use this key to encrypt data to be sent to the owner
of the key.

Public Key
Certificate

A binding between an entity’s public key and one or more attributes relating to its
identity, also known as a digital certificate.

Public Key
Cryptography

A procedure that uses a pair of keys, a public key and a private key, for encryption and
decryption, also known as an asymmetric algorithm. A user’s public key is publicly
available for others to use to send a message to the owner of the key. A user’s private
key is kept secret and is the only key that can decrypt messages sent encrypted by the
user’s public key.

Root Private Key The private signing key of the highest-level Certification Authority. It is normally used
to sign public key certificates for lower-level Certification Authorities or other entities.

Root Public Key The public key of the highest level Certification Authority, normally used to verify
digital signatures generated with the corresponding root private key.

Secret Key The cryptographic key used in a symmetric key algorithm, which results in the secrecy
of the encrypted data depending solely upon keeping the key a secret, also known as a
symmetric key.

Session Key A cryptographic key intended to encrypt data for a limited period of time, typically
between a pair of entities.

Signed and Sealed An “envelope” of information which has been signed with a digital signature and
sealed using encryption.

Subflow A unidirectional flow of IP packets characterized by a single source and destination IP
address and single source and destination UDP/TCP port.

Symmetric Key The cryptographic key used in a symmetric key algorithm, which results in the secrecy
of the encrypted data depending solely upon keeping the key a secret, also known as a
secret key.

Systems
Management

Functions in the application layer related to the management of various Open Systems
Interconnection (OSI) resources and their status across all layers of the OSI
architecture.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 13

Transit Delays The time difference between the instant at which the first bit of a Protocol Data Unit
(PDU) crosses one designated boundary, and the instant at which the last bit of the
same PDU crosses a second designated boundary.

Trunk An analog or digital connection from a circuit switch that carries user media content
and may carry voice signaling (MF, R2, etc.).

Tunnel Mode An IPsec (ESP or AH) mode that is applied to an IP tunnel, where an outer IP packet
header (of an intermediate destination) is added on top of the original, inner IP header.
In this case, the ESP or AH transform treats the inner IP header as if it were part of the
packet payload. When the packet reaches the intermediate destination, the tunnel
terminates and both the outer IP packet header and the IPsec ESP or AH transform are
taken out.

Upstream The direction from the subscriber location toward the headend.
X.509 certificate A public key certificate specification developed as part of the ITU-T X.500 standards

directory.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 14

4 ABBREVIATIONS AND ACRONYMS
The following is a list of abbreviations used by IPCablecom 1.0:

AAA Authentication, Authorization and Accounting.
AES Advanced Encryption Standard. A block cipher, used to encrypt the media traffic in

IPCablecom.
AF Assured Forwarding. This is a DiffServ Per Hop Behavior.
AH Authentication header. An IPsec security protocol that provides message integrity for complete

IP packets, including the IP header.
AMA Automated Message Accounting. A standard form of call detail records (CDRs) developed and

administered by Bellcore (now Telcordia Technologies).
ASD Application-Specific Data. A field in some Kerberos key management messages that carries

information specific to the security protocol for which the keys are being negotiated.
AT Access Tandem.
ATM Asynchronous Transfer Mode. A protocol for the transmission of a variety of digital signals

using uniform 53-byte cells.
BAF Bellcore AMA Format, also known as AMA.
BCID Billing Correlation ID.
BPI+ Baseline Privacy Plus Interface Specification. The security portion of the DOCSIS 1.1

standard that runs on the MAC layer.
CA Certification Authority. A trusted organization that accepts certificate applications from

entities, authenticates applications, issues certificates and maintains status information about
certificates.

CA Call Agent. The part of the CMS that maintains the communication state, and controls the line
side of the communication.

CBC Cipher Block Chaining mode. An option in block ciphers that combine (XOR) the previous
block of ciphertext with the current block of plaintext before encrypting that block of the
message.

CBR Constant Bit Rate.
CDR Call Detail Record. A single CDR is generated at the end of each billable activity. A single

billable activity may also generate multiple CDRs.
CIC Circuit Identification Code. In ANSI SS7, a two-octet number that uniquely identifies a DSO

circuit within the scope of a single SS7 Point Code.
CID Circuit ID (Pronounced “kid”). This uniquely identifies an ISUP DS0 circuit on a Media

Gateway. It is a combination of the circuit’s SS7 gateway point code and Circuit Identification
Code (CIC). The SS7 DPC is associated with the Signaling Gateway that has domain over the
circuit in question.

CIF Common Intermediate Format.
CIR Committed Information Rate.
CM DOCSIS Cable Modem.
CMS Cryptographic Message Syntax.
CMS Call Management Server. Controls the audio connections. Also called a Call Agent in

MGCP/SGCP terminology. This is one example of an Application Server.
CMTS Cable Modem Termination System. The device at a cable headend which implements the

DOCSIS RFI MAC protocol and connects to CMs over an HFC network.
CMSS Call Management Server Signaling.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 15

Codec COder-DECoder.
COPS Common Open Policy Service protocol which describes a client/server model for supporting

policy control over QoS Signaling Protocols and provisioned QoS resource management.
CoS Class of Service. The type 4 tuple of a DOCSIS configuration file.
CRCX Create Connection.
CSR Customer Service Representative.
DA Directory Assistance.
DE Default. This is a DiffServ Per Hop Behavior.
DES Data Encryption Standard.
DF Delivery Function.
DHCP Dynamic Host Configuration Protocol.
DHCP-D DHCP Default. Network Provider DHCP Server.
DNS Domain Name Service.
DOCSIS® Data-Over-Cable Service Interface Specifications.
DPC Destination Point Code. In ANSI SS7, a 3-octet number which uniquely identifies an SS7

Signaling Point, either an SSP, STP, or SCP.
DQoS Dynamic Quality-of-Service. Assigned on the fly for each communication depending on the

QoS requested.
DSA Dynamic Service Add.
DSC Dynamic Service Change.
DSCP DiffServ Code Point. A field in every IP packet that identifies the DiffServ Per Hop Behavior.

In IP version 4, the TOS byte is redefined to be the DSCP. In IP version 6, the Traffic Class
octet is used as the DSCP.

DTMF Dual-tone Multi Frequency (tones).
EF Expedited Forwarding. A DiffServ Per Hop Behavior.
E-MTA Embedded MTA. A single node that contains both an MTA and a cable modem.
EO End Office.
ESP IPsec Encapsulating Security Payload. Protocol that provides both IP packet encryption and

optional message integrity, not covering the IP packet header.
ETSI European Telecommunications Standards Institute.
F-link F-Links are SS7 links that directly connect two SS7 end points, such as two SSPs. ‘F’ stands

for “Fully Associated.”
FEID Financial Entity ID.
FGD Feature Group D signaling.
FQDN Fully Qualified Domain Name. Refer to IETF RFC 2821 for details.
GC Gate Controller.
GTT Global Title Translation.
HFC Hybrid Fiber/Coaxial. An HFC system is a broadband bi-directional shared media

transmission system using fiber trunks between the headend and the fiber nodes, and coaxial
distribution from the fiber nodes to the customer locations.

HMAC Hashed Message Authentication Code. A message authentication algorithm, based on either
SHA-1 or MD5 hash and defined in IETF RFC 2104.

HTTP Hypertext Transfer Protocol. Refer to IETF RFC 1945 and RFC 2068.
IANA Internet Assigned Numbered Authority. See www.ietf.org for details.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 16

IC Inter-exchange Carrier.
IETF Internet Engineering Task Force. A body responsible, among other things, for developing

standards used on the Internet. See www.ietf.org for details.
IKE Internet Key Exchange. A key-management mechanism used to negotiate and derive keys for

SAs in IPsec.
IKE– A notation defined to refer to the use of IKE with pre-shared keys for authentication.
IKE+ A notation defined to refer to the use of IKE with X.509 certificates for authentication.
IP Internet Protocol. An Internet network-layer protocol.
IPsec Internet Protocol Security. A collection of Internet standards for protecting IP packets with

encryption and authentication.
ISDN Integrated Services Digital Network.
ISTP Internet Signaling Transport Protocol.
ISUP ISDN User Part. A protocol within the SS7 suite of protocols that is used for call signaling

within an SS7 network.
ITU International Telecommunication Union.
ITU-T International Telecommunication Union–Telecommunication Standardization Sector.
IVR Interactive Voice Response system.
KDC Key Distribution Center.
LATA Local Access and Transport Area.
LD Long Distance.
LIDB Line Information Database. Contains customer information required for real-time access such

as calling card personal identification numbers (PINs) for real-time validation.
LLC Logical Link Control. The Ethernet Packet header and optional 802.1P tag which may

encapsulate an IP packet. A sublayer of the Data Link Layer.
LNP Local Number Portability. Allows a customer to retain the same number when switching from

one local service provider to another.
LSSGR LATA Switching Systems Generic Requirements.
MAC Message Authentication Code. A fixed-length data item that is sent together with a message to

ensure integrity, also known as a MIC.
MAC Media Access Control. It is a sublayer of the Data Link Layer. It normally runs directly over

the physical layer.
MC Multipoint Controller.
MCU Multipoint Conferencing Unit.
MD5 Message Digest 5. A one-way hash algorithm that maps variable length plaintext into fixed-

length (16 byte) ciphertext.
MDCP Media Device Control Protocol. A media gateway control specification submitted to IETF by

Lucent. Now called SCTP.
MDCX Modify Connection.
MDU Multi-Dwelling Unit. Multiple units within the same physical building. The term is usually

associated with high-rise buildings.
MEGACO Media Gateway Control IETF working group. See www.ietf.org for details.
MF Multi-Frequency.
MG Media Gateway. Provides the bearer circuit interfaces to the PSTN and transcodes the media

stream.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 17

MGC Media Gateway Controller. The overall controller function of the PSTN gateway. Receives,
controls and mediates call-signaling information between the IPCablecom and PSTN.

MGCP Media Gateway Control Protocol. Protocol follow-on to SGCP. Refer to IETF 2705.
MIB Management Information Base.
MIC Message Integrity Code. A fixed-length data item that is sent together with a message to

ensure integrity, also known as a Message Authentication Code (MAC).
MMC Multi-Point Mixing Controller. A conferencing device for mixing media streams of multiple

connections.
MSB Most Significant Bit.
MSO Multi-System Operator. A cable company that operates many headend locations in several

cities.
MSU Message Signal Unit.
MTA Multimedia Terminal Adapter. Contains the interface to a physical voice device, a network

interface, CODECs, and all signaling and encapsulation functions required for VoIP transport,
class features signaling, and QoS signaling.

MTP The Message Transfer Part. A set of two protocols (MTP 2, MTP 3) within the SS7 suite of
protocols that are used to implement physical, data link, and network-level transport facilities
within an SS7 network.

MWD Maximum Waiting Delay.
NANP North American Numbering Plan.
NANPNAT North American Numbering Plan Network Address Translation.
NAT Network
Layer

Network Address Translation. Layer 3 in the Open System Interconnection (OSI) architecture.
This layer provides services to establish a path between open systems.

NCS Network Call Signaling.
NPA-NXX Numbering Plan Area (more commonly known as area code) NXX (sometimes called

exchange) represents the next three numbers of a traditional phone number. The N can be any
number from 2-9 and the Xs can be any number. The combination of a phone number’s NPA-
NXX will usually indicate the physical location of the call device. The exceptions include toll-
free numbers and ported number (see LNP).

NTP Network Time Protocol. An internet standard used for synchronizing clocks of elements
distributed on an IP network.

NTSC National Television Standards Committee. Defines the analog color television broadcast
standard used today in North America.

OID Object Identification.
OSP Operator Service Provider.
OSS Operations Systems Support. The back-office software used for configuration, performance,

fault, accounting, and security management.
OSS-D OSS Default. Network Provider Provisioning Server.
PAL Phase Alternate Line. The European color television format that evolved from the American

NTSC standard.
PCES IPCablecom Electronic Surveillance.
PCM Pulse Code Modulation. A commonly employed algorithm to digitize an analog signal (such as

a human voice) into a digital bit stream using simple analog-to-digital conversion techniques.
PDU Protocol Data Unit.
PHS Payload Header Suppression. A DOCSIS technique for compressing the Ethernet, IP, and

UDP headers of RTP packets.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 18

PKCROSS Public-Key Cryptography for Cross-Realm Authentication. Utilizes PKINIT for establishing
the inter-realm keys and associated inter-realm policies to be applied in issuing cross-realm
service tickets between realms and domains in support of Intradomain and Interdomain CMS-
to-CMS signaling (CMSS).

PKCS Public-Key Cryptography Standards. Published by RSA Data Security Inc. These Standards
describe how to use public key cryptography in a reliable, secure and interoperable way.

PKI Public-Key Infrastructure. A process for issuing public key certificates, which includes
standards, Certification Authorities, communication between authorities and protocols for
managing certification processes.

PKINIT Public-Key Cryptography for Initial Authentication. The extension to the Kerberos protocol
that provides a method for using public-key cryptography during initial authentication.

PSC Payload Service Class Table, a MIB table that maps RTP payload Type to a Service Class
Name.

PSFR Provisioned Service Flow Reference. An SFR that appears in the DOCSIS configuration file.
PSTN Public Switched Telephone Network.
QCIF Quarter Common Intermediate Format.
QoS Quality of Service. Guarantees network bandwidth and availability for applications.
RADIUS Remote Authentication Dial-In User Service. An internet protocol (IETF RFC 2865 and RFC

2866) originally designed for allowing users dial-in access to the internet through remote
servers. Its flexible design has allowed it to be extended well beyond its original intended use.

RAS Registration, Admissions and Status. RAS Channel is an unreliable channel used to convey the
RAS messages and bandwidth changes between two H.323 entities.

RC4 Rivest Cipher 4. A variable length stream cipher. Optionally used to encrypt the media traffic
in IPCablecom.

RFC Request for Comments. Technical policy documents approved by the IETF which are
available on the World Wide Web at http://www.ietf.cnri.reston.va.us/rfc.html.

RFI The DOCSIS Radio Frequency Interface specification.
RJ-11 Registered Jack-11. A standard 4-pin modular connector commonly used in the United States

for connecting a phone unit into a wall jack.
RKS Record Keeping Server. The device, which collects and correlates the various Event Messages.
RSA A public-key, or asymmetric, cryptographic algorithm used to provide authentication and

encryption services. RSA stands for the three inventors of the algorithm; Rivest, Shamir,
Adleman.

RSA Key Pair A public/private key pair created for use with the RSA cryptographic algorithm.

RTCP Real-Time Control Protocol.
RTO Retransmission Timeout.
RTP Real-time Transport Protocol. A protocol for encapsulating encoded voice and video streams.

Refer to IETF RFC 1889.
SA Security Association. A one-way relationship between sender and receiver offering security

services on the communication flow.
SAID Security Association Identifier. Uniquely identifies SAs in the DOCSIS Baseline Privacy Plus

Interface (BPI+) security protocol.
SCCP Signaling Connection Control Part. A protocol within the SS7 suite of protocols that provides

two functions in addition to those provided within MTP. The first function is the ability to
address applications within a signaling point. The second function is Global Title Translation.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 19

SCP Service Control Point. A Signaling Point within the SS7 network, identifiable by a Destination
Point Code that provides database services to the network.

SCTP Stream Control Transmission Protocol.
SDP Session Description Protocol.
SDU Service Data Unit. Information delivered as a unit between peer service access points.
SF Service Flow. A unidirectional flow of packets on the RF interface of a DOCSIS system.
SFID Service Flow ID. A 32-bit integer assigned by the CMTS to each DOCSIS Service Flow

defined within a DOCSIS RF MAC domain. SFIDs are considered to be in either the upstream
direction (USFID) or downstream direction (DSFID). Upstream Service Flow IDs and
Downstream Service Flow IDs are allocated from the same SFID number space.

SFR Service Flow Reference. A 16-bit message element used within the DOCSIS TLV parameters
of Configuration Files and Dynamic Service messages to temporarily identify a defined
Service Flow. The CMTS assigns a permanent SFID to each SFR of a message.

SG Signaling Gateway. An SG is a signaling agent that receives/sends SCN native signaling at the
edge of the IP network. In particular, the SS7 SG function translates variants ISUP and TCAP
in an SS7-Internet Gateway to a common version of ISUP and TCAP.

SGCP Simple Gateway Control Protocol. Earlier draft of MGCP.
SHA – 1 Secure Hash Algorithm 1. A one-way hash algorithm.
SID Service ID. A 14-bit number assigned by a CMTS to identify an upstream virtual circuit. Each

SID separately requests and is granted the right to use upstream bandwidth.
SIP Session Initiation Protocol. An application-layer control (signaling) protocol for creating,

modifying, and terminating sessions with one or more participants.
SIP+ Session Initiation Protocol Plus. An extension to SIP.
S-MTA Standalone MTA. A single node that contains an MTA and a non-DOCSIS MAC (e.g.,

ethernet).
SNMP Simple Network Management Protocol.
SOHO Small Office/Home Office.
SS7 Signaling System number 7. An architecture and set of protocols for performing out-of-band

call signaling with a telephone network.
SSP Service Switching Point. SSPs are points within the SS7 network that terminate SS7 signaling

links and also originate, terminate, or tandem switch calls.
STP Signal Transfer Point. A node within an SS7 network that routes signaling messages based on

their destination address. This is essentially a packet switch for SS7. It may also perform
additional routing services such as Global Title Translation.

TCAP Transaction Capabilities Application Protocol. A protocol within the SS7 stack that is used for
performing remote database transactions with a Signaling Control Point.

TCP Transmission Control Protocol.
TD Timeout for Disconnect.
TFTP Trivial File Transfer Protocol.
TFTP-D Default – Trivial File Transfer Protocol.
TGS Ticket Granting Server. A sub-system of the KDC used to grant Kerberos tickets.
TGW Telephony Gateway.
TIPHON Telecommunications and Internet Protocol Harmonization Over Network.
TLV Type-Length-Value. A tuple within a DOCSIS configuration file.
TN Telephone Number.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 20

ToD Time-of-Day Server.
TOS Type of Service. An 8-bit field of every IP version 4 packet. In a DiffServ domain, the TOS

byte is treated as the DiffServ Code Point, or DSCP.
TSG Trunk Subgroup.
UDP User Datagram Protocol. A connectionless protocol built upon Internet Protocol (IP).
VAD Voice Activity Detection.
VBR Variable Bit Rate.
VoIP Voice-over-IP.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 21

5 SCOPE
This specification describes a profile of the Media Gateway Control Protocol (MGCP) for IPCablecom embedded
clients, which we will refer to as the IPCablecom Network-based Call Signaling (NCS) protocol. MGCP is a call
signaling protocol for use in a centralized call control architecture, and assumes relatively simple client devices. The
call signaling protocol is one layer of the overall IPCablecom suite of specifications and relies upon companion
protocol specifications to provide complete end-to-end IPCablecom functionality. The scope of NCS is currently
only embedded Voice-Over-IP client devices in an IPCablecom environment and the NCS profile has therefore
simplified and in some cases modified the base MGCP 1.0 protocol accordingly. Support for video will be added in
a later version of this document.

This document describes an IPCablecom profile of an application programming interface (MGCI), and a
corresponding protocol (MGCP) for controlling voice-over-IP (VoIP) embedded clients from external call control
elements. The MGCP assumes a call control architecture where the call control “intelligence” is outside the
gateways and is handled by external call control elements.

This document is based on the Media Gateway Control Protocol (MGCP) 1.0 RFC[1], which was the result of a
merge of the IETF draft of Simple Gateway Control Protocol, and the IETF draft of IP Device Control (IPDC)
family of protocols, as well as input generated by the IPCablecom embedded client signaling team that developed
this profile.

This document, which defines the IPCablecom NCS Protocol specification, constitutes a document that is
independent of MGCP in order to provide a stable reference document, while meeting current time-to-market
demands for such a reference. It is the intent of this document to be as closely aligned with MGCP as possible for
the IPCablecom environment, in order to avoid developing multiple protocols to solve the same problem. This goal
has been, and continues to be, pursued through cooperation with the authors of the MGCP specification. The NCS
profile of MGCP, however, is strictly and solely defined by the contents of this document.

This NCS profile of MGCP, referred to as the Network-based Call Signaling Protocol 1.0, NCS 1.0, the NCS
profile, or simply NCS in this document, has been modified from the MGCP 1.0 RFC in the following ways:

• The NCS protocol only aims at supporting IPCablecom-embedded clients: The NCS protocol supports
embedded clients as defined by IPCablecom. Functionality present in the MGCP 1.0 protocol, which was
superfluous to NCS, has been removed.

• The NCS protocol contains extensions and modifications to MGCP: IPCablecom-specific requirements have
been addressed in NCS, which has resulted in a couple of minor extensions and modifications to MGCP.
However, the MGCP architecture, and all of the MGCP constructs relevant to embedded clients, are
preserved in NCS.

• The NCS protocol contains minor simplifications from MGCP 1.0: Where several choices were available, and
not necessarily needed for an embedded client in the IPCablecom environment, some simplifications have
been made for embedded-client implementations.

Although MGCP is not NCS, and NCS is not MGCP, the names MGCP and NCS will be used interchangeably in
this document since this document is based on MGCP. Unless otherwise stated or inferred by context, the word
MGCP shall be taken to mean the NCS profile of MGCP in this document.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 22

The document is structured in the following main sections:

• The introduction presents the basic assumptions and the relation to other protocols such as H.323, RTSP,
SAP, and SIP.

• The interface section presents a conceptual overview of the NCS profile, presenting the naming conventions,
the usage of the session description protocol (SDP), and the procedures that compose NCS:

• Notification Request,

• Notify,

• Create Connection,

• Modify Connection,

• Delete Connection,

• Audit Endpoint,

• Audit Connection, and

• Restart In Progress.

• Each of the commands is presented as an example API with the name of the command, the parameters it can
take and return, as well as the semantics of each of these. The actual encoding of the command and its
parameters is shown in the protocol description section. The section concludes with a description of how
reliability and race conditions are handled.

• The protocol description section presents the actual NCS encodings of the commands and parameters, which
are based on simple text formats. The transmission procedure over UDP is specified as well.

• The security section presents the security of NCS.

• The appendices contain definitions of event packages, mode interactions, example command encodings, and a
complete example call flow.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 23

6 INTRODUCTION
This document describes the NCS profile of an application programming interface (MGCI) and a corresponding
protocol (MGCP) for controlling embedded clients from external call control elements. An embedded client is a
network element that provides:

• Two or more traditional analog (RJ11) access lines to a voice-over-IP (VoIP) network.

• Optionally, one or more video lines to a VoIP network.

Embedded clients may not be confined to residential use only. For example, they may be used in a business as well.
Embedded clients are used for line-side access and, as such, are expected to have line-side equipment, e.g., analog
access lines for conventional telephones associated with them, as opposed to trunk gateways.

The MGCP assumes a call control architecture where the call control “intelligence” is outside the gateways and
handled by external call-control elements referred to as Call Agents. The MGCP assumes that these call-control
elements, or Call Agents (CAs), will synchronize with each other to send coherent commands to the gateways under
their control. The MGCP defined in this document does not define a mechanism for synchronizing Call Agents,
although future IPCablecom specifications may specify such mechanisms.

The MGCP assumes a connection model where the basic constructs are endpoints and connections. A gateway
contains a collection of endpoints, which are sources, or sinks, of data and could be physical or virtual.

An example of a physical endpoint is an interface on a gateway that terminates an analog POTS connection to a
phone, key system, PBX, etc., A gateway that terminates residential POTS lines (to phones) is called a residential
gateway, an embedded client or an MTA. Embedded clients may optionally support video as well.

An example of a virtual endpoint is an audio source in an audio-content server. Creation of physical endpoints
requires hardware installation, while creation of virtual endpoints can be accomplished by software. However, the
NCS profile of MGCP only addresses physical endpoints.

Connections are point-to-point. A point-to-point connection is an association between two endpoints with the
purpose of transmitting data between these endpoints. Once this association is established for both endpoints, data
transfer between these endpoints can take place. The association is established by creating the connection as two
halves; one on the origination endpoint, and one on the terminating endpoint.

Call Agents instruct the gateways to create connections between endpoints and to detect certain events, e.g., off-
hook, and generate certain signals, e.g., ringing. It is strictly up to the Call Agent to specify how and when
connections are made, between which endpoints they are made, as well as what events and signals are to be detected
and generated on the endpoints. The gateway, thereby, becomes a simple device, without any call state, that receives
general instructions from the Call Agent without any need to know about or even understand the concept of calls,
call states, features, or feature interactions. When new services are introduced, customer profiles changed, etc., the
changes are transparent to the gateway. The Call Agents implement the changes and generate the appropriate new
mix of instructions to the gateways for the changes made. Whenever the gateway reboots, it will come up in a clean
state and simply carry out the Call Agent’s instructions as they are received.

6.1 Relation with H.323 Standards

The MGCP is designed as an internal protocol within a distributed system that appears to the outside as a single
VoIP gateway. This system is composed of a Call Agent, which may or may not be distributed over several
computer platforms, and a set of gateways. In an H.323 configuration, this distributed gateway system may interface
on one side with one or more POTS lines, and on the other side with H.323 conformant systems, as illustrated in
Figure 1 below:

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 24

Figure 1 - Relation to H.323 Standards

In the MGCP model, the gateways focus on the audio signal translation function, while the Call Agent handles the
signaling and call processing functions. As a consequence, the Call Agent implements the “signaling” layers of the
H.323 standard, and presents itself as an “H.323 Gatekeeper” or as one or more “H.323 Endpoints” to the H.323
systems.

6.2 Relation with IETF Standards

While H.323 used to be the recognized standard for VoIP terminals, the IETF also has produced specifications for
other types of multi-media applications. These other specifications include:

• The session description protocol (SDP) [4],

• The session announcement protocol (SAP) [5],

• The session initiation protocol (SIP) [6],

• The real-time streaming protocol (RTSP) [7].

The latter three specifications are, in fact, alternative signaling standards that allow for the transmission of a session
description to an interested party. SAP is used by multicast session managers to distribute a multicast session
description to a large group of recipients. SIP is used to invite an individual user to take part in a point-to-point or
unicast session. RTSP is used to interface a server that provides real-time data. In all three cases, the session
description is described according to SDP; when audio is transmitted, it is transmitted through the real-time transport
protocol (RTP and RTCP).

The distributed gateway systems and MGCP will enable PSTN voice communication and embedded client users to
access sessions set up using SAP, SIP, or RTSP. The Call Agent provides for signaling conversion, as illustrated in
Figure 2 below:

Call
Agent

Embedded
Client

H.323
Endpoint

MGCP

RTP

H.225.0
H.245

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 25

Call

Agent

Embedded
Client

IETF
Endpoint

MGCP

RTP

SIP, SAP, RTSP

Figure 2 - Relation to IETF Standards

The SDP standard has a pivotal status in this architecture. We will see in the following description that we also use it
to carry session descriptions in MGCP.

6.3 Relation to RFC 3435 and ABNF Grammar

RFC 3435 includes a formal description of the MGCP protocol syntax following the "Augmented BNF for Syntax
Specifications". This formal description is referenced by developers for the creation of interoperable devices. A
copy of the MGCP protocol syntax, annotated and edited to indicate its applicability to IPCablecom specifications,
is provided in Appendix G. Adherence to these guidelines can improve interoperability by minimizing failures
caused by different interpretations of syntax and grammar.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 26

7 MEDIA GATEWAY CONTROL INTERFACE (MGCI)
MGCI functions provide for connection control, endpoint control, auditing, and status reporting. They each use the
same system model and the same naming conventions.

7.1 Model and Naming Conventions

The MGCP assumes a connection model where the basic constructs are endpoints and connections. Connections are
grouped in calls. One or more connections can belong to one call. Connections and calls are set up at the initiative of
one or several Call Agents.

7.1.1 Endpoint Names
Endpoint names, also known as (a.k.a.), endpoint identifiers, have two components, both of which are defined to be
case insensitive here:

• the domain-name of the gateway managing the endpoint

• a local endpoint name within that gateway

Endpoint names will be of the form
local-endpoint-name@domain-name

where domain-name is an absolute domain-name as defined in [24] and includes a host portion, thus an example
domain-name could be:
MyEmbeddedClient.cablelabs.com

Also, domain-name may be an IPv4 address in dotted decimal form represented as a text-string and surrounded by
a left and a right square bracket (“[” and “]”) as in “[128.96.41.1]” — please consult [22] for details. However, use
of IP addresses is generally discouraged.

Embedded clients may have one or more endpoints (e.g., one for each RJ11 jack for black phones) associated with
them, and each of the endpoints is identified by a separate local endpoint name. Just like the domain-name, the local
endpoint name is case insensitive. Associated with the local endpoint name is an endpoint-type, which defines the
type of the endpoint, such as analog phone or video phone. The endpoint-type can be derived from the local
endpoint name. The local endpoint name is a hierarchical name, where the least specific component of the name is
the leftmost term, and the most specific component is the rightmost term. More formally, the local endpoint name
MUST adhere to the following naming rules:

The individual terms of the local endpoint name must be separated by a single slash (“/”, ASCII 2F hex).
The individual terms are ASCII character strings composed of letters, digits or other printable characters, with the
exception of characters used as delimiters in endpoint-names (“/”, “@”), characters used for wildcarding (“*”, “$”),
and white space characters.
Wild carding is represented either by an asterisk (“*”) or a dollar sign (“$”) for the terms of the naming path which
are to be wild-carded. Thus, if the full local endpoint name looks like:
 term1/term2/term3
and one of the terms of the local endpoint name is wild-carded, then the local endpoint name looks like this:
 term1/term2/* if term3 is wild-carded.
 term1/*/* if term2 and term3 are wild-carded.
In each of the examples, a dollar sign could have appeared instead of the asterisk.
Wild-carding is only allowed from the right, thus if a term is wild-carded, then all terms to the right of that term
must be wild-carded as well.
In cases where mixed dollar sign and asterisk wild-cards are used, dollar-signs are only allowed from the right, thus
if a term had a dollar sign wild-card, all terms to the right of that term must also contain dollar sign wild-cards.
• A term represented by an asterisk is to be interpreted as:

“use all values of this term known within the scope of the embedded client in question”. Unless specified
otherwise, this refers to all endpoints configured for service, regardless of their actual service state, i.e., in-
service or out-of-service.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 27

• A term represented by a dollar sign is to be interpreted as: “use any one value of this term known within the
scope of the embedded client in question”. Unless specified otherwise, this only refers to endpoints that are in-
service.

Each endpoint-type may specify additional detail in the naming rules for that endpoint-type, however such rules
must not be in conflict with the above.

It should be noted that different endpoint-types or even different sub-terms, e.g., “lines”, within the same endpoint-
type will result in two different local endpoint names. Consequently, each “line” will be treated as a separate
endpoint. Note that since the domain name portion is part of the endpoint identifier, different forms or different
values referring to the same entity are not freely interchangeable. Following a restart the most recently supplied
form and value MUST always be used.

7.1.1.1 Embedded Client Endpoint Names

Endpoints in embedded clients MUST support the additional naming conventions specified in this section.

Embedded clients will support the following two endpoint-types:

• Analog telephone: The Analog Telephone is represented as an analog access line (aaln).This is basically the
equivalent of an analog telephone line as known in the PSTN (see [18]).

• Video: The details of the video device-type will be provided in a future version of this document.

7.1.1.1.1 Analog Access Line Endpoints

In addition to the naming conventions specified above, local endpoint names for endpoints of type “analog access
line” (aaln) for embedded clients MUST adhere to the following:

• Local endpoint names contain at least one and, at most, two terms.

• Term1 MUST be the term “aaln” or a wildcard character. It should be noted that the use of a wildcard
character for term1 can refer to any or all endpoint-types in the embedded client regardless of their type. Use
of this feature is generally expected to be for administrative purposes, e.g., auditing or restart.

• Term2 MUST be a number from one to the number of analog access lines supported by the embedded client
in question. The number thus identifies a specific analog access line on the embedded client.

• If a local endpoint name is composed of only one term, that term will be term1:

• If term1 is not a wildcard character, the wildcard character dollar sign (referring to “any one”) is then
assumed for term2, i.e., “aaln” is equivalent to “aaln/$”.

• If term1 is a wildcard character, the same wildcard character is then assumed for term2, i.e., “*” and
“$” is equivalent to respectively “*/*” and “$/$”.

Example analog access line local endpoint names could thus be:

aaln/1 The first analog access line on the embedded client in question.
aaln/2 The second analog access line on the embedded client in question.
aaln/$ Any analog access line on the embedded client in question.
aaln/* All analog access lines on the embedded client in question.
* All endpoints (regardless of endpoint-type) on the embedded client in question.

The provisioning/(auto)configuration process is responsible for obtaining and providing information about how
many endpoints an embedded client has, as well as the endpoint-type of each endpoint. Although they are logically
different, it should be noted that the endpoint-type can be derived from the local portion of the endpoint name.

7.1.1.1.2 Video Endpoints

Details on video endpoints will be provided in a future version of this document.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 28

7.1.2 Call Names
Calls are identified by unique identifiers, independent of the underlying platforms or agents. Call identifiers are
hexadecimal strings, which are created by the Call Agent. Call identifiers with a maximum length of 32 characters
MUST be supported.

At a minimum, call identifiers MUST be unique within the collection of call agents that control the same gateways.
However, the coordination of these call identifiers between Call Agents is outside the scope of this document. When
a Call Agent builds several connections that pertain to the same call, either on the same gateway or in different
gateways, these connections may all be linked to the same call through the call identifier. This identifier then can be
used by accounting or management procedures, which are outside the scope of MGCP.

7.1.3 Connection Names
Connection identifiers are created by the gateway when it is requested to create a connection. They identify the
connection within the context of an endpoint. Connection identifiers are treated in MGCP as hexadecimal strings.
The gateway MUST ensure that a proper waiting period, at least three minutes, elapses between the end of a
connection that used this identifier and its use in a new connection for the same endpoint. Connection Names with a
maximum length of 32 characters MUST be supported.

7.1.4 Names of Call Agents and Other Entities
The Media Gateway Control Protocol has been designed for enhanced network reliability to allow implementation
of redundant Call Agents. This means that there is no fixed binding between entities and hardware platforms or
network interfaces.

Call Agent names consist of two parts, similar to endpoint names. The local portion of the name does not exhibit any
internal structure. An example Call Agent name is:

ca1@ca.whatever.net

Reliability is provided by the following precautions:

• Entities such as embedded clients or Call Agents are identified by their domain name, not their network
addresses. Several addresses can be associated with a domain name. If a command cannot be forwarded to one
of the network addresses, implementations MUST retry the transmission using another address.

• Entities may move to another platform. The association between a logical name (domain name) and the actual
platform are kept in the Domain Name Service (DNS). Call Agents and gateways MUST keep track of the
record’s time-to-live read from the DNS. They MUST query the DNS to refresh the information if the time-to-
live has expired.

In addition to the indirection provided by the use of domain names and the DNS, the concept of “notified entity” is
central to reliability and failover in MGCP. The “notified entity” for an endpoint is the Call Agent currently
controlling that endpoint. At any point in time, an endpoint has one, and only one, “notified entity” associated with
it, and when the endpoint needs to send a command to the Call Agent, it MUST send the command to the current
“notified entity” for which endpoint(s) the command pertains. Upon startup, the “notified entity” MUST be set to a
provisioned value. Most commands sent by the Call Agent include the ability to explicitly name the “notified entity”
through the use of a “NotifiedEntity” parameter. The “notified entity” MUST stay the same until either a new
“NotifiedEntity” parameter is received or the endpoint reboots. If the “notified entity” for an endpoint is empty or
has not been set explicitly1, the “notified entity” will then default to the source address of the last connection
handling command or notification request received for the endpoint. Auditing will thus not change the “notified
entity.”

Section 7.4 contains a more detailed description of reliability and failover.

7.1.5 Digit Maps
The Call Agent can ask the gateway to collect digits dialed by the user. This facility is intended to be used for analog
access lines with residential gateways to collect the numbers that a user dials; it may also be used to collect access

1 This could happen as a result of specifying an empty NotifiedEntity parameter.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 29

codes, credit card numbers, and other numbers requested by call control services. Endpoints MUST support Digit
Maps as defined in this section.

An alternative procedure involves the gateway notifying the Call Agent of the dialed digits as soon as they are
dialed, a.k.a., overlap sending. However, such a procedure generates a large number of interactions. It is preferable
to accumulate the dialed numbers in a buffer, and then to transmit them in a single message.

The problem with this accumulation approach, however, is that it is difficult for the gateway to predict how many
numbers it needs to accumulate before transmission. For example, using the phone on our desk, we can dial the
numbers illustrated in Figure 3 below:

0 Local operator
00 Long distance operator
xxxx Local extension number
8xxxxxxx Local number
#xxxxxxx Shortcut to local number at other corporate sites
*xx Star services
91xxxxxxxxxx Long distance number
9011 + up to 15 digits International number

Figure 3 - Dialed Digits – Examples

The solution to this problem is to load the gateway with a digit map that corresponds to the dial plan. This digit map
is expressed using a syntax derived from the UNIX system command, egrep. For example, the dial plan described
above results in the following digit map:
 (0T| 00T|[1-7]xxx|8xxxxxxx|#xxxxxxx|*xx|91xxxxxxxxxx|9011x.T)

The formal syntax of the digit map is described by the following BNF notation:
Digit ::= “0” | “1” | “2” | “3” | “4” | “5” | “6” | “7” | “8” | “9”
Timer ::= “T” | “t” -- matches the detection of a timer
Letter ::= Digit | Timer | “#” | “*” | “A” | “a” | “B” | “b” | “C” | “c” | “D” | “d”
Range ::= “X” | “x” -- matches any digit

| “[“ Letters “]” -- matches any of the specified letters
Letters ::= Subrange | Subrange Letters
Subrange ::= Letter -- matches the specified letter

| Digit “-” Digit -- matches any digit between first and last
Position ::= Letter | Range
StringElement ::= Position -- matches an occurrence of the position

| Position “.” -- matches an arbitrary number of occurrences
 -- of the position, including 0

String ::= StringElement | StringElement String
StringList ::= String | String “|” StringList
DigitMap ::= String | “(“ StringList “)"

A DigitMap, according to this syntax, is defined either by a (case insensitive) “string” or by a “list of strings” over
which the gateway will attempt to find a shortest possible match. Regardless of the above syntax, a timer is currently
only allowed if it appears in the last position in a string2. Each string in the list is an alternate numbering scheme. A
gateway that detects digits, letters, or timers will:

1. Add the event parameter code for the digit, letter, or timer, as a token to the end of the “current dial string”
internal state variable.

2. Apply the “current dial string” to the digit map table, attempting a match to all expressions in the Digit Map.

2 For instance, “123T” and “123[1-2T5]” satisfy that rule, but “12T3” does not.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 30

3. If the result is under-qualified (partially matches at least one entry in the digit map and doesn't completely
match another entry), do nothing further.

If the result matches an entry, or is over-qualified (i.e., no further digits could possibly produce a match), send the
current dial string to the Call Agent3 and clear the "current dial string".." A match, in this specification, can be either
a "perfect match," exactly matching one of the specified alternatives, or an “impossible match”, which occurs when
the dial string does not match any of the alternatives. Unexpected timers, for example, can cause impossible
matches. Both perfect matches and impossible matches trigger notification of the accumulated digits (which may
include other events).

Timer T is a digit input timer that can be used in two ways:

• When timer T is used with a digit map4, the timer is not started until the first digit is entered, and the timer is
restarted after each new digit is entered until either a digit map match or mismatch occurs. In this case, timer T
functions as an inter-digit timer.

• When timer T is used without a digit map, the timer is started immediately and simply cancelled (but not
restarted) as soon as a digit is entered. In this case, timer T can be used as an inter-digit timer when overlap
sending is used.

When used with a digit map, timer T takes on one of two values, Tpar or Tcrit. When at least one more digit is
required for the digit string to match any of the patterns in the digit map, timer T takes on the value Tpar,
corresponding to partial dial timing. If a timer is all that is required to produce a match, timer T takes on the value
Tcrit corresponding to critical timing. When timer T is used without a digit map, timer T takes on the value Tcrit. The
default value for Tpar is 16 seconds and the default value for Tcrit is 4 seconds. The provisioning process may alter
both of these.

Appendix I contains additional detail and an example on use of timer T.

The end-points MUST support at least 2048 Bytes of digit map on all of the telephony interfaces.

Digit maps can be provided to the gateway by the Call Agent, whenever the Call Agent instructs the gateway to
listen for digits. Digit Maps, when provided by the Call Agent, MUST be as defined in this section.

7.1.6 Events and Signals
The concept of events and signals is central to MGCP. A Call Agent may ask to be notified about certain events
occurring in an endpoint, e.g., off-hook events. A Call Agent also may request certain signals to be applied to an
endpoint, e.g., dial-tone.

Events and signals are grouped in packages within which they share the same namespace, which we will refer to as
event names in the following. A package is a collection of events and signals supported by a particular endpoint-
type. For instance, one package may support a certain group of events and signals for analog access lines, and
another package may support another group of events and signals for video lines. One or more packages may exist
for a given endpoint-type, and each endpoint-type has a default package with which it is associated.

Event names consist of a package name and an event code and, since each package defines a separate namespace,
the same event codes may be used in different packages. Package names and event codes are case insensitive strings
of letters, digits, and hyphens, with the restriction that hyphens MUST NOT be the first or last character in a name.
Some event codes may need to be parameterized with additional data, which is accomplished by adding the
parameters between a set of parentheses. The package name is separated from the event code by a slash (“/”). The
package name may be excluded from the event name, in which case the default package name for the endpoint-type
in question is assumed. For example, for an analog access line with the line package (package name “L”) being the
default package, the following two event names are considered equal:

L/dl dial-tone in the line package for an analog access line.

dl dial-tone in the line package (default) for an analog access line.

3 The list of digits may include other events as well. See Section 7.4.3.1.
4 Technically speaking with the “accumulate according to digit map” action.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 31

This document defines the packages for embedded client types listed in Table 1.

The CMS and MTA MUST support all packages listed in Table 1.
Table 1 - Packages for Embedded Client End-point Types

Endpoint-Type Package Package Name Default Package

Analog Access Line Line L Yes

Additional package names and event codes may be defined by and/or registered with IPCablecom. Any change to
the packages defined in this document MUST result in a change of the package name, or a change in the NCS
profile version number, or possibly both.

Each package MUST have a package definition, which MUST define the name of the package, and the definition of
each event belonging to the package. The event definition MUST include the precise name of the event, i.e., the
event code, a plain text definition of the event and, when appropriate, the precise definition of the corresponding
signals, for example the exact frequencies of audio signals such as dial-tone or DTMF tones. Events must further
specify if they are persistent (e.g., off-hook, see Section 7.3.1) and if they contain auditable event-states (e.g., off-
hook, see Section 7.3.8.1). Signals MUST also have their type defined (On/Off, Time-Out, or Brief), and Time-Out
signals MUST have a default time-out value defined – see Section 7.3.1.

In addition to IPCablecom packages, implementers MAY gain experience by defining experimental packages. The
package name of experimental packages MUST begin with the two characters “x-” or “X-”; IPCablecom MUST
NOT register package names that start with these two characters. An embedded client that receives a command
referring to an unsupported package MUST return an error (error code 518 – unsupported package).

Package names and event codes support one wild-card notation each. The wildcard character “*” (asterisk) can be
used to refer to all packages supported by the endpoint in question, and the event code “all” to refer to all events in
the package in question. For example:

L/all refers to all events in the line package for an analog access line.

*/all for an analog access line; refers to all packages and all events in those packages
 supported by the endpoint in question.

Consequently, the package name “*” MUST NOT be assigned to a package, and the event code “all” MUST NOT
be used in any package.

Events and signals are by default detected and generated on endpoints, however some events and signals may be
detected and generated on connections in addition to or instead of on an endpoint. For example, endpoints may be
asked to provide a ringback tone on a connection. In order for an event or signal to be able to be detected or
generated on a connection, the definition of the event/signal MUST explicitly define that the event/signal can be
detected or generated on a connection.

When a signal shall be applied on a connection, the name of the connection is added to the name of the event, using
an "at" sign (@) as a delimiter, as in:

L/rt@0A3F58

Should the connection be deleted while an event or signal is being detected or applied on it, that particular event
detection or signal generation simply MUST stop. Depending on the signal, the endpoint SHOULD generate a
failure, i.e., if the signal type is TO, the operation failure event will be generated, since the connection associated
with the signal was deleted prior to the signal timing out. Notification action associated with reporting the failure
must conform to the notify operations as defined for Notification Request handling (Section 7.3.1).

The wildcard character "*" (asterisk) can be used to denote "all connections" on the affected endpoint(s). When this
convention is used, the gateway MUST generate or detect the event on all the connections that are connected to the
endpoint(s). An example of this convention is:

L/ma@*

However, when the event is actually observed, the gateway MUST include the name of the specific connection on
which the event occurred. The wildcard character "$" (dollar sign) can be used to denote "the current connection".

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 32

This convention MUST NOT be used unless the event notification request is "encapsulated" within a
CreateConnection or ModifyConnection command. When the convention is used, the gateway MUST generate or
detect the event on the connection that is currently being created or modified. An example of this convention is:

L/rt@$

When processing a command using the "current connection" wildcard, the "$" wildcard character MUST be
expanded by the gateway to the value of the current connection. If a subsequent command either explicitly (e.g., by
auditing) or implicitly (e.g., by persistence) refers to such an event, the expanded value MUST be used by the
gateway. In other words, the "current connection" wildcard is expanded once, which is at the initial processing of the
command in which it was explicitly included. The connection id, or a wildcard replacement, can be used in
conjunction with the "all packages" and "all events" conventions. For example, the notation:

/all@

can be used to designate all events on all connections for the affected endpoint(s). However, the use of the “all
packages” and “all events” wildcards is strongly discouraged.

7.2 SDP Use

The Call Agent uses the MGCP to provide the gateways with the description of connection parameters such as IP
addresses, UDP port, and RTP profiles. Except where otherwise noted or implied in this specification, SDP
descriptions MUST follow the conventions delineated in the session description protocol (SDP), which is now an
IETF-Proposed Standard documented in [4]. In addition, all call agents and gateways MUST ignore any SDP
parameters, attributes, or fields that are not understood by the call agent or gateway.

SDP allows for description of multimedia conferences. The NCS profile will only support the setting of audio and
video connections using the media types “audio” and “video”. Currently, only “audio” connections have been
specified.

7.3 Gateway Control Functions

This section describes the commands of the MGCP in the form of a remote procedure call (RPC) like API, which we
will refer to as the media gateway control interface (MGCI). An MGCI function is defined for each MGCP
command, where the MGCI function takes and returns the same parameters as the corresponding MGCP command.
The functions shown in this section provide a high-level description of the operation of MGCP and describe an
example of an RPC-like API that MAY be used for an implementation of MGCP. Although the MGCI API is
merely an example API, the semantic behavior defined by MGCI is an integral part of the specification, and all
implementations MUST conform to the semantics specified for MGCI. The actual MGCP messages exchanged,
including the message formats and encodings used are defined in the protocol section (Section 5). Embedded clients
and Call Agents MUST implement those exactly as specified.

The MGCI service consists of connection handling and endpoint handling commands. The following is an overview
of the commands:

• The Call Agent can issue a NotificationRequest command to a gateway, instructing the gateway to watch for
specific events such as hook actions or DTMF tones on a specified endpoint.

• The gateway will then use the Notify command to inform the Call Agent when the requested events occur on
the specified endpoint.

• The Call Agent can use the CreateConnection command to create a connection that terminates in an endpoint
inside the gateway.

• The Call Agent can use the ModifyConnection command to change the parameters associated to a previously
established connection.

• The Call Agent can use the DeleteConnection command to delete an existing connection. In some
circumstances, the DeleteConnection command also can be used by a gateway to indicate that a connection
can no longer be sustained.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 33

• The Call Agent can use the AuditEndpoint and AuditConnection commands to audit the status of an
“endpoint” and any connections associated with it. Network management beyond the capabilities provided by
these commands is generally desirable, e.g., information about the status of the embedded client. Such
capabilities are expected to be supported by the use of the Simple Network Management Protocol (SNMP)
and definition of a MIB, which is outside the scope of this specification.

• The gateway can use the RestartInProgress command to notify the Call Agent that the endpoint, or a group of
endpoints managed by the gateway, is being taken out of service or is being placed back in service.

These services allow a controller (normally the Call Agent) to instruct a gateway on the creation of connections that
terminate in an endpoint attached to the gateway, and to be informed about events occurring at the endpoint.
Currently, an endpoint is limited to a specific analog access line within an embedded client.

• Connections are grouped into “calls”. Several connections, that may or may not belong to the same call, can
terminate in the same endpoint. Flow of media on each connection is controlled by a “mode” parameter,
which can be set to “send only” (sendonly), “receive only” (recvonly), “send/receive” (sendrecv),
“conference” (confrnce), “inactive” (inactive), “replicate” (replicate), “network loopback” (netwloop) or
“network continuity test” (netwtest). The “mode” parameter determines if media packets can be sent and/or
received on the connection. RTCP is independent of the connection mode; for more details see the Codec
specification [19].

Handling of media received from the endpoint is determined by the mode parameter:

• Media originating from the endpoint will be sent on all the connections for that endpoint whose mode is
either “send only”, “send/receive”, “conference”, or “replicate”.

Handling of media received on these connections is also determined by the mode parameters

• Media received in data packets through connections in “inactive”, “sendonly”, or “replicate” mode is
discarded.

• Media received in data packets through connections in “receive only”, “conference”, or “send/receive” mode
is mixed together and then sent to the endpoint.

• In addition to being sent to the endpoint, media received in data packets through connections in “conference”
mode is replicated to all the other connections for the endpoint whose mode is “conference”. The details of
this forwarding, e.g., RTP translator or mixer, etc., are outside the scope of this document.

• In addition to the media received from the endpoint, media sent to the endpoint is mixed and transmitted over
all the other connections for the endpoint whose mode is “replicate”. This SHOULD include media generated
by signals applied to the endpoint.

• Media received in data packets through connections in “network loopback” or “network continuity test” mode
will be sent back on the connection as described below.

If the mode is set to “network loopback,” the audio signals received from the connection will be echoed back on the
same connection. The “network loopback” mode SHOULD simply operate as an RTP packet reflector.

The “network continuity test” mode is used for continuity checking across the IP network. An endpoint-type specific
signal is sent to the endpoints over the IP network, and the endpoint is then supposed to echo the signal over the IP
network after passing it through the gateway’s internal equipment to verify proper operation. The signal MUST go
through internal decoding and re-encoding prior to being passed back. For analog access lines, the signal will be an
audio signal, and the signal MUST NOT be passed on to a telephone connected to the analog access line, regardless
of the current hook-state of that handset, i.e., on-hook or off-hook.

New and existing connections for the endpoint MUST NOT be affected by connections placed in “network
loopback” or “network continuity test” mode. However, local resource constraints may limit the number of new
connections that can be made.

The “replicate” mode MUST at a minimum support replicating the stream from the endpoint and one other
connection regardless of the encoding method used for that other connection. The “replicate” connection is however

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 34

only REQUIRED to support a resulting media stream in G.711 encoding5. Support of the “conference” mode is
optional; all other connection modes MUST be supported. Please refer to Appendix II for illustrations of mode
interactions.

7.3.1 NotificationRequest
The NotificationRequest command is used to request the gateway to send a notification upon the occurrence of
specified events in an endpoint. For example, a notification may be requested when tones associated with fax
communication are detected on the endpoint. The entity receiving this notification, usually the Call Agent, may then
decide that a different type of encoding should be used on the connections bound to this endpoint and instruct the
gateway accordingly6.

ReturnCode
 ← NotificationRequest(EndpointId
 [, NotifiedEntity]
 [, RequestedEvents]
 , RequestIdentifier
 [, DigitMap]
 [, SignalRequests]
 [, QuarantineHandling]
 [, DetectEvents])

EndpointId is the identifier for the endpoint(s) in the gateway where NotificationRequest executes. The EndpointId
MUST follow the rules for endpoint names specified in Section 7.1.1. The “any of” wildcard MUST NOT be used.
An embedded client that receives a NotificationRequest with the “any of” wildcard convention MUST return an
error (the error returned SHOULD be error code 500 - the transaction could not be executed because the endpoint is
unknown) in response. The "all of" wildcard MUST be supported for NotificationRequests with each of
RequestedEvents, SignalsRequest, DigitMap, and DetectEvents being either empty or omitted. For simplicity, some
gateways may choose to not support the "all-of" wildcard for NotificationRequests where one or more of these
parameters is neither empty nor omitted. Such gateways shall respond with error code 503 if they receive an "all-of"
wildcarded NotificationRequest which they are unable to process for this reason.

NotifiedEntity is an optional parameter that specifies a new “notified entity” for the endpoint. When used, the entire
Call Agent name MUST be specified which includes both the local name and domain name - even if a bracketed IP
address7 is used for the domain name. See Sections 7.1.1 and 7.1.4 for more information. If, however, only the
domain name is provided, the MTA SHOULD use the domain name as the Call Agent ID.

RequestIdentifier is used to correlate this request with the notification it may trigger. It will be repeated in the
corresponding Notify command.

SignalRequests is a parameter that contains the set of signals that the gateway is asked to apply. Unless otherwise
specified, signals are applied to the endpoint, however some signals can be applied to a connection. The following
are examples of signals8:

• Ringing,

• Busy tone,

• Call waiting tone,

• Off hook warning tone,

• Ringback tones on a connection.

5 The “replicate” connection can, e.g., be used to support “busy line verification” with minimal resource impact on the embedded
client.
6 The new instruction would be a ModifyConnection command.
7 The use of an IP address in the NotifiedEntity is not permitted by the Security specification[20]. When implementing the
Security specification[20], an absolute domain name (including the hostname) must be used.
8 Please refer to Appendix I for a complete list of signals.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 35

Signals are divided into different types depending upon their behavior:

• On/off (OO) Once applied, these signals last until they are turned off. This can only happen as the result of a
new SignalRequests where the signal is turned off (see later). Signals of type OO are defined to be idempotent,
thus multiple requests to turn a given OO signal on (or off) are perfectly valid and MUST NOT result in any
errors. An On/Off signal could be a visual message waiting indicator (VMWI). Once turned on, an OO signal
MUST NOT be turned off until explicitly instructed to by the Call Agent; OO signals will be off following
restart of the endpoint. A missing or empty SignalRequest parameter or a SignalRequest parameter that omits a
particular signal is not an explicit instruction for an OO signal; it will not change the MTA state for an OO
signal.

• Time-out (TO) Once applied, these signals last until they are either cancelled (by the occurrence of an event or
by not being included in a subsequent [possibly empty] list of signals), or a signal-specific period of time has
elapsed. A signal that times out will generate an “operation complete” event (please see Appendix I for further
definition of this event). A TO signal could be “ringback” timing out after 180 seconds. If an event occurs prior
to the 180 seconds, the signal will, by default, be stopped9. If the signal is not stopped, the signal will time out,
stop and generate an “operation complete” event, about which the Call Agent may or may not have requested to
be notified. If the Call Agent has asked for the “operation complete” event to be notified, the “operation
complete” event sent to the Call Agent will include the name(s) of the signal(s) that timed out10. Signal(s)
generated on a connection will include the name of that connection. Time-out signals have a default time-out
value defined for them, which may be altered by the provisioning process. Also, the time-out period may be
provided as a parameter to the signal. A value of zero indicates that the time-out period is infinite. A TO signal
that fails after being started, but before having generated on “operation complete” event will generate an
“operation failure” event, which will include the name(s) of the signal(s), that time out10.

• Brief (BR) The duration of these signals is so short that they stop on their own. If a signal stopping event
occurs, or a new SignalRequests is applied, a currently active BR signal will not stop. However, any pending
BR signals not yet applied will be cancelled. A brief tone could be a DTMF digit. If the DTMF digit “1” is
currently being played, and a signal stopping event occurs, the “1” would finish playing.

Signals are, by default, applied to endpoints. If a signal applied to an endpoint results in the generation of a media
stream (audio, video, etc.), the media stream MUST NOT be forwarded on any connection associated with that
endpoint, regardless of the mode of the connection. For example, if a call-waiting tone is applied to an endpoint
involved in an active call, only the party using the endpoint in question will hear the call-waiting tone. However,
individual signals may define a different behavior.

When a signal is applied to a connection that has received a RemoteConnectionDescriptor (see Section 7.3.3), the
media stream generated by that signal MUST be forwarded on the connection for all modes except “network
loopback”. If a RemoteConnectionDescriptor has not been received, the gateway MUST return an error (error code
527 – missing RemoteConnectionDescriptor).

When a (possibly empty) list of signal(s) is supplied, this list completely replaces the current list of active time-out
signals. Currently active time-out signals that are not provided in the new list MUST be stopped and the new
signal(s) provided will now become active. Currently active time-out signals that are provided in the new list of
signals MUST remain active without interruption, thus the timer for such time-out signals will not be affected.
Consequently, there is currently no way to restart the timer for a currently active time-out signal without turning the
signal off first. If the time-out signal is parameterized, the original set of parameters MUST remain in effect,
regardless of what values are provided subsequently. A given signal MUST NOT appear more than once in a
SignalRequests. The omission of the SignalRequests parameter is interpreted as an empty SignalRequests list.

The currently defined signals can be found in Appendix I.

9 The “Keep signal(s) active” action may override this behavior.
10 If parameters were passed to the signal, the parameters will not be reported.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 36

RequestedEvents is a list of events that the gateway is requested to detect on the endpoint. Unless otherwise
specified, events are detected on the endpoint, however some events can be detected on a connection. Examples of
events are:

• fax tones,

• modem tones,

• on-hook transition (occurring in classic telephone sets when the user hangs up the handset),

• off-hook transition (occurring in classic telephone sets when the user lifts the handset),

• flash hook (occurring in classic telephone sets when the user briefly presses the hook that holds the handset),

• DTMF digits (or pulse digits).

The currently defined events can be found in Appendix I.

To each event is associated one or more actions that define the action that the gateway MUST take when the event
in question occurs. The possible actions are:

Notify the event immediately, together with the accumulated list of observed events,
Accumulate the event,
Accumulate according to Digit Map,
Ignore the event,
Keep Signal(s) active,
Embedded NotificationRequest,
Embedded ModifyConnection.

Two sets of requested events will be detected by the endpoint: persistent and non-persistent.

Persistent events are always detected on an endpoint. If a persistent event is not included in the list of
RequestedEvents, and the event occurs, the event will be detected anyway, and processed like all other events, as if
the persistent event had been requested with a Notify action11. Thus, informally, persistent events can be viewed as
always being implicitly included in the list of RequestedEvents with an action to Notify, although no glare detection,
etc., will be performed12. Persistent events are identified as such through their definition – see Appendix I.

Non-persistent events are those events that have to be explicitly included in the RequestedEvents list. The (possibly
empty) list of requested events completely replaces the previous list of requested events. In addition to the persistent
events, only the events specified in the requested events list will be detected by the endpoint. If a persistent event is
included in the RequestedEvents list, the action specified will then replace the default action associated with the
event for the life of the RequestedEvents list, after which the default action is restored. For example, if “Ignore off-
hook” was specified, and a new request without any off-hook instructions were received, the default “Notify off-
hook” operation then would be restored. A given event MUST NOT appear more than once in a
RequestedEvents. The omission of the RequestedEvents parameter is interpreted as an empty RequestedEvents list.

11 Thus the RequestIdentifier will be the RequestIdentifier of the current NotificationRequest.
12 Normally, if a request to look for, e.g., off-hook, is made, the request is only successful if the phone is not already off-hook.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 37

More than one action can be specified for an event, although a given action can not appear more than once for a
given event. Table 2 below specifies the legal combinations of actions:

Table 2 - Legal Combinations of Events and Action

 Notify Accumulat
e

Accumulate
according

to digit map

Ignor
e

Keep
Signal(s
) Active

Embedded
Notification

Request

Embedded
ModifyCon-

nection

Notify - - - -

Accumulate - - - -

Accumulate
according
to digit map

- - - - -

Ignore - - - - -

Keep
Signal(s)
active

 -

Embedded
Notification
Request

 - - -

Embedded
Modify
Connection

 -

Note: The “Embedded Notification Request” action can only be combined with the “Notify” action, if the gateway is
allowed to issue more than one Notify command per Notification request.

If a client receives a request with an invalid action or illegal combination of actions, it MUST return an error to the
Call Agent (error code 523–unknown or illegal combination of actions).

When multiple actions are specified, e.g., “Keep signal(s) active” and “Notify”, the individual actions are assumed
to occur simultaneously.

The Call Agent can send a NotificationRequest with an empty RequestedEvents list to the gateway. The Call Agent
can do so, for example, to an embedded client when it does not want to collect any more DTMF digits. However,
persistent events will still be detected and notified.

DigitMap is an optional parameter that allows the Call Agent to provision the endpoint with a digit map according
to which digits will be accumulated when the Call Agent provides a RequestedEvents parameter with the action
“accumulate according to digit map” for that endpoint. The digit map provided is persistent and, therefore, need not
be provided whenever a request to “accumulate according to digit map” is made, however Call Agents can provide a
digit map at any time. A digit map MUST be provided for the endpoint no later than with the first request to
“accumulate according to digit map”. If the gateway is requested to “accumulate according to digit map” and the
gateway currently does not have a digit map for the endpoint in question, the gateway MUST return an error (error
code 519 – endpoint does not have a digit map).

Each endpoint has a variable called the “current dial string” in which digits are collected for matching with the digit
map, as specified in Section 7.1.5. Whenever a Notify is sent or a NotificationRequest is to be processed, the
“current dial string” is initialized to a null string. The digits to be processed may now either be detected as input, or
they may be retrieved from an event input holding area known as the “quarantine buffer”. Please see Section 7.4.3.1
for further details.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 38

The signals being applied by the SignalRequests is synchronized with the collection of events specified or implied in
the RequestedEvents parameter, except if overridden by the “Keep signal(s) active” action. For example, if the
NotificationRequest mandates a “ringing” signal and the event request asks to look for an “off-hook” event, the
ringing shall, by default, stop as soon as the gateway detects an off-hook event. If the event request did not ask to
look for an “off-hook” event, the ringing would stop anyway since off-hook is a persistent event and therefore
implied in the RequestedEvents parameter. The formal definition is that the generation of all “Time Out” signals
MUST stop as soon as one of the requested events is detected, unless the “Keep signal(s) active” action is associated
to the specified event. In the case of the action “accumulate according to digit map”, the default behavior would be
to stop all active time-out signals when the first digit13 is accumulated—it is irrelevant to this synchronization if the
accumulated digit results in a match, mismatch, or partial matching to the digit map.

If it is desired that time-out signal(s) continue when a looked-for event occurs, the “Keep Signal(s) Active” action
can be used. This action has the effect of keeping all currently active time-out signal(s) active, thereby negating the
default stopping of time-out signals upon the event’s occurrence.

If signal(s) are desired to start when a looked-for event occurs, the "Embedded NotificationRequest" action can be
used. The embedded NotificationRequest may include a new list of RequestedEvents, SignalRequests and a new
Digit Map as well. The semantics of the embedded NotificationRequest is as if a new NotificationRequest was just
received with the same NotifiedEntity, RequestIdentifier, QuarantineHandling and DetectEvents. When the
"Embedded NotificationRequest" is activated, the "current dial string" will be cleared; however the list of observed
events and the quarantine buffer will be unaffected (if combined with a Notify, the Notify will clear the
ObservedEvents list though – see Section 7.4.3.1). Note, that the Embedded NotificationRequest action does not
accumulate the triggering event, however it can be combined with the Accumulate action to achieve that. NCS
implementations MUST be able to support at least one level of embedding. An embedded NotificationRequest that
respects this limitation MUST NOT contain another Embedded NotificationRequest.

The embedded NotificationRequest action allows the Call Agent to set up a “mini-script” to be processed by the
gateway immediately following the detection of the associated event. Any SignalRequests specified in the embedded
NotificationRequest will start immediately. Considerable care must be taken to prevent discrepancies between the
Call Agent and the gateway. However, long-term discrepancies should not occur as new SignalRequests completely
replaces the old list of active time-out signals, and BR-type signals always stop on their own. Limiting the number
of On/Off-type signals is encouraged. It is considered good practice for a Call Agent to occasionally turn on all
On/Off signals that should be on, and turn off all On/Off signals that should be off.

If connection modes are desired to be changed when a looked-for event occurs, the “Embedded ModifyConnection”
action can be used. The embedded ModifyConnection may include a list of connection mode changes each
consisting of the mode change and the affected connection-id. The wildcard “$” can be used to denote “the current
connection”, however this notation MUST NOT be used outside a connection handling command – the wildcard
refers to the connection in question for the connection handling command.

The embedded ModifyConnection action allows the Call Agent to instruct the endpoint to change the connection
mode of one or more connections immediately following the detection of the associated event. Each of connection
mode changes work similarly to a corresponding ModifyConnection command14. When a list of connection mode
changes is supplied, the connection mode changes MUST be applied one at a time in left-to-right order. When all the
connection mode changes have finished, an “operation complete” event parameterized with the name of the
completed action will be generated (see Appendix I for details). Should any of the connection mode changes fail, an
“operation failure” event parameterized with the name of the failed action and connection mode change will be
generated (see Appendix I for details); the rest of the connection mode changes MUST NOT be attempted, and the
previous successful connection mode changes in the list MUST remain effective.

Finally, the Ignore action can be used to ignore an event, e.g., to prevent a persistent event from being notified.
However, the synchronization between the event and an active signal will still occur by default.

Section 7.4.3.1 contains additional details on the semantics of event detection and reporting. The reader is
encouraged to study it carefully.

13 Digit as defined in digit maps, i.e., including asterisk, timer, etc.,
14 Thus, if, e.g., D-QoS is used on the connection, the default D-QoS action will still be taken when the embedded
ModifyConnection action is carried out.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 39

The specific definition of actions that are requested via these SignalRequests (e.g., the duration of and frequency of
a DTMF digit) is outside the scope of the core NCS Specification. This definition may vary from location to location
and, hence, from gateway to gateway. Consequently, the definitions are provided in event packages, which may be
provided outside of the core specification. An initial list of event packages can be found in Appendix I.

The RequestedEvents and SignalRequests generally refer to the same events. In one case, the gateway is asked to
detect the occurrence of the event and, in the other case, it is asked to generate it. There are a few exceptions to this
rule, e.g., fax and modem tones, which can be detected but cannot be signaled. However, we necessarily cannot
expect all endpoints to detect all events. The specific events and signals that a given endpoint can detect or perform
are determined by the list of event packages that are supported by that endpoint. Each package specifies a list of
events and signals that can be detected or applied. A gateway that is requested to detect or to apply an event that is
not supported by the specified endpoint MUST return an error (error code 512 or 513 – not equipped to detect event
or generate signal). When the event name is not qualified by a package name, the default package name for the
endpoint is assumed. If the event name is not registered in this default package, the gateway MUST return an error
(error code 522 – no such event or signal).

The Call Agent can send a NotificationRequest whose requested signal list is empty. This has the effect of stopping
all active time-out signals. It can do so, for example, when tone generation, e.g., ringback, should stop.

QuarantineHandling is an optional parameter that specifies the handling options for events in the quarantine buffer
(see Section 7.4.3.1), i.e., events that have been detected by the gateway before the arrival of this
NotificationRequest command, but have not yet been notified to the Call Agent. The parameter provides a set of
handling options:

• whether the quarantined events should be processed or discarded (the default is to process them),

• whether the gateway is expected to generate at most one notification (lockstep), or multiple notifications
(loop), in response to this request (the default is at most one).

When the parameter is absent, the quarantined events MUST be processed. Support for the “lockstep” mode (via
default) and “loop” mode is mandatory. An endpoint that receives a NotificationRequest with an unsupported
QuarantineHandling parameter value SHOULD respond with error code 508 (unsupported QuarantineHandling.

Note that the quarantine-handling parameter also governs the handling of events that were detected and processed
but not yet notified when the command is received.

DetectEvents is an optional parameter that specifies a minimum list of events that the gateway is requested to detect
in the “notification” and “lockstep” state. When this parameter is absent, the events that MUST be detected in the
quarantine period are those listed in the last received DetectEvents list. In addition, the gateway MUST also detect
persistent events and the events specified in the RequestedEvents list, including those for which the "ignore" action
is specified. Further explanation of this parameter may be found in Section 7.3.3.

ReturnCode is a parameter returned by the gateway. It indicates the outcome of the command and consists of an
integer number (see Section 7.5) optionally followed by commentary.

7.3.2 Notifications
Notifications are sent via the Notify command by the gateway when an observed event is to be notified:

ReturnCode
 ← Notify(EndpointId
 [, NotifiedEntity]
 , RequestIdentifier
 , ObservedEvents)

EndpointId is the name for the endpoint in the gateway, which is issuing the Notify command, as defined in Section
7.1.1. The identifier MUST be a fully qualified endpoint name, including the domain name of the gateway. The local
part of the name MUST NOT use the wildcard convention. A Call Agent that receives a Notification with wildcard
convention MUST return an error (the error returned SHOULD be error code 500 - the transaction could not be
executed because the endpoint is unknown) in response.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 40

NotifiedEntity is an optional parameter that identifies the entity to which the notification is sent. This parameter is
equal to the NotifiedEntity parameter of the NotificationRequest that triggered this notification. Note that the MTA
MAY include only the absolute domain name (including the hostname) of its NotifiedEntity if only the absolute
domain name was received in the triggering NotificationRequest. The CMS SHOULD accept the value in this case.
The parameter is absent if there was no such parameter in the triggering request. Regardless of the value of the
NotifiedEntity parameter, the notification MUST be sent to the current “notified entity” for the endpoint.

RequestIdentifier is a parameter that repeats the RequestIdentifier parameter of the NotificationRequest that
triggered this notification. It is used to correlate this notification with the notification request that triggered it.
Persistent events will be viewed here as if they had been included in the last NotificationRequest. When no
NotificationRequest has been received, the RequestIdentifier used will be zero (“0”).

ObservedEvents is a list of events that the gateway detected and accumulated, either by the “accumulate”,
“accumulate according to digit map”, or “notify” action. A single notification can report a list of events that will be
reported in the order in which they were detected. The list can only contain persistent events and events that were
requested in the RequestedEvents parameter of the triggering NotificationRequest. Events that were detected on a
connection will include the name of that connection. The list will contain the events that were either accumulated
(but not notified) or accumulated according to digit map (but no match yet), and the final event that triggered the
notification or provided a final match in the digit map. It should be noted that digits are added to the list of observed
events as they are accumulated, irrespective of whether they are accumulated according to the digit map or not. For
example, if a user enters the digits “1234” and some event E is accumulated between the digits “3” and “4” being
entered, the list of observed events would be “1, 2, 3, E, 4”.

ReturnCode is a parameter returned by the gateway. It indicates the outcome of the command and consists of an
integer number (see Section 7.5) optionally followed by commentary.

7.3.3 CreateConnection
This command is used to create a connection.

ReturnCode
[, ConnectionId]
[, SpecificEndPointId]
[, LocalConnectionDescriptor]
[, ResourceID]
 ← CreateConnection(CallId
 , EndpointId
 [, NotifiedEntity]
 [, LocalConnectionOptions]
 , Mode
 [, RemoteConnectionDescriptor]
 [, RequestedEvents]
 [, RequestIdentifier]
 [, DigitMap]
 [, SignalRequests]
 [, QuarantineHandling]
 [, DetectEvents])

This function is used when setting up a connection between two endpoints. A connection is defined by its attributes
and the endpoints it associates. The input parameters in CreateConnection provide the data necessary to build one of
the two endpoints' “view” of a connection.

CallId is a parameter that identifies the call (or session) to which this connection belongs. This parameter is, at a
minimum, unique within the collection of Call Agents that control the same gateways; connections that belong to the
same call share the same call-id. The call-id can be used to identify calls for reporting and accounting purposes.

EndpointId is the identifier for the endpoint in the gateway where CreateConnection executes. The EndpointId can
be specified fully by assigning a non-wildcarded value to the parameter EndpointId in the function call or it can be
under-specified by using the “anyone” wildcard convention. If the endpoint is under-specified, the endpoint
identifier will be assigned by the gateway and its complete value MUST be returned in the Specific EndpointId
parameter of the response only if the command is successful. In this case, the endpoint assigned MUST be in service

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 41

and MUST NOT already have any connections on it. The “all” wildcard convention MUST NOT be used. An
embedded client that receives a CreateConnection with the “all” wildcard convention MUST return an error (the
error returned SHOULD be error code 500 - the transaction could not be executed because the endpoint is unknown)
in response.

NotifiedEntity is an optional parameter that specifies a new “notified entity” for the endpoint.

LocalConnectionOptions is a structure that describes the characteristics of the media data connection from the
point-of-view of the gateway executing CreateConnection. It instructs the endpoint on send and receive
characteristics of the media connection. The basic fields contained in LocalConnectionOptions are:

• Encoding Method: A list of literal names for the compression algorithm (encoding/decoding method) used to
send and receive media on the connection MUST be specified with at least one value. The entries in the list
are ordered by preference. The endpoint MUST choose at least one of the codecs, and the codec(s) SHOULD
be chosen according to the preference indicated. If the endpoint receives any media on the connection
encoded with a different encoding method, it MAY discard it. See Section 0 for details on the codec selection
process. Note: "encoding method" includes audio, image, and video encodings.

• The endpoint MUST additionally indicate which of the remaining compression algorithms it is willing
to support as alternatives - see Section 8.4.1 for details.

• A list of permissible encoding methods is specified in the IPCablecom Audio/Video Codecs
Specification [19]. The literal names defined in Section 4.5 (Table 3) of that specification MUST be
used. Unknown compression algorithms SHOULD be ignored if they are received.

• Packetization Period: A single packetization period in milliseconds, MAY be specified with exactly one
decimal value. If this specifier is used, then the same packetization period MUST be used for all encoding
methods allowed by the LocalConnectionOptions. Note that if no encoding method field is specified in the
LCO, the MTA MUST NOT choose an encoding method with a packetization period that differs from that
specified here. If different packetization periods for different encoding methods is desired, then this field
MUST NOT be used. The value pertains to both media sent and received. Note that only the valid
packetization period in conjunction with the associated encoding method or methods are to be used by the
MTA. A list of permissible packetization periods is specified in the IPCablecom Audio/Video Codecs
Specification [19]. This specifier MUST NOT be supplied in the same LCO as the Multiple Packetization
Period field. An MTA MUST return an error (error code 524 – inconsistency in LocalConnectionOptions)
when it receives an LCO with both the Packetization Period and Multiple Packetization Period fields.

• Multiple Packetization Period: A list of packetization periods in milliseconds, MAY be specified if, and
only if, the Encoding Method field is included. When specified, the multiple packetization period in
milliseconds MUST contain exactly one decimal value or a hyphen for each entry in the encoding method
field included in the LocalConnectionOptions. This applies even if several of the encoding methods have the
same value. The first entry in the list MUST be a decimal number. When a hyphen is used, the encoding
method in question MUST use the same packetization period as one of the other entries in the list that
actually contains a decimal number, and furthermore the encoding method in question MUST NOT consume
any more bandwidth than that other entry. This can for example be used for non-voice codecs (e.g.,
telephone-event or comfort noise) that use the same packetization period as the voice codec with which they
are being used. Successive entries in the list of packetization periods MUST be ordered identically to the
corresponding encoding methods. The values pertain to both media sent and received. Note that the MTA
MUST NOT choose a codec with a packetization period that differs from that specified here. Note that only
the valid packetization period in conjunction with the associated encoding method is to be used by the MTA.
A list of permissible packetization periods is specified in the IPCablecom Audio/Video Codecs Specification
[19]. This specifier MUST NOT be supplied in the same LCO as the Packetization Period field. An MTA
MUST return an error (error code 524 – inconsistency in LocalConnectionOptions) under the following
conditions:

• When it receives an LCO with both the Packetization Period and Multiple Packetization Period fields.

• When it receives an LCO where the number of codecs specified in the Encoding Method field is different
from the number of elements in the Multiple Packetization Period field.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 42

• Echo Cancellation: Whether echo cancellation should be used initially on the line side or not15. The
parameter can have the value “on” (when the echo cancellation is requested) or “off” (when it is turned off).
The parameter is optional. When the parameter is omitted, the embedded client MUST apply echo
cancellation initially. The embedded client SHOULD subsequently enable or disable echo cancellation in
accordance with ITU-T recommendation V.8 and V.25 when voiceband data is detected. For re-enabling echo
cancellation see e.g., G.168. Following termination of voiceband data, the handling of echo cancellation
MUST revert to the current value of the echo cancellation parameter. It is RECOMMENDED that echo
cancellation handling is left to the embedded client rather than having this parameter specified by the Call
Agent.

• Type of Service: Specifies the class of service that will be used for sending media on the connection by
encoding the 8-bit type of service value parameter of the IP header as two hexadecimal digits.16 The
parameter is optional. When the parameter is omitted, a default value of 0x00 (unless provisioned otherwise)
MUST be used. When this parameter is present and valid, the value provided MUST be used by the
embedded client to populate the differentiated services codepoint (DSCP) parameter in the IP header (see
[35] for more information on the DSCP). The parameter value MUST be 0x00 or MUST be a multiple of four
within the range 0x01 to 0xFF (bits 6 and 7, the ECN bits, are reserved and hence must be set to "00"). An
MTA MUST return an error (error code 532 – Unsupported value(s) in LocalConnectionOptions) when it
receives an invalid value. The left-most "bit" in the parameter corresponds to the most significant bit in the IP
header.

• Silence Suppression: The embedded client may perform voice activity detection, and avoid sending packets
during periods of silence. However, it is necessary, for certain calls (e.g., modem calls) to disable silence
suppression. The parameter can have the value “on” (when silence is to be suppressed) or “off” (when silence
is not to be suppressed). The parameter is optional. When the parameter is omitted, the default is "off". If the
value is "on", upon detecting voiceband data, the endpoint SHOULD disable silence suppression. Following
termination of voiceband data, the handling of silence suppression MUST revert to the current value of the
silence suppression parameter.

The following LocalConnectionOptions fields are used to support Dynamic Quality of Service (D-QoS) – please
refer to Appendix III for further details:

• D-QoS GateID: The GateID for the gate that has been setup at the CMTS. The GateID is a 32 bit identifier
encoded as a string of up to 8 hex characters. This parameter is optional in general, but mandatory when D-
QoS resource reservation and/or committal is to be performed. The presence of this parameter implies that D-
QoS MUST be performed for this command. The absence of this parameter indicates that D-QoS MUST
NOT be performed.

• D-QoS Resource Reservation: Allows explicit control over whether D-QoS resource reservation and/or
committal should be performed in the send and/or receive direction or not. The parameter is optional and can
have one or more of the following values:

Reserve values:
“Send Reserve” Resources are reserved in the send direction only.

“Receive Reserve” Resources are reserved in the receive direction only.

“SendReceiveReserve” Resources are reserved in the send and receive direction.

Commit values:
“SendCommit” Resources are committed in the send direction only.

“ReceiveCommit” Resources are committed in the receive direction.

“SendReceiveCommit” Resources are committed in the send and receive direction.

The parameter is optional, and multiple values are separated by commas. When D-QoS is to be performed, and the
parameter is omitted, resource reservation MUST be performed for both the send and receive direction. The

15 Echo cancellation on the packet side is not supported.
16 For RTP media streams, this type of service value applies only to the RTP media packets, not the RTCP packets.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 43

resources reserved are determined by the coding parameters applied to the connection, i.e., encoding method,
packetization period, silence suppression, ciphersuite, etc., External parameters, such as the use of payload header
suppression, may affect the amount of resources reserved as well. Please see the IPCablecom Dynamic Quality of
Service Specification [20] for details.

Receive resources can be reserved and committed without having obtained a RemoteConnectionDescriptor, whereas
send resources can be reserved, but not committed, until a RemoteConnectionDescriptor is supplied. Note that, as
long as a RemoteConnectionDescriptor has not been received, the resources reserved and committed must be based
on the codec(s) selected locally. Once a RemoteConnectionDescriptor is received, the list of codec(s) that can
actually be used for sending may contain a subset of these. The list of codecs that can be used for receiving is
however unchanged until the endpoint issues a new LocalConnectionDescriptor. When D-QoS reservation is to be
performed, and the parameter is omitted, resources MUST by default be committed based on the connection mode as
specified in Table 3 below:

Table 3 - Default Resource Reservation Values

Connection Mode D-QoS

“inactive” Do not commit
“send only”, “replicate” Commit send
“receive only” Commit receive
“send/receive”, “conference”, “network loopback”, “network continuity test” Commit send and receive

If a different commit operation is desired, the appropriate commit value is supplied and will be used instead. If a
commit operation is to be performed, but no reservation has been made, or an existing reservation does not fully
satisfy the resources to be committed17, a reservation will be made automatically. If a reserve value is specified, but
no commit value is specified, a commit operation will not be performed.

• ResourceID: An existing ResourceID for resources already reserved at the edge router. The use of the
ResourceID allows separate reservations to reserve the same resource, however only one of the reservations
can be active at a given point in time. The ResourceID is a 32-bit identifier encoded as a string of up to 8 hex
characters. The parameter is optional. However, this parameter MUST be used for resource reservation by the
embedded client if provided by the Call Agent.

• ReserveDestination: This optional parameter may specify an IPv4 address, optionally followed by a colon
and a UDP port number, that is the destination for the resource reservation. When a UDP port number is not
specified, a default value of 9 applies. The ReserveDestination is typically used when resource reservation is
to be performed, and a RemoteConnectionDescriptor has not yet been provided for the connection. This
enables reservations and downstream commits to be sent to the edge router when the source of a media
stream is not yet known18. When a RemoteConnectionDescriptor has been provided, the parameter is ignored.

The following LocalConnectionOptions fields are used to support the IPCablecom security services:

• RTP ciphersuite: A list of allowable ciphersuites for RTP security in order of preference. The entries in the
list are ordered by preference where the first ciphersuite is the preferred choice. The endpoint MUST choose
exactly one of the ciphersuites according to the rules described in the IPCablecom Security Specification
[20]. The endpoint SHOULD additionally indicate which of the remaining ciphersuites it is willing to support
as alternatives (see Section 8.4.1 for details). Each ciphersuite is represented as ASCII strings consisting of
two substrings separated by a slash (“/”), where the first substring identifies the authentication algorithm, and
the second substring identifies the encryption algorithm. A list of permissible ciphersuites are specified in the
IPCablecom Security Specification [20].

• RTCP ciphersuite: A list of ciphersuites for RTCP security in order of preference. The entries in the list are
ordered by preference where the first ciphersuite is the preferred choice. The endpoint MUST choose exactly
one of the ciphersuites according to the rules described in the IPCablecom Security Specification [20]. The

17 This is not possible for the CreateConnection command but is noted here for completeness. It is possible for the
ModifyConnection command however (see Section 7.3.4).
18 Note that this will enable certain theft-of-service scenarios. See [20] for details.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 44

endpoint SHOULD additionally indicate which of the remaining ciphersuites it is willing to support as
alternatives. (See Section 8.4.1 for details). Each ciphersuite is represented as an ASCII string consisting of two
substrings separated by a slash (“/”), where the first substring identifies the authentication algorithm, and the
second substring identifies the encryption algorithm. A list of permissible ciphersuites is specified in the
IPCablecom Security Specification [20].

The embedded client MUST respond with an error (error code 524 – LocalConnectionOptions inconsistency) if
any of the above rules are violated. All of the above mentioned default values can be altered by the provisioning
process.

RemoteConnectionDescriptor is the connection descriptor for the remote side of a connection, on the other side of
the IP network. It includes the same fields as the LocalConnectionDescriptor (not to be confused with
LocalConnectionOptions), i.e., the fields that describe a session according to the SDP standard. Section 8.4 details
the supported use of SDP in the NCS profile. This parameter may have a null value when the information for the
remote end is not known. This occurs because the entity that builds a connection starts by sending a
CreateConnection to one of the two gateways involved. For the first CreateConnection issued, there is no
information available about the other side of the connection. This information may be provided later via a
ModifyConnection call.

When codecs are changed during a call, small periods of time may exist where the endpoints use different codes. As
stated above, embedded clients MAY discard any media received that is encoded with a different codec than what is
specified in the LocalConnectionOptions for a connection.

Mode indicates the mode of operation for this side of the connection. The options are “send only,” “receive only”,
“send/receive”, “conference”, “inactive”, “replicate”, “network loopback” or “network continuity test”. The
handling of these modes is specified in the beginning of Section 7.3. Some endpoints may not be capable of
supporting all modes. If the command specifies a mode that the endpoint does not support, an error MUST be
returned (error code 517 – unsupported mode). Also, if a connection has not yet received a
RemoteConnectionDescriptor, an error MUST be returned if the connection is attempted to be placed in any of the
modes “send only”, “send/receive”, “replicate”, or “conference”, “netwloop” or “netwtest (error code 527 – missing
RemoteConnectionDescriptor).

ConnectionId is a parameter returned by the gateway that uniquely identifies the connection within the context of
the endpoint in question. The ConnectionId MUST be included with any provisional or successful response to a
CreateConnection command. The ConncectionId MUST NOT be included when any error response is returned and
the connection was not created.

LocalConnectionDescriptor is a parameter returned by the gateway, which is a session description that contains
information about, e.g., addresses and RTP ports for “IN” connections as defined in SDP. It is similar to the
RemoteConnectionDescriptor, except that it specifies this side of the connection. Section 8.4 details the supported
use of SDP in the NCS profile. The LocalConnectionDescriptor MUST be included with any provisional or
successful response to a CreateConnection command. The LocalConnectionDescriptor MUST NOT be included
when any error response is returned and the connection was not created.

After receiving a “CreateConnection” command that does not include a RemoteConnectionDescriptor parameter, a
gateway is in an ambiguous situation for the connection in question. Because it has exported a
LocalConnectionDescriptor parameter, it potentially can receive packets on that connection. Because it has not yet
received the other gateway’s RemoteConnectionDescriptor parameter, it does not know whether the packets it
receives have been authorized by the Call Agent. Thus, it must navigate between two risks, i.e., clipping some
important announcements or listening to insane data. The behavior of the gateway is determined by the value of the
mode parameter (subject to security):

If the mode was set to “receive only”, the gateway MUST accept the voice signals received on the connection and
transmit them through to the endpoint.
If the mode was set to “inactive”, the gateway MUST (as always) discard the voice signals received on the
connection.
• Note, that when the endpoint does not have a RemoteConnectionDescriptor for the connection, the

connection can by definition not be in any of the modes “send only”, “send/receive”, “replicate”, or
“conference”, “netwloop” or “netwtest”.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 45

The RequestedEvents, RequestIdentifier, DigitMap, SignalRequests, QuarantineHandling, and DetectEvents
parameters are all optional. They can be used by the Call Agent to effectively include a notification request that is
executed simultaneously with the creation of the connection. If one or more of these parameters is present, the
RequestIdentifier MUST be one of them. Thus, the inclusion of a notification request can be recognized by the
presence of a RequestIdentifier. The rest of the parameters may or may not be present. If one of the parameters is not
present, it MUST be treated as if it was a normal NotificationRequest with the parameter in question being omitted.
This may have the effect of canceling signals and of stop looking for events. Note that if the RequestedEvents and
SignalRequests parameters are omitted, then the corresponding lists are considered empty only if a RequestIdentifier
parameter is included.

As an example of use, consider a Call Agent that wants to place a call to an embedded client. The Call Agent
should:

• ask the embedded client to create a connection, in order to be sure that the user can start speaking as soon as
the phone goes off hook,

• ask the embedded client to start ringing,

• ask the embedded client to notify the Call Agent when the phone goes off-hook.

All of the above can be accomplished in a single CreateConnection command by including a notification request
with the RequestedEvents parameters for the off-hook event and the SignalRequests parameter for the ringing
signal.

When these parameters are present, the creation of the connection and the notification request MUST be
synchronized, which means that they are both either accepted or refused. In our example, the CreateConnection must
be refused if the gateway does not have sufficient resources or cannot get adequate resources from the local network
access. The off-hook notification request must be refused in the glare condition if the user is already off-hook. In
this example, the phone must not ring if the connection cannot be established, and the connection must not be
established if the user is already off-hook. An error would be returned instead (error code 401 – phone off hook),
which informs the Call Agent of the glare condition.

ReturnCode is a parameter returned by the gateway. It indicates the outcome of the command and consists of an
integer number (see Section 7.5) optionally followed by commentary.

ResourceID is a D-QoS parameter that MAY be returned by the gateway. Note that this parameter MUST be
returned by the MTA when D-QoS is to be performed as instructed by the Call Agent. When a successful D-QoS
resource reservation is made, the ResourceID provides a handle for the resources reserved. The ResourceID MUST
NOT be included when any error response is returned and the connection was not created.

7.3.4 ModifyConnection
This command is used to modify the characteristics of a gateway’s “view” of a connection. This “view” of the call
includes both the local connection descriptor, as well as the remote connection descriptor.

ReturnCode
[, LocalConnectionDescriptor]
[, ResourceID]
 ← ModifyConnection(CallId
 , EndpointId
 , ConnectionId
 [, NotifiedEntity]
 [, LocalConnectionOptions]
 [, Mode]
 [, RemoteConnectionDescriptor]
 [, RequestedEvents]
 [, RequestIdentifier]
 [, DigitMap]
 [, SignalRequests]
 [, QuarantineHandling]
 [, DetectEvents])

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 46

The parameters used are the same as in the CreateConnection command, with the addition of a ConnectionId that
uniquely identifies the connection within the endpoint. This parameter is returned by the CreateConnection
command together with the local connection descriptor. It uniquely identifies the connection within the context of
the endpoint.

The EndpointId MUST be a fully qualified endpoint name. The local name MUST NOT use the wildcard
convention. An embedded client that receives a ModifyConnection with a wildcard convention MUST return an
error (the error returned SHOULD be error code 500 - the transaction could not be executed because the endpoint is
unknown) in response.

The ModifyConnection command can be used to affect connection parameters, subject to the same rules and
constraints as specified for CreateConnection:

• Provide information on the other end of the connection through the RemoteConnectionDescriptor.

• Activate or deactivate the connection by changing the mode parameter’s value. This can occur at any time
during the connection, with arbitrary parameter values. An activation can, for example, be set to the “receive
only” mode.

• Change the parameters of the connection through the LocalConnectionOptions, for example, by switching
to a different coding scheme, changing the packetization period, or modifying the handling of echo
cancellation.

The details of D-QoS operation were specified in the CreateConnection command and generally the same rules
apply here, except as noted below:

• D-QoS GateID - A D-QoS GateID is mandatory when D-QoS operation is required, unless D-QoS operation
has previously been done for the connection in question. In the latter case, the previously supplied D-QoS
GateID MUST then be used by the MTA.

• D-QoS Resource Reservation - Allows explicit control over whether D-QoS resource reservation and/or
committal should be performed in the send and/or receive direction or not. The parameter is optional and
multiple values can be specified. When the parameter is omitted and D-QoS reservation is to be performed,
the default is to reserve in both the send and receive direction, unless a suitable reservation for the connection
has already been made (see Appendix III). In that case, a new reservation will not be made. Resources are
committed the same way as for CreateConnection, except when changing to “inactive” mode. In that case,
the committed resources MUST be lowered to zero. An existing resource reservation is still maintained
though.

• ResourceID - The parameter is optional. When supplied, it MUST be used by the embedded client for
resource reservation and replaces the ResourceID kept for the connection.

• ReserveDestination - The parameter is optional. When supplied, it replaces the ReserveDestination kept by
the embedded client for the connection. If a RemoteConnectionDescriptor has been supplied for the
connection, the parameter is ignored.

The command will only return a LocalConnectionDescriptor if the local connection parameters, such as, e.g., RTP
ports, etc., are modified. Thus, if, e.g., only the mode of the connection is changed, a LocalConnectionDescriptor
will not be returned. The LocalConnectionDescriptor MUST NOT be included when any error response is returned
and the connection was not modified. If a connection parameter is omitted, e.g., mode or silence suppression, the old
value of that parameter will be retained if possible. If a parameter change necessitates a change in one or more
unspecified parameters, the gateway is free to choose suitable values for the unspecified parameters that must
change19.

The RTP address information provided in the RemoteConnectionDescriptor specifies the remote RTP address of the
receiver of media for the connection. This RTP address information may have been changed by the Call Agent20.
When RTP address information is given to an embedded client for a connection, the embedded client SHOULD only

19 This can for instance happen if a codec change is specified, and the old codec used silence suppression, but the new one does
not support it.
20 For instance if media needs to traverse a firewall.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 47

accept media streams (and RTCP) from the IP address specified as well. Any media streams received from any other
addresses SHOULD be discarded. The IPCablecom Security Specification[20] should be consulted for additional
security requirements.

The RequestedEvents, RequestIdentifier, DigitMap, SignalRequests, QuarantineHandling, and DetectEvents
parameters are optional. The parameters can be used by the Call Agent to include a notification request that is tied to
and executed simultaneously with the connection modification. If one or more of these parameters is supplied, then
RequestIdentifier MUST be one of them. For example, when a call is accepted, the calling gateway should be
instructed to place the connection in “send/receive” mode and to stop providing ringback tones. This can be
accomplished in a single ModifyConnection command by including a notification request with the RequestedEvents
parameters for the on-hook event, and an empty SignalRequests parameter, to stop the provision of ringback tones.
Note that absence of the RequestedEvents and SignalRequests parameters is interpreted as an empty list only if a
RequestIdentifier parameter is included.

When these parameters are present, the connection modification and the notification request MUST be
synchronized, which means that they are both either accepted or refused.

NotifiedEntity is an optional parameter that specifies a new “notified entity” for the endpoint.

ReturnCode is a parameter returned by the gateway. It indicates the outcome of the command and consists of an
integer number (see Section 7.5) optionally followed by commentary.

ResourceID is a D-QoS parameter that MUST be returned by the gateway if it performs a resource reservation and
obtains a new ResourceID from the edge router. When a successful D-QoS resource reservation is made, the
ResourceID provides a handle for the resources reserved. The Resource ID MUST NOT be included when any error
response is returned and the connection was not modified.

7.3.5 DeleteConnection (from the Call Agent)
This command is used to terminate a connection. As a side effect, it collects statistics on the execution of the
connection.

ReturnCode
[, Connection-parameters]
 ← DeleteConnection(CallId
 , EndpointId
 , ConnectionId
 [, NotifiedEntity]
 [, RequestedEvents]
 [, RequestIdentifier]
 [, DigitMap]
 [, SignalRequests]
 [, QuarantineHandling]
 [, DetectEvents])

The endpoint identifier, in this form of the DeleteConnection command, MUST be fully qualified. Wildcard
conventions MUST NOT be used. An embedded client that receives a Delete Connection with a wildcard
convention MUST return an error (the error returned SHOULD be error code 500 - the transaction could not be
executed because the endpoint is unknown) in response.

In the general case where a connection has two ends, this command has to be sent to both gateways involved in the
connection. After the connection has been deleted, packet network media streams previously supported by the
connection are no longer available. Any media packets received for the old connection are simply discarded and no
new media packets for the stream are sent. When one or more D-QoS reservations and/or committals have been
made for the connection, the DeleteConnection command will release the resources reserved.

In response to the DeleteConnection command, the gateway returns a list of parameters that describe the status of
the connection. The connection parameters MUST only be returned if the command is successful and the connection
is deleted. These parameters are:

• Number of packets sent. The total number of RTP data packets transmitted by the sender since starting
transmission on the connection. The count is not reset if the sender changes its synchronization source

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 48

identifier (SSRC, as defined in RTP)—for example, as a result of a Modify command. The value MUST be
based on the same information provided via the RTCP mechanism.

• Number of octets sent. The total number of payload octets (i.e., not including header or padding) transmitted
in RTP data packets by the sender since starting transmission on the connection. The count is not reset if the
sender changes its SSRC identifier—for example, as a result of a ModifyConnection command. The value
MUST be based on the same information provided via the RTCP mechanism.

• Number of packets received. The total number of RTP data packets received by the sender since starting
reception on the connection. The count includes packets received from different SSRC if the sender used
several values. All received packets MUST be counted independent of the connection mode or any type of
processing error, e.g., authentication failure.

• Number of octets received. The total number of payload octets (i.e., not including header or padding)
transmitted in RTP data packets by the sender since starting transmission on the connection. The count
includes packets received from different SSRC if the sender used several values. All received octets MUST
be counted independent of the connection mode or any type of processing error, e.g., authentication failure.

• Number of packets lost. The total number of RTP data packets that have been lost since the beginning of
reception. This number is defined to be the number of packets expected less the number of packets actually
received, where the number of packets received includes any which are late or are duplicates. The count
includes packets received from different SSRC if the sender used several values. Thus, packets that arrive late
are not counted as lost, and the loss may be negative if there are duplicates. The count includes packets
received from different SSRC if the sender used several values. The number of packets expected is defined to
be the extended last sequence number received, less the initial sequence number received. The count includes
packets received from different SSRC, if the sender used several values. The value is zero if for example no
packets were received on the connection.

• Interarrival jitter. An estimate of the statistical variance of the RTP data packet interarrival time measured
in milliseconds and expressed as an unsigned integer. The interarrival jitter “J” is defined to be the mean
deviation (smoothed absolute value) of the difference “D” in packet spacing at the receiver compared to the
sender for a pair of packets. Detailed computation algorithms are found in [2]. The count includes packets
received from different SSRC if the sender used several values. The value is zero if, e.g., no packets were
received on the connection.

• Average transmission delay. An estimate of the network latency, expressed in milliseconds. This is the
average value of the difference between the NTP timestamp indicated by the senders of the RTCP messages
and the NTP timestamp of the receivers, measured when the messages are received. The average is obtained
by summing all the estimates and then dividing by the number of RTCP messages that have been received. It
should be noted that the correct calculation of this parameter relies on synchronized clocks. Embedded client
devices MAY alternatively estimate the average transmission delay by dividing the measured roundtrip time
by two.

For a more detailed definition of these variables, please refer to [2].

In addition to the parameters above, an endpoint that has received one or more RTCP sender or receiver reports from
its peer MUST return the following parameters:

Remote Packets Sent The number of packets that were sent on the connection from the
perspective of the remote endpoint.

Remote Octets Sent The number of octets that were sent on the connection from the
perspective of the remote endpoint.

Remote Packets Lost The number of packets that were not received on the connection, as
deduced from gaps in the sequence number from the perspective of
the remote endpoint.

Remote Jitter The average inter-packet arrival jitter, in milliseconds, expressed as
an integer number from the perspective of the remote endpoint.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 49

The RequestedEvents, RequestIdentifier, DigitMap, SignalRequests, QuarantineHandling, and DetectEvents
parameters are optional. They can be used by the Call Agent to transmit a notification request that is tied to and
executed simultaneously with the deletion of the connection. However, if one or more of these parameters are
present, RequestIdentifier MUST be one of them. For example, when a user hangs up the phone, the gateway might
be instructed to delete the connection and to start looking for an off-hook event. This can be accomplished in a
single DeleteConnection command also by transmitting the RequestedEvents parameter for the off-hook event and
an empty SignalRequests parameter. Note that absence of the RequestedEvents and SignalRequests parameters is
interpreted as an empty list only if a RequestIdentifier parameter is included.

When these parameters are present, the delete connection and the notification request MUST be synchronized,
which means that they are both either accepted or refused.

NotifiedEntity is an optional parameter that specifies a new “notified entity” for the endpoint.

ReturnCode is a parameter returned by the gateway. It indicates the outcome of the command and consists of an
integer number (see Section 7.5) optionally followed by commentary.

7.3.6 DeleteConnection (from the Embedded Client)
In some circumstances, a gateway may have to clear a connection, for example, because it has lost the resource
associated with the connection. The gateway can terminate the connection by using a variant of the
DeleteConnection command:

ReturnCode
 ← DeleteConnection(CallId,
 EndpointId,
 ConnectionId,
 Reason-code,
 Connection-parameters)

The EndpointId, in this form of the DeleteConnection command, MUST be fully qualified. Wildcard conventions
MUST NOT be used. A Call Agent that receives a DeleteConnection with a wildcard convention MUST return an
error (the error returned SHOULD be error code 500 - the transaction could not be executed because the endpoint is
unknown) in response.

The Reason-code is a text string starting with a numeric reason-code and optionally followed by a descriptive text
string. A list of reason-codes can be found in Section 7.6.

In addition to the CallId, EndpointId, and ConnectionId, the embedded client will also send the connection’s
parameters, which would have been returned to the Call Agent in response to a DeleteConnection command from
the Call Agent. The reason code indicates the cause of the DeleteConnection. When one or more D-QoS reservations
and/or committals have been made for the connection, the embedded client will release the resources reserved.

ReturnCode is a parameter returned by the Call Agent. It indicates the outcome of the command and consists of an
integer number (see Section 7.5) optionally followed by commentary.

7.3.7 DeleteConnection (Multiple Connections From the Call Agent)
A variation of the DeleteConnection function can be used by the Call Agent to delete multiple connections at the
same time. The command can be used to delete all connections that relate to a call for an endpoint:

ReturnCode
 ← DeleteConnection(CallId,
 EndpointId)

The EndpointId, in this form of the DeleteConnection command, MUST NOT use the “any of” wildcard. All
connections for the endpoint(s) with the CallId specified will be deleted. The command does not return any
individual statistics or call parameters. An embedded client that receives a DeleteConnection (Multiple Connections
From the Call Agent) with the “any of” wildcard convention MUST return an error (the error returned SHOULD be
error code 500 - the transaction could not be executed because the endpoint is unknown) in response.

DeleteConnection can also be used by the Call Agent to delete all connections that terminate in a given endpoint:

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 50

ReturnCode
 ← DeleteConnection(EndpointId)

In this form of the DeleteConnection command, Call Agents can take advantage of the hierarchical naming
structure of endpoints to delete all the connections that belong to a group of endpoints. In this case, part of the “local
endpoint name” component of the EndpointId can be specified using the “all” wildcarding convention, as specified
in Section 4.1.1. The “any of” wildcarding convention MUST NOT be used. The command does not return any
individual statistics or call parameters.

After the connection has been deleted, packet network media streams previously supported by the connection are no
longer available. Any media packets received for the old connection are simply discarded and no new media packets
for the stream are sent. When one or more D-QoS reservations and/or committals have been made for the
connection, the embedded client will release the resources reserved.

ReturnCode is a parameter returned by the gateway. It indicates the outcome of the command and consists of an
integer number (see Section 7.5) optionally followed by commentary.

7.3.8 Auditing
The MGCP is based upon a centralized call control architecture where a Call Agent acts as the remote controller of
client devices that provide voice interfaces to users and networks. In order to achieve the same or higher levels of
availability as the current PSTN, some protocols have implemented mechanisms to periodically “ping” subscribers
in order to minimize the time before an individual outage is detected. In this interest, an MGCP-specific auditing
mechanism between the embedded clients and the Call Agents in an IPCablecom system is provided to allow the
Call Agent to audit endpoint and connection state and to retrieve protocol-specific capabilities of an endpoint.

Two commands for auditing are defined for the embedded clients:

• AuditEndPoint: Used by the Call Agent to determine the status of an endpoint.

• AuditConnection: Used by the Call Agent to obtain information about a connection.

Network management beyond the capabilities provided by these commands is generally desirable, e.g., information
about the status of the embedded client as opposed to individual endpoints. Such capabilities are expected to be
supported by the use of the Simple Network Management Protocol (SNMP) and by definition of a MIB for the
embedded client, both of which are outside the scope of this specification.

7.3.8.1 AuditEndPoint

The AuditEndPoint command can be used by the Call Agent to find out the status of a given endpoint.
{ ReturnCode

 [, EndPointIdList]
 [, NumEndPoints] } |
 { ReturnCode
 [, RequestedEvents]
 [, DigitMap]
 [, SignalRequests]
 [, RequestIdentifier]
 [, NotifiedEntity]
 [, ConnectionIdentifiers]
 [, DetectEvents]
 [, ObservedEvents]
 [, EventStates]
 [, VersionSupported]
 [, ReasonCode
 [, MaxMGCPDatagram]
 [, Capabilities] }
 ← AuditEndPoint(EndpointId
 [, RequestedInfo] |
 { [, SpecificEndPointID]
 [, MaxEndPointIDs] })

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 51

The EndpointId identifies the endpoint that is being audited. The “any of” wildcard convention MUST NOT be
used. An embedded client that receives an AuditEndPoint with the “any of” wildcard convention MUST return an
error (the error returned SHOULD be error code 500 - the transaction could not be executed because the endpoint is
unknown) in response.

The “all of” wildcard convention can be used to audit a group of endpoints. If this convention is used, the gateway
MUST return the list of endpoint identifiers that match the wildcard in the EndPointIdList parameter, which is
simply a list of SpecificEndpointIds – RequestedInfo MUST NOT be included in this case. MaxEndPointIDs is a
numerical value that indicates the maximum number of EndpointIds to return. If additional endpoints exist, the
NumEndPoints return parameter MUST be present and indicate the total number of endpoints that match the
EndpointID specified. In order to retrieve the next block of EndpointIDs, the SpecificEndPointID is set to the
value of the last endpoint returned in the previous EndPointIDList, and the command is issued.

When the wildcard convention is not used, the (possibly empty) RequestedInfo describes the information that is
requested for the EndpointId specified – the SpecificEndpointID and MaxEndpointID parameters MUST NOT
be used then. The following endpoint-specific information can then be audited with this command:

RequestedEvents, DigitMap, SignalRequests, RequestIdentifier, NotifiedEntity,
ConnectionIdentifiers, DetectEvents, ObservedEvents, EventStates,
VersionSupported, ReasonCode, MaxMGCPDatagram, and Capabilities

If an endpoint is queried about a parameter it does not understand, the endpoint MUST NOT generate an error;
instead the parameter MUST be omitted from the response.

If an endpoint is queried about a parameter it does support, but has no value for, the endpoint MUST NOT generate
an error; instead the parameter MUST be included in the response with an empty parameter value.

Only when successful, the response MUST, in turn, include information about each of the items for which auditing
information was requested. Excluding parameters that are explicitly marked "optional", endpoints MUST support all
of the following parameters:

• RequestedEvents: The current value of RequestedEvents the endpoint is using including the action
associated with each event. Persistent events are included in the list.

• DigitMap: The digit map the endpoint is using currently.

• SignalRequests: A list of the Time-Out signals that are currently active, On/Off signals that are currently
“on” for the endpoint (with or without parameter), and any pending Brief signals21. Time-Out signals that
have timed-out, and currently playing Brief signals are not included. Parameterized signals are reported with
the parameters they were applied with.

• RequestIdentifier: The RequestIdentifier for the last NotificationRequest received by the endpoint (includes
notification request embedded in connection handling primitives). If no notification request has been
received, the value zero will be returned.

• NotifiedEntity: The current “notified entity” for the endpoint. Note that the MTA MAY include only the
absolute domain name (including the hostname) of its NotifiedEntity if only the absolute domain name
(including the hostname) was provided to it via the NotifiedEntity parameter of an NCS message or
acknowledgement. The CMS SHOULD accept the value in this case.

• ConnectionIdentifiers: A comma-separated list of ConnectionIdentifiers for all connections that currently
exist for the specified endpoint.

• DetectEvents: The current value of DetectEvents the endpoint is using. Persistent events are included in the
list.

• ObservedEvents: The current list of observed events for the endpoint.

21 Currently, there should be no pending brief signals.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 52

• EventStates: For events that have auditable states associated with them, the event corresponding to the state
the endpoint is in, e.g., off-hook if the endpoint is off-hook. The definition of the individual events will state
if the event in question has an auditable state associated with it.

• VersionSupported: A list of protocol versions supported by the endpoint.

• ReasonCode: The value of the Reason-Code parameter in the last RestartInProgress or DeleteConnection
command issued by the gateway for the endpoint, or the special value 000 if the endpoint’s state is normal.

• MaxMGCPDatagram: The maximum size of an MGCP datagram in bytes supported by the endpoint (see
Section 8.5.3). The value excludes any lower layer overhead. Support for this parameter is optional. The
default maximum MGCP datagram size is assumed if a value is not returned.

• Capabilities: The capabilities for the endpoint similar to the LocalConnectionOptions parameter and
including event packages and connection modes. If any unknown capabilities are reported, they MUST
simply be ignored. If there is a need to specify that some parameters, such as e.g., silence suppression, are
only compatible with some codecs, then the gateway will return several capability sets.

• Compression Algorithm: A list of supported codecs. The literal names defined in the IPCablecom
Audio/Video Codecs Specification [19] MUST be used. Unknown compression algorithms SHOULD
be ignored if they are received. The rest of the parameters will apply to all codecs specified in this list:

• Packetization Period: A single value or a range may be specified.

• Bandwidth: A single value or a range corresponding to the range for packetization periods may be
specified (assuming no silence suppression).

• Echo Cancellation: Whether echo cancellation is supported or not.

• Silence Suppression: Whether silence suppression is supported or not.

• Type of Service: Whether type of service is supported or not.

• Event Packages: A list of event packages supported. The first event package in the list will be the
default package.

• Modes: A list of supported connection modes.

• Dynamic Quality of Service: Whether Dynamic Quality of Service is supported or not.

• Security: Whether IPCablecom Security services are supported or not. If supported, the following
parameters may be present as well:

• RTP Ciphersuites: A list of authentication and encryption algorithms supported for RTP.

• RTCP Ciphersuites: A list of authentication and encryption algorithms supported for RTCP.

The Call Agent may then decide to use the AuditConnection command to obtain further information about the
connections.

ReturnCode: A parameter returned by the gateway. It indicates the outcome of the command and consists of an
integer number (see Section 7.5) optionally followed by commentary.

If no info was requested and the EndpointId refers to a valid fully-specified EndpointId, the gateway simply returns
a successful response (return code 200 – transaction executed normally).

It should be noted, that all of the information returned is merely a snapshot. New commands received, local activity,
etc., may alter most of the above. For example the hook-state may change before the Call Agent receives the above
information.

7.3.8.2 AuditConnection
Auditing of individual connections on an endpoint can be achieved using the AuditConnection command.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 53

ReturnCode
[, CallId]
[, NotifiedEntity]
[, LocalConnectionOptions]
[, Mode]
[, RemoteConnectionDescriptor]
[, LocalConnectionDescriptor]
[, ConnectionParameters]
 ← AuditConnection(EndpointId
 , ConnectionId
 [, RequestedInfo]

The EndpointId identifies the endpoint that is being audited–wildcards MUST NOT be used. An embedded client
that receives a AuditConnection with a wildcard convention MUST return an error (the error returned SHOULD be
error code 500 - the transaction could not be executed because the endpoint is unknown) in response. The (possibly
empty) RequestedInfo describes the information that is requested for the ConnectionId within the EndpointId
specified. The following connection info can be audited with this command:

CallId, NotifiedEntity, LocalConnectionOptions, Mode, ConnectionParameters,
RemoteConnectionDescriptor, LocalConnectionDescriptor.

If an endpoint is queried about a connection parameter it does not support, the endpoint MUST NOT generate an
error; instead the parameter MUST be omitted from the response.

If an endpoint is queried about a connection parameter it does support, but has no value for, the endpoint MUST
NOT generate an error; instead the parameter MUST be included in the response with an empty parameter value.
Only when successful, the response MUST, in turn, include information about each of the items for which auditing
information was requested. Excluding parameters that are explicitly marked "optional", endpoints MUST support all
of the following parameters:

• CallId: The CallId for the call to which the connection belongs.

• NotifiedEntity: The current “notified entity” for the endpoint.

• LocalConnectionOptions: The LocalConnectionOptions supplied for the connection.

• Mode: The current connection mode.

• ConnectionParameters: Current connection parameters for the connection.

• LocalConnectionDescriptor: The LocalConnectionDescriptor that the gateway supplied for the connection.

• RemoteConnectionDescriptor: The most recent RemoteConnectionDescriptor that was supplied in a
previous CreateConnection or ModifyConnection command to the gateway for this connection.

ReturnCode is a parameter returned by the gateway. It indicates the outcome of the command and consists of an
integer number (see Section 7.5) optionally followed by commentary.

If no information was requested, and the EndpointId refers to a valid endpoint, the gateway simply checks that the
connection specified exists and, if so, returns a positive response (return code 200 – transaction executed).

7.3.9 Restart in Progress
The RestartInProgress command is used by the gateway to signal that an endpoint, or a group of endpoints, is taken
out of service or is being placed back in service.

ReturnCode
 [, NotifiedEntity]
 [, VersionSupported]
 ← RestartInProgress(EndpointId
 , RestartMethod
 [, RestartDelay]
 [, ReasonCode])

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 54

The EndpointId identifies the endpoints that are taken in or out of service. The “all of” wildcard convention can be
used to apply the command to a group of endpoints, for example, all endpoints that are attached to a specified
interface, or even all endpoints that are attached to a given gateway. The “any of” wildcard convention MUST NOT
be used. A Call Agent that receives a Restart in Progress with the “any of” wildcard convention MUST return an
error (the error returned SHOULD be error code 500 - the transaction could not be executed because the endpoint is
unknown) in response. The RestartMethod parameter specifies the type of restart:

• A “graceful” restart method indicates that the specified endpoint(s) will be taken out of service after the
specified “restart delay”. The established connections are not yet affected, but the Call Agent should refrain
from establishing new connections, and should try to gracefully tear down any existing connections. At the
expiry of the restart delay, the gateway should send a new RSIP message with a restart method of "forced".
This will explicitly indicate to the Call Agent that the endpoints are now out of service.

• A “cancel-graceful” restart method indicates that a gateway is canceling a previously issued "graceful" restart
method for the same endpoints. The endpoints remain in service. When this command is sent, the gateway
will immediately begin to allow the establishment of new connections on these endpoints.

A “forced” restart method indicates that the specified endpoints are taken out of service abruptly. The established
connections, if any, are lost.

A “restart” method indicates that service will be restored on the endpoints after the specified “restart delay”. There
are no connections that are currently established on the endpoints.

A “disconnected” method indicates that the endpoint has become disconnected and is now trying to establish
connectivity. The “restart delay” specifies the number of seconds the endpoint has been disconnected. Established
connections are not affected.

The optional “restart delay” parameter is expressed as a number of seconds. If the number is absent, the delay value
should be considered null. In the case of the “graceful” method, a null delay indicates that the endpoint will never go
out of service as a result of this operation, and that the Call Agent should simply wait for the natural termination of
the existing connections, without establishing new connections. The restart delay is always considered null in the
case of the “forced” and “cancel-graceful” methods. A restart delay of null for the “restart” method indicates that
service has already been restored. This typically will occur after gateway startup/reboot. To mitigate the effects of a
client IP address change, the Call Agent MAY wish to resolve the embedded client’s domain name by querying the
DNS regardless of the TTL of a current resource record for the restarted embedded client.

Embedded clients SHOULD send a “graceful” or “forced” RestartInProgress message as a courtesy to the Call
Agent when they are taken out of service, e.g., by being shutdown. However, an embedded client MUST send a
“forced” RestartInProgress message when it is shutdown through the provisioning system. The Call Agent cannot
rely on receiving such messages.

Embedded clients MUST send a “restart” RestartInProgress message with a null delay to their Call Agent when
they are back in service according to the restart procedure specified in Section 7.4.3.5 – Call Agents can rely on
receiving this message. Also, embedded clients MUST send a “disconnected” RestartInProgress message to their
current “notified entity” according to the “disconnected” procedure specified in Section 7.4.3.6. The “restart delay”
parameter MUST NOT be used with the “forced” and “cancel graceful” restart method.

The optional ReasonCode parameter may be used to indicate the cause of the restart. The RestartInProgress message
will be sent to the current “notified entity” for the EndpointId in question. It is expected that a default Call Agent,
i.e., “notified entity”, has been provisioned for each endpoint so, after a reboot, the default Call Agent will be the
“notified entity” for each endpoint. Embedded clients MUST take full advantage of wild-carding to minimize the
number of RestartInProgress messages generated when multiple endpoints in a gateway restart and the endpoints
are managed by the same Call Agent.

ReturnCode is a parameter returned by the Call Agent. It indicates the outcome of the command and consists of an
integer number (see Section 7.5) optionally followed by commentary.

A NotifiedEntity MAY additionally be returned with the response to the RestartInProgress from the Call Agent - this
should normally only be done in response to "restart" or "disconnected" (see also Sections 7.4.3.5 and 7.4.3.6.). If a
NotifiedEntity parameter was included in the response returned, it specifies a new "notified entity" for the
endpoint(s) – this operation SHOULD only be done with the response error code 521 (endpoint redirected). Note

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 55

that the behavior for returning a NotifiedEntity in the response is only defined for RestartInProgress responses and
SHOULD NOT be done for responses to other commands. Any other behavior is undefined.

• If the response indicated success (return code 200 – transaction executed), the restart in question completed
successfully, and the NotifiedEntity returned is the new “notified entity” for the endpoint(s).

• If the response from the Call Agent indicated an error code, the restart in question is not yet complete. If the
response was 521 (endpoint redirected), then the response MUST include a NotifiedEntity parameter, which
specifies the new “notified entity” for the endpoint(s) and MUST be used when retrying the restart in question
(as a new transaction).

In the case of "restart" and "disconnected", the restart in question MUST be retried whenever the Call Agent returns
a transient (4xx) error code, whereas it SHOULD be retried for any other restartMethod. It is RECOMMENDED
that any type of restart is terminated if a permanent (5xx) error code is returned, except for 521, as specified above.

Finally, a VersionSupported parameter with a list of supported versions may be returned if the response indicated
version incompatibility (error code 528).

7.4 States, Failover and Race Conditions

In order to implement proper call signaling, the Call Agent must keep track of the state of the endpoint, and the
gateway must make sure that events are properly notified to the call agent. Special conditions may exist when the
gateway or the call agent are restarted: the gateway may need to be redirected to a new call agent during “failover”
procedures. Similarly, the call agent may need to take special action when the gateway is taken offline, or restarted.

7.4.1 Recaps and Highlights
As mentioned in Section 7.1.4, Call Agents are identified by their domain name, and each endpoint has one, and
only one, “notified entity” associated with it at any given point in time. In this section we recap and highlight the
areas that are of special importance to reliability and failover in MGCP:

• A Call Agent is identified by its domain name, not its network addresses, and several network addresses can
be associated with a domain name.

• An endpoint has one, and only one, Call Agent associated with it at any given point in time. The Call Agent
associated with an endpoint is the current value of the “notified entity”.

• The “notified entity” is initially set to a provisioned value. When commands with a NotifiedEntity parameter
are received for the endpoint, including wild-carded endpoint-names, the “notified entity” is set to the value
specified. If the “notified entity” for an endpoint is empty or has not been set explicitly22, the “notified entity”
defaults to the source address of the last connection handling command or notification request received for
the endpoint. In this case, the Call Agent will thus be identified by its network address, which SHOULD only
be done on exceptional basis.

• Responses to commands are always sent to the source address of the command, regardless of the current
“notified entity”. When a Notify message needs to be piggy-backed with the response, the datagram is still
sent to the source address of the new command received, regardless of the NotifiedEntity for any of the
commands.

• When the “notified entity” refers to a domain name that resolves to multiple IP-addresses, endpoints are
capable of switching between each of these addresses, however they cannot change the “notified entity” to
another domain name on their own. A call agent can however instruct them to switch by providing them with
a new “notified entity”.

• If a call agent becomes unavailable, the endpoints managed by that call agent will eventually become
“disconnected”. The only way for these endpoints to become connected again is either for the failed call agent
to become available again, or for another (backup) call agent to contact the affected endpoints with a new
“notified entity”.

22 This could for instance happen by specifying an empty NotifiedEntity parameter.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 56

• When another (backup) call agent has taken over control of a group of endpoints, it is assumed that the failed
call agent will communicate and synchronize with the backup call agent in order to transfer control of the
affected endpoints back to the original call agent, if so desired. Alternatively, the failed call agent could
simply become the backup call agent now.

We should note that handover conflict resolution between separate Call Agent’s is not provided. We are relying
strictly on the Call Agent's knowing what they are doing and communicating with each other (although
AuditEndpoint can be used to learn about the current “notified entity”).

7.4.2 Retransmission and Detection of Lost Associations
The MGCP protocol is organized as a set of transactions, each of which is composed of a command and a response.
The MGCP messages, being carried over UDP, may be subject to losses. In the absence of a timely response (see
Section 8.5), commands are repeated. MGCP Entities MUST keep in memory a list of the responses that they sent to
recent transactions(i.e., a list of all the responses they sent over the last Tthist seconds), and a list of the transactions
that have not yet finished executing. The default value for Tthist is 30 seconds.

The transaction identifiers of incoming commands are first compared to the transaction identifiers of the recent
responses. If a match is found, the MGCP Entity does not execute the transaction, but simply repeats the old
response. If a match to a previously responded to transaction is not found, the transaction identifier of the incoming
command is compared to the list of transactions that have not yet finished executing. If a match is found, the MGCP
Entity does not execute the transaction; subsequent handling depends on the command in question. If it is a
CreateConnection or ModifyConnection command, the MGCP Entity (gateway in this case) MUST send a
provisional response. If it is any other command, it is simply ignored. In either case, a final response will be
provided when the execution of the command is complete.

This repetition mechanism is used to guard against four types of possible errors:

• Transmission errors, when, e.g., a packet is lost due to noise on a line or congestion in a queue,

• Component failure, when, e.g., an interface for a call agent becomes unavailable,

• Call agent failure, when, e.g., all interfaces for a call agent becomes unavailable,

• Failover, when a new call agent is “taking over” transparently.

The elements should be able to derive from the past history an estimate of the packet loss rate. In a properly
configured system, this loss rate should be very low, typically less than 1% on average. If a call agent or a gateway
has to repeat a message more than a few times, it is very legitimate to assume that something else than a
transmission error is occurring. For example, given a uniformly distributed loss rate of 1%, the probability that 5
consecutive transmission attempts fail is 1 in 100 billion, an event that should occur less than once every 10 days for
a call agent that processes 1,000 transactions per second. (Indeed, the number of repetitions that is considered
excessive should be a function of the prevailing packet loss rate.) When errors are non-uniformly distributed, the
consecutive failure probability can become somewhat higher. We should note that the “suspicion threshold”, which
we will call “Max1”, is normally lower than the “disconnection threshold”, which we will call “Max2”. Max2
MUST be set to a larger value than Max1.

A classic retransmission algorithm would simply count the number of successive repetitions, and conclude that the
association is broken after re-transmitting the packet an excessive number of times (typically between 7 and 11
times). In order to account for the possibility of an undetected or in-progress “failover", we modify the classic
algorithm as follows: (A retransmission algorithm including these modifications is illustrated in Figure 4 below.)

• The gateway MUST always check for the presence of a new call agent. It can be noticed by:

• receiving a command where the NotifiedEntity points to a new call agent, or

• receiving a redirection response pointing to a new call agent.

• If a new Call Agent is detected, the gateway MUST direct retransmissions of any outstanding commands for
the endpoint(s) redirected to that new Call Agent. Responses to new or old commands are still transmitted to
the source address of the command.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 57

• Prior to any retransmission, it is checked that the time elapsed since the sending of the initial datagram is no
greater than Tsmax. If more than Tsmax time has elapsed, then retransmissions MUST cease. If more than
2*Tthist has elapsed, then the endpoint becomes disconnected.

• If the number of retransmissions to this Call Agent equals “Max1”, the gateway MAY actively query the
name server in order to detect the possible change of call agent interfaces, regardless of the Time To Live
(TTL) associated with the DNS record.

• The gateway may have learned several IP addresses for the Call Agent. If the number of retransmissions for
this IP address is greater than or equal to “Max1” and lower than “Max2", and there are more IP addresses
that have not been tried, then the gateway MUST direct the retransmissions to the remaining alternate
addresses in its local list. Also, receipt of explicit network notifications such as, e.g., ICMP network, host,
protocol, or port unreachable SHOULD lead the gateway to try alternate addresses (with due consideration to
possible security issues).

• If there are no more interfaces to try, and the number of retransmissions is Max2, then the gateway SHOULD
contact the DNS one more time to see if any other interfaces have become available. If there still are no more
interfaces to try, then retransmissions MUST cease. If more than 2*Tthist has elapsed, then the endpoint
becomes disconnected.

Once an endpoint becomes disconnected, subsequent processing depends on whether the loss of association was
detected by the gateway or Media Gateway Controller, as follows:

• The gateway MUST initiate the “disconnected” procedure as specified in Section 7.4.3.6.

• The Call Agent MUST NOT attempt to use the endpoint for any new calls until connectivity has been
restored. Furthermore, the Call Agent MUST implement an algorithm to detect when connectivity with
the endpoint is subsequently restored (e.g., on receiving a response to a periodic Audit Endpoint
command). When connectivity to the endpoint is restored, and if no other condition exists which
prevents the endpoint from supporting calls, the Call Agent MUST ensure that the endpoint can be
used for new calls without requiring any manual intervention.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 58

Command issued:
N=0, Ts = 0

Awaiting
response N ≥ Max1 ?

More
addresses ?

N Max2 ?

If Ts Tsmax then Transmission to
new address, N=0

Yes
(if first address & N= Max1,
or last address & N =Max2,
check DNS)

No

Yes

Ts
2*Tthist ?

No

New Call Agent

Timer elapsed

Retransmission: N++

No

Yes

Ts > Tsmax ?

Response received

No

Yes

final ?

Yes

End

No

Dis-
connected

Yes

No

>

≥

≥

timer=2*Tthist-Ts

Figure 4 - Retransmission Algorithm

In order to adapt to network load automatically, MGCP specifies exponentially increasing timers (see Section 8.5.2).
If the initial time-out is set to 200 milliseconds, the loss of a fifth retransmission will be detected after about 6
seconds. This is probably an acceptable waiting delay to detect a failover. The retransmissions should continue after
that delay not only in order to perhaps overcome a transient connectivity problem, but also in order to allow some
more time for the execution of a failover – waiting a total delay of 30 seconds is probably acceptable.

It is however important that the maximum delay of retransmissions be bounded. Prior to any retransmission, it is
checked that the time (Ts) elapsed since the sending of the initial datagram is no greater than Tsmax. If more than
Tsmax time has elapsed, retransmissions MUST cease. When Tsmax has expired, or all of the retransmissions to all
known IP addresses have been sent, there is a pause before declaring the endpoint disconnected. This pause
represents a period of time where the only action is to wait for a response from any of the recent retransmissions.
The quiescent period lasts for what remains of twice the life expectancy of the original transaction (2*Tthist). This
settling time allows all active transactions to complete or time out before the endpoint is declared disconnected. This
helps ensure that each restart of the endpoint is from a clean and initial state. If more than 2* Tthist time has elapsed,
the endpoint becomes disconnected. The value Tsmax is related to the Tthist value: the Tthist value MUST be greater
than or equal to Tsmax plus the maximum propagation delay in the network, Tpmax.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 59

In other words, the following relation MUST be satisfied to prevent retransmitted commands from being executed
more than once: Tthist ≥ Tsmax + Tpmax.

The default value for Tsmax is 20 seconds. Thus, if the assumed maximum propagation delay is 10 seconds, then
responses to old transactions must be kept for a period of at least 30 seconds. The importance of having the sender
and receiver agree on these values cannot be overstated.

The default value for Max1 is 5 retransmissions and the default value for Max2 is 7 retransmissions. Both of these
values may be altered by the provisioning process.

Furthermore, the provisioning process MUST be able to disable one or both of the Max1 and Max2 DNS queries.

7.4.3 Race Conditions
In this section we describe how MGCP deals with race conditions.

First of all, MGCP deals with race conditions through the notion of a “quarantine list” that quarantines events and
through explicit detection of desynchronization, e.g., for mismatched hook-state due to glare for an endpoint.

Secondly, MGCP does not assume that the transport mechanism will maintain the order of commands and
responses. This may cause race conditions that may be obviated through a proper behavior of the call agent by a
proper ordering of commands.

Finally, in some cases, many gateways may decide to restart operation at the same time. This may occur, for
example, if an area loses power or transmission capability during an earthquake or an ice storm. When power and
transmission capability are reestablished, many gateways may decide to send RestartInProgress commands
simultaneously, which could lead to very unstable operation if not carefully controlled.

7.4.3.1 Quarantine List
MGCP controlled gateways will receive notification requests that ask them to watch for a list of events. The protocol
elements that determine the handling of these events are the “Requested Events” list, the “Digit Map", the
“Quarantine Handling”, and the “Detect Events” list.

When the endpoint is initialized, the requested events list only consists of persistent events for the endpoint, and the
digit map is assumed empty. After reception of a NotificationRequest command, the gateway starts observing the
endpoint for occurrences of the events mentioned in the list, including persistent events.

The events are examined as they occur. The action that follows is determined by the “action” parameter associated
to the event in the list of requested events, and also by the digit map. The events that are defined as “accumulate” or
“accumulate according to digit map” are accumulated in a list of observed events. The events that are marked as
“accumulate according to the digit map” will additionally be accumulated in the “current dial string”. This will go
on until one event is encountered that triggers a Notify command which will be sent to the current “notified entity”.

The gateway, at this point, will transmit the Notify command and will place the endpoint in a “notification state”. As
long as the endpoint is in this “notification state”, the events that are detected on the endpoint are stored in a
“quarantine” buffer for later processing. The events are, in a sense, “quarantined". The events detected are the events
specified by the union of the RequestedEvents parameter and the most recently received DetectEvents parameter or,
in case no DetectEvents parameter has been received, the events that are referred to in the RequestedEvents.
Persistent events are detected as well.

The endpoint exits the “notification state” when the response (whether success or failure) to the Notify command is
received. The Notify command may be retransmitted in the “notification state”, as specified in Section 7.4.2. If the
endpoint is or becomes disconnected (see Section 7.4.2) during this, a response to the Notify command will never be
received. The Notify command is then lost and hence no longer considered pending, yet the endpoint is still in the
"notification state". Should that occur, completion of the disconnected procedure specified in Section 7.4.3.6 shall
then lead the endpoint to exit the "notification state".

When the endpoint exits the “notification state” it resets the list of observed events and the “current dial string” of
the endpoint to a null value.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 60

Following that point, the behavior of the gateway depends on the value of the QuarantineHandling parameter in the
triggering NotificationRequest command:

If the Call Agent had specified that it expected, at most, one notification in response to the notification request
command (“lockstep” mode), then the gateway MUST simply keep on accumulating events in the quarantine buffer
until it receives the next notification request command. Until this happens, the endpoint is in a “lockstep state”, and
events that occur and are to be detected, are simply stored in the quarantine buffer. The events to be quarantined are
the same as in the “notification state”. Once the new NotificationRequest is received and executed successfully, the
endpoint exits the “lockstep state”.

If, however, the gateway is authorized to send multiple successive Notify commands (“loop” mode), it will proceed
as follows. When the gateway exits the "notification state", it resets the list of observed events and the "current dial
string" of the endpoint to a null value and starts processing the list of quarantined events, using the already received
list of requested events and digit map. When processing these events, the gateway may encounter an event, which
triggers a Notify command to be sent. If that is the case, the gateway can adopt one of the two following behaviors:

• It can immediately transmit a Notify command that will report all events that were accumulated in the list of
observed events until the triggering event, included, leaving the unprocessed events in the quarantine buffer,

• It can attempt to empty the quarantine buffer and transmit a single Notify command reporting several sets of
events. The “current dial string” MUST then be reset to a null value after each triggering event. The events that
follow the last triggering event MUST be left in the quarantine buffer.

If the gateway transmits a Notify command, the endpoint will reenter and remain in the "notification state" until the
acknowledgement is received (as described above). If the gateway does not find a quarantined event that triggers a
Notify command, it places the endpoint in a normal state. Events are then processed as they come, in exactly the
same way as if a Notification Request command had just been received.

A gateway can receive at any time a new NotificationRequest command for the endpoint, including the case where
the endpoint is disconnected, which will also have the effect of taking the endpoint out of the “notification state”
assuming the NotificationRequest executes successfully. Activating an embedded NotificationRequest is here
viewed as receiving a new NotificationRequest as well, except that the current list of ObservedEvents remains
unmodified rather than being processed again.

When a new NotificationRequest is received in the “notification state”, the gateway SHOULD attempt to deliver the
pending Notify (note that a Notify that was lost due to being disconnected, is no longer considered pending) prior to
a successful response to the new NotificationRequest. It does so by using the “piggy-backing” functionality of the
protocol and placing the messages (commands and responses) to be sent in order with the oldest message first. The
messages will then be sent in a single packet to the source of the new NotificationRequest, regardless of the source
and “notified entity” for the old and new command. The steps involved are the following:

1. The gateway builds a message that carries in a single packet a repetition of the old outstanding Notify command
and the response to the new NotificationRequest command.

2. The endpoint is then taken out of the “notification state” without waiting for the response to the Notify
command.

3. A copy of the outstanding Notify command is kept until a response is received. If a time-out occurs, the Notify
will be repeated, in a packet that will also carry a repetition of the response to the NotificationRequest.

• If the packet carrying the response to the NotificationRequest is lost, the Call Agent will retransmit the
NotificationRequest. The gateway will reply to this repetition by retransmitting in a single packet the
outstanding Notify command and the response to the NotificationRequest – this datagram will be sent
to the source of the NotificationRequest.

• Notify(s) for a given endpoint MUST be delivered in-order. If the gateway has to transmit a new
Notify before a response to the previous Notify is received, it constructs a packet that piggy-backs a
repetition of the old Notify, a repetition of the response to the last NotificationRequest, and the new
Notify – this datagram will be sent to the current “notified entity”.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 61

After receiving a NotificationRequest command, the “requested events” list, and “digit map” (if a new one was
provided) are replaced by the newly received parameters, and the “current dial string” is reset to a null value.
Furthermore, when the NotificationRequest was received in the “notification state”, the list of observed event is
reset to a null value. The subsequent behavior is then conditioned by the value of the QuarantineHandling parameter.
The parameter may specify that quarantined events, and observed events (which in this case is an empty list), are to
be discarded, in which case all quarantined and observed events are discarded. If the parameter specifies that the
quarantined and observed events should be processed, the gateway will start processing the list of quarantined and
observed events, using the newly received list of “requested events” and “digit map” if provided.

When processing these events, the gateway may encounter an event, which triggers a Notify command to be sent. If
that is the case, the gateway will immediately transmit a Notify command that will report all events that were
accumulated in the list of “observed events” up until and including the triggering event, leaving the unprocessed
events in the quarantine buffer. The endpoint then enters the “notification state” again.

A new notification request may be received while the gateway has accumulated events according to the previous
notification requests, but has not yet detected any notification-triggering events. The handling of not-yet-notified
events is determined, as with the quarantined events, by the quarantine handling parameters:

• If the quarantine-handling parameter specifies that quarantined events shall be ignored, the observed events list
is simply reset.

• If the quarantine-handling parameter specifies that quarantined events shall be processed, the observed event list
is transferred to the quarantined event list. The observed event list is then reset, and the quarantined event list is
processed. The only exception is the activation of an embedded Notification Request. In this case the observed
event list remains unmodified rather than being processed again.

The above procedure applies to all forms of notification requests, regardless of whether they are part of a connection
handling command or provided as a NotificationRequest command. Connection handling commands that do not
include a notification request are neither affected by nor do they affect the above procedure.

Figure 5 below illustrates the procedure specified above assuming all transactions execute successfully.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 62

Yes

No
(Loop Mode)

new RQNT
received

Yes *

No

 Processing Events

Outstanding NTFY +
RQNT response?

Piggyback new
NTFY with old
outstanding datagram

Notification State

Send NTFY

Event to be
quarantined

Add event to
Quarantine Buffer

NTFY response
received

Step mode?

Lockstep State
Wait for RQNT

Process RQNT
d send RQNT

response

Disca rd
quarantined
Events

Yes

No RQNT
received

Retransmission
may occur

Process event mode?

Event to be
quarantined

Add event to
Quarantine Buffer

Need to send NTFY

Apply and Piggyback new
RQNT response with new
outstanding datagram. **

* This decision leg is taken if the gateway needs to send a new Notify while it is waiting for a response to a previous Notify on the

same endpoint. This could occur as a result of receiving a new RQNT in the "Notification State", as described in the text
accompanying the diagram.

** The "new outstanding datagram" refers to the datagram containing the pending Notify, possibly piggy-backed with additional
Notify(s) and RQNT response(s), that was being retransmitted in the "notification state" when the new RQNT was received. The
in-order delivery of the RQNT response with pending Notify(s) is optional; the gateway may choose instead to send the RQNT
response in a separate datagram. The requirement to ensure in-order delivery of Notify's, on the other hand, is mandatory.

Figure 5 - Quarantine List Procedures

Call Agents SHOULD provide the response to a successful Notify message and the new NotificationRequest in the
same datagram using the piggy-backing mechanism.23

23 Vendors who choose not to follow this recommendation should examine call agent failure scenarios carefully.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 63

7.4.3.2 Explicit Detection
A key element of the state of several endpoints is the position of the hook. Although hook-state changing events are
persistent in NCS, race conditions and state mismatch may still occur, for example when the user decides to go off-
hook while the Call Agent is in the process of requesting the gateway to look for off-hook events and perhaps apply
a ringing signal (the “glare” condition well known in voice-based capabilities).

To avoid this race condition, the gateway MUST check the condition of the endpoint before responding to a
NotificationRequest. Specifically, it MUST return an error:

• If the gateway is requested to notify an “off hook” transition while the phone is already off hook (error code 401
– phone off hook),

• If the gateway is requested to notify an “on hook” or “flash hook” condition while the phone is already on hook
(error code 402 – phone on hook).

Additionally, individual signal definitions can specify that a signal will only operate under certain conditions, e.g.,
ringing may only be possible if the phone is already off hook. If such prerequisites exist for a given signal, the
gateway MUST return the error specified in the signal definition if the prerequisite is not met.

It should be noted, that the condition check is performed at the time the notification request is received, whereas the
actual event that caused the current condition may have either been reported, or ignored earlier, or it may currently
be quarantined.

The other state variables of the gateway, such as the list of requested events or list of requested signals, are entirely
replaced after each successful NotificationRequest, which prevents any long term discrepancy between the Call
Agent and the gateway.

When a NotificationRequest is unsuccessful, whether it is included in a connection-handling command or not, the
gateway will simply continue as if the command had never been received. although an error is returned. As all other
transactions, the NotificationRequest MUST operate as an atomic transaction. Thus any changes initiated as a result
of the command MUST be reverted.

When the Call Agent receives an error response indicating that a NotificationRequest was unsuccessful, it MUST
take action to ensure that any events quarantined by the endpoint are processed or discarded, and that the endpoint is
returned to a normal operating mode where newly requested events are reported as they occur. For example, say the
Call Agent receives an error code "401 - phone is already off hook" response to a NotificationRequest requesting
detection of the "off-hook" signal. At this point the Call Agent should assume that the NotificationRequest had no
effect on the endpoint, and that the endpoint is in the same state that it was prior receiving the command. If the
endpoint was quarantining events in the "lockstep" state prior to receiving the NotificationRequest, then it will still
be quarantining events in the "lockstep" state after sending the "401" error response. To ensure that the endpoint is
not left in a state where it is permanently quarantining events, the Call Agent should send a new NotificationRequest
with a different (possibly empty) set of requested events to transition the endpoint out of the "lockstep" state and
into the normal mode where it can report new events.

Another race condition can occur when a Notify is issued shortly before the reception by the gateway of a
NotificationRequest. The RequestIdentifier is used to correlate Notify commands with NotificationRequest
commands thereby enabling the Call Agent to determine if the Notify command was generated before or after the
gateway received the new NotificationRequest.

7.4.3.3 Transactional Semantics

As the potential transaction completion times increases, e.g., due to external resource reservations, a careful
definition of the transactional semantics becomes increasingly important. In particular the issue of race conditions,
specifically as it relates to hook-state must be defined carefully.

An important point to consider is, that the hook-state may in fact change between the time a transaction is initiated
and the time it completes. More generally, we may say that the successful completion of a transaction depends on
one or more pre-conditions where one or more of the pre-conditions may change dynamically during the execution
of the transaction.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 64

The simplest semantics for this is simply to require that all pre-conditions MUST be met from the time the
transaction is initiated until the transaction completes. Thus, if any of the preconditions change during the execution
of the transaction, the transaction MUST fail. Furthermore, as soon as the transaction is initiated, all new events are
quarantined. When the outcome of the transaction is known, all quarantined events are then processed.

As an example, consider a transaction that includes a request for the “off-hook” event. When the transaction is
initiated the phone is “on-hook” and this pre-condition is therefore met. If the hook-state changes to “off-hook”
before the transaction completes, the pre-condition is no longer met, and the transaction therefore immediately fails.
The “off-hook” event will now be stored in the “quarantine” buffer which then gets processed.

7.4.3.4 Ordering of Commands, and Treatment of Disorder

MGCP does not mandate that the underlying transport protocol guarantees the sequencing of commands sent to a
gateway or an endpoint. This property tends to maximize the timeliness of actions, but it has a few drawbacks. For
example:

• Notify commands may be delayed and arrive to the call agent after the transmission of a new Notification
Request command,

• If a new NotificationRequest is transmitted before a response to a previous one is received, there is no
guarantee that the previous one will not be received in second position.

Call Agents and gateways that want to guarantee consistent operation of the endpoints can use the rules specified
below:

1. When a gateway handles several endpoints, commands pertaining to the different endpoints can be sent in
parallel, for example following a model where each endpoint is controlled by its own process or its own thread.

2. When several connections are created on the same endpoint, commands pertaining to different connections can
be sent in parallel.

3. On a given connection, there should normally be only one outstanding command (create or modify). However, a
DeleteConnection command can be issued at any time. In consequence, a gateway may sometimes receive a
ModifyConnection command that applies to a previously deleted connection. Such commands MUST be
ignored, and an error returned (error code 515 – incorrect connection-id).

4. On a given endpoint, there should normally be only one outstanding NotificationRequest command at any time.
The RequestId parameter is used to correlate Notify commands with the triggering NotificationRequest.

5. In some cases, an implicitly or explicitly wild-carded DeleteConnection command that applies to a group of
endpoints can step in front of a pending CreateConnection command. The Call Agent should individually delete
all connections whose completion was pending at the time of the global DeleteConnection command. Also, new
CreateConnection commands for endpoints named by the wild-carding should not be sent until a response to the
wild-carded DeleteConnection command is received.

6. When commands are embedded within each other, sequencing requirements for all commands MUST be
adhered to. For example a CreateConnection command with a notification request in it must adhere to the
sequencing requirements for CreateConnection and NotificationRequest at the same time.

7. AuditEndpoint and AuditConnection are not subject to any sequencing.

8. RestartInProgress must always be the first command sent by an endpoint as defined by the restart procedure
(see Section 7.4.3.5). Any other command or response must be delivered after this RestartInProgress command
(piggy-backing allowed).

9. When multiple messages are piggy-backed in a single packet, the messages are always processed in order.

Those of the above rules that specify gateway behavior MUST be adhered to by embedded clients, however the
embedded client MUST NOT make any assumptions as to whether Call Agents follow the rules or not.
Consequently gateways MUST always respond to commands, regardless of whether they adhere to the above rules
or not.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 65

To ensure consistent operation, embedded clients SHOULD behave as specified below when one or more of the
above rules are not followed:

• Where a single outstanding command is expected (ModifyConnection, NotificationRequest), but the same
command is received in a new transaction before the old finishes executing, the gateway SHOULD fail the
previous command. This includes the case where one or more of the commands were encapsulated. The use of
error code 407 (transaction aborted) is RECOMMENDED.

• If a ModifyConnection command is received for a pending CreateConnection command, the ModifyConnection
command SHOULD simply be rejected. The use of error code 400 (transient error) is RECOMMENDED. Note
that this situation constitutes a Call Agent programming error.

Note, that where reception of a new command leads to aborting an old command, the old command SHOULD be
aborted regardless of whether the new command succeeds or not. For example, if a ModifyConnection command is
aborted by a DeleteConnection command which itself fails due to an encapsulated NotificationRequest, the
ModifyConnection command is still aborted.

7.4.3.5 Fighting the Restart Avalanche

Let's suppose that a large number of gateways are powered on simultaneously. If they were to all initiate a
RestartInProgress transaction, the Call Agent would very likely be swamped, leading to message losses and
network congestion during the critical period of service restoration. In order to prevent such avalanches, the
following behavior MUST be followed:

1. When a gateway is powered on, or when a gateway’s endpoints are put into service, the gateway initiates a
restart timer to a random value, uniformly distributed between 0 and a provisionable maximum waiting delay
(MWD), e.g., 360 seconds (see below). Care MUST be taken to avoid synchronicity of the random number
generation between multiple gateways that would use the same algorithm.

2. The gateway then waits for either the end of this timer, the reception of a command from the call agent, or the
detection of a local user activity, such as for example an off-hook transition on a residential gateway. A pre-
existing off-hook condition results in the generation of an off-hook event.

3. When the restart timer elapses, when a command is received, or when an activity or pre-existing off-hook
condition is detected, the gateway initiates the restart procedure.

The restart procedure simply states that the endpoint MUST send a RestartInProgress command to the Call Agent
informing it about the restart and furthermore guarantee that the first message (command or response) that the Call
Agent sees from this endpoint MUST be this RestartInProgress command. The endpoint MUST take full
advantage of piggy-backing in achieving this. For example, if an off-hook activity occurs prior to the restart timer
expiring, a packet containing the RestartInProgress command, and with a piggy-backed Notify command for the
off-hook event will be generated. In the case where the restart timer expires without any other activity, the gateway
simply sends a RestartInProgress message.

Note that if the RestartInProgress is piggy-backed with the response (R) to a command received while restarting,
then retransmission of the RestartInProgress does not require piggy-backing of the response R. However, while the
endpoint is restarting, a resend of the response R does require the RestartInProgress to be piggy-backed to ensure in-
order delivery of the two. The restart procedure is complete once a success response has been received. If an error
response is received, the subsequent behavior depends on the error code in question:

• If the error code indicates a transient error (4xx), then the restart procedure MUST be initiated again (as a new
transaction).

• If the error code is 521, then the endpoint is redirected, and the restart procedure MUST be initiated again (as a
new transaction). The 521 response should have included a NotifiedEntity which then is the "notified entity"
towards which the restart is initiated.

• If the error is any other permanent error (5xx), then it is RECOMMENDED that the endpoint no longer initiates
the restart procedure on its own (until rebooted) unless otherwise specified. If a command is received, the
endpoint MUST initiate the restart procedure again.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 66

Should the endpoint enter the “disconnected” state while carrying out the restart procedure, then the disconnected
procedure specified in Section 7.4.3.6 MUST be carried out, and a “disconnected” message is sent during the
procedure.

It is expected that each endpoint in a gateway will have a provisionable Call Agent, i.e., “notified entity”, to direct
the initial restart message towards. When the collection of endpoints in a gateway is managed by more than one Call
Agent, the above procedure must be performed for each collection of endpoints managed by a given Call Agent. The
gateway MUST take full advantage of wild-carding to minimize the number of RestartInProgress messages
generated when multiple endpoints in a gateway restart and the endpoints are managed by the same Call Agent.

The value of MWD is a configuration parameter that depends on the type of the gateway. The following reasoning
can be used to determine the value of this delay on residential gateways.

Call agents are typically dimensioned to handle the peak hour traffic load, during which, on average, 10% of the
lines will be busy, placing calls whose average duration is typically 3 minutes. The processing of a call typically
involves 5 to 6 transactions between each endpoint and the Call Agent. This simple calculation shows that the Call
Agent is expected to handle 5 to 6 transactions for each endpoint, every 30 minutes on average, or, to put it
otherwise, about one transaction per endpoint every 5 to 6 minutes on average. This suggests that a reasonable value
of MWD for a residential gateway would be 10 to 12 minutes. In the absence of explicit configuration, embedded
clients MUST use a default value of 600 seconds for MWD.

7.4.3.6 Disconnected Endpoints
In addition to the restart procedure, embedded clients also have a “disconnected” procedure, which is initiated when
an endpoint becomes “disconnected” as described in Section 7.4.2. It should here be noted, that endpoints can only
become disconnected when they attempt to communicate with the Call Agent. The following steps are followed by
an endpoint that becomes “disconnected”:

1. A “disconnected” timer is initialized to a random value, uniformly distributed between 0 and a provisionable
“disconnected” initial waiting delay (Tdinit), e.g., 15 seconds. Care MUST be taken to avoid synchronicity of
the random number generation between multiple gateways and endpoints that would use the same algorithm.

2. The gateway then waits for either the end of this timer, the reception of a command from the call agent, or the
detection of a local user activity for the endpoint, such as for example an off-hook transition.

3. When the “disconnected” timer elapses, when a command is received, or when a local user activity is detected,
the gateway MUST initiate the “disconnected” procedure with a new transaction ID for the endpoint. In the case
of local user activity, a provisionable “disconnected” minimum waiting delay (Tdmin) must furthermore have
elapsed since the gateway became disconnected or the last time it ended the “disconnected” procedure in order
to limit the rate at which the procedure is performed.

4. If the “disconnected” procedure still left the endpoint disconnected, a new value for the “disconnected” timer is
selected. The timer value MUST be selected from the range defined by 1.5 times the last timer value and double
the last timer value, and MAY be randomly generated. In either case, the new timer value is subject to a
provisionable “disconnected” maximum waiting delay (Tdmax), e.g., 600 seconds, and the gateway proceeds
with step 2 again.

The “disconnected” procedure is similar to the restart procedure in that it now simply states that the endpoint MUST
send a RestartInProgress command to the Call Agent informing it that the endpoint was disconnected and
furthermore guarantee that the first message (command or response) that the Call Agent now sees from this endpoint
MUST be this RestartInProgress command. During each initiation of “disconnected” procedure, the command
MUST observe the normal retransmission and transaction identifiers requirements. (See Section 7.4.2.) The endpoint
MUST take full advantage of piggy-backing in achieving this.

On receiving a RestartInProgress message containing a restart method of "disconnected" the Call Agent MUST take
action to ensure that any events quarantined by the endpoint are processed or discarded, and that the endpoint is
returned to a normal operating mode where newly requested events are reported as they occur. The Call Agent
SHOULD send a NotificationRequest containing a Quarantine-Handling parameter set to "discard" in this case. The
Call Agent may also decide to perform one or more of the following; audit the endpoint, clear all connections for the
endpoint, or send a NotificationRequest asking the endpoint to process quarantined events (see Section 7.4.3.7).

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 67

Note that if a disconnected procedure is already in progress when a command is received, the existing disconnect
procedure MUST be terminated and a new procedure MUST be started. This is to support a possible call agent
redirection.

Note also that a disconnected endpoint does not mean that the endpoint is in an “out-of-service” state. Disconnected
is not a state of the endpoint’s service availability, but rather an indication of the endpoints inability to communicate
to the call agent.

Also note, that if the RestartInProgress is piggy-backed with the response (R) to a command received while being
disconnected, then retransmission of the RestartInProgress does not require piggy-backing of the response R.
However, while the endpoint is disconnected, resending the response R does require the RestartInProgress to be
piggy-backed as well to ensure the in-order delivery of the two.

The disconnected procedure is complete once a success response has been received. Error responses are handled
similarly to the restart procedure (Section 4.4.3.5). If the "disconnected" procedure is to be initiated again following
an error response, the rate-limiting timer considerations specified above still apply. A disconnected endpoint may
wish to send a command (besides RestartInProgress) while it is disconnected. Doing so will only succeed once the
Call Agent is reachable again, which raises the question of what to do with such a command meanwhile. At one
extreme, the endpoint could drop the command right away, however that would not work very well when the Call
Agent was in fact available, but the endpoint had not yet completed the "disconnected" procedure (consider for
example the case where a NotificationRequest was just received which immediately resulted in a Notify being
generated). To prevent such scenarios, disconnected endpoints MUST NOT blindly drop new commands to be sent
for a period of Tsmax seconds after they receive a non-audit command. One way of satisfying this requirement is to
employ a temporary buffering of commands to be sent, however in doing so, the endpoint must ensure, that it:

• Does not build up a long queue of commands to be sent,

• Does not swamp the Call Agent by rapidly sending too many commands once it is connected again.

Buffering commands for Tsmax seconds and, once the endpoint is connected again, limiting the rate at which buffered
commands are sent to one outstanding command per endpoint is considered safe. If the endpoint is not connected
within Tsmax seconds, but a "disconnected" procedure is initiated within Tsmax seconds, the endpoint MAY piggy-
back the buffered command(s) with that RestartInProgress. Note, that once a command has been sent, regardless of
whether it was buffered initially, or piggy-backed earlier, retransmission of that command MUST cease Tsmax
seconds after the initial send as described in Section 4.4.2. This specification purposely does not specify any
additional behavior for a disconnected endpoint. Vendors MAY for instance choose to provide silence, play reorder
tone, or even enable a downloaded wav file to be played on affected endpoints.

The default value for Tdinit is 15 seconds, the default value for Tdmin, is 15 seconds, and the default value for Tdmax is
600 seconds.

7.4.3.7 Call Agent Handling of Disconnected Endpoints

When an endpoint is in the "disconnected" state it may accumulate a large number of events in the quarantine buffer.
Also, a "disconnected" endpoint may autonomously delete established connections (say the gateway reboots).
Therefore, when connectivity between a "disconnected" endpoint and its Call Agent is subsequently restored, the
Call Agent MUST be prepared to deal with the following issues:

• The large number of Notify messages that may be generated by the endpoint if all events on the quarantine list
are processed,

• The reception of old/stale events reported by the endpoint that no longer have any relevance. The quarantine
buffer is a First-In-First-Out (FIFO) queue, where the oldest events are processed first and notified (if
requested) to the Call Agent. The action taken by the Call Agent on receiving an old event may not be
meaningful if the old event has been superseded by newer events (for example, a "digits" event would no longer
be relevant if the endpoint subsequently went on-hook),

• Connection state mismatch between the Call Agent and endpoint, where the Call Agent thinks the endpoint has
one or more connections, but the endpoint in fact has no connections.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 68

Call Agents are free to use any mechanism supported by the protocol to deal with the above issues. One way of
achieving this is to do the following:

1. We define a new boolean variable called "disconnect-event-sync", which is maintained by the Call Agent for
each of its endpoints. When set to true, this variable indicates that connectivity with a "disconnected" endpoint
has recently been restored, but that event/signal synchronization has not yet been achieved. (Note, this variable
is being introduced in order to describe Call Agent behavior, and is not intended to imply any particular
implementation. The variable is not externally visible.)

a. As soon as the Call Agent learns that an endpoint is disconnected, it sets "disconnect-event-sync" to true.
The "disconnected" procedure ensures, that the Call Agent will learn about the endpoint being disconnected
by receiving a "disconnected" RestartInProgress message. When an endpoint receives a positive
acknowledgement to the "disconnected" RSIP, it completes the "disconnected" procedure. At this point, the
endpoint could immediately generate a Notify for a two reasons; to send a Notify command that was
buffered while the endpoint was disconnected, or, if the endpoint was in the "notification" state and "loop"
mode while disconnected, to report a Notify-triggering event on the quarantine list.

• If the endpoint operates in "step" mode, responding to the Notify will in itself not enable any further
Notify messages to be generated (an additional NotificationRequest would be needed for that).

• However if the endpoint operates in "loop" mode, then a response to the Notify will enable further
Notify messages to be generated. As discussed above, this is sometimes undesirable as the events
being reported may be old and a lot of events may have been quarantined, which in turn will result in a
large number of Notify messages and subsequent NotificationRequest messages based on stale
information.

b. As long as an endpoint has "disconnect-event-sync" set to true, the Call Agent should take action to ensure
that the potentially large number of events on the quarantine list are either discarded, or processed in a
controlled and orderly manner. This can be achieved in a number of ways:

• The Call Agent can send a single NotificationRequest specifying that all quarantined events are to be
discarded. On receiving a positive acknowledgment to this command, or on receiving a Notify with the
same RequestIdentifier, the Call Agent should set the "disconnect-event-sync" indicator to false, at
which point regular event processing for the endpoint is resumed. The downside to this approach is
that it will clear any events that have been accumulated, regardless of the number of events
accumulated. In some cases, this may result in unnecessary service interruption. In order to address
this, protocol extensions will be necessary.

• The Call Agent can send a NotificationRequest specifying that quarantined events are to be processed.
If the endpoint is operating in "step" mode then it will report a single notify-triggering event for each
NotificationRequest received, whereas in the "loop" mode it can report multiple events under a single
NotificationRequest.

Since the information conveyed by the notified events may no longer be relevant, the Call Agent
should not blindly process these events (for example, on being notified of an "off-hook" event, the Call
Agent should not automatically send a NotificationRequest to apply dial-tone and request notification
of "on-hook"). Instead, the Call Agent must synchronize its internal state data with the actual state of
the endpoint. Since an endpoint performs signal/event glare processing against the current hook-switch
state of the line, the Call Agent can discover the current hook-switch state based on the response to a
NotificationRequest. For example, a "402 - phone already on hook" response to a NotificationRequest
asking for detection of "on-hook" implies that the line is currently on-hook. The Call Agent may
choose to ignore notified events that are deemed irrelevant based on the current hook-switch state (e.g.,
ignore "digits" event if the line is currently "on-hook").

Once all events on the quarantine list have been processed, the Call Agent should set the "disconnect-
event-sync" indicator to false. The Call Agent can safely assume that all quarantined events have been
processed if a delay of duration Tthist has expired since the Call Agent last prompted the endpoint to
process the next event (i.e., if a delay of duration Tthist has expired since the Call Agent sent the

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 69

response to the previous Notify in the "loop" mode, or since the Call Agent received the last positive
response to NotificationRequest in the "step" mode).

2. When endpoints become disconnected, connections created on that endpoint should be unaffected. However, it
is always possible, that a connection can no longer be sustained by the endpoint and hence that it is deleted; this
will result in a DeleteConnection command sent to the Call Agent. When the endpoint is disconnected, such a
command may never make it to the Call Agent, in which case it will not learn about the deleted connection.
Consequently, whenever a Call Agent learns that an endpoint is disconnected, it should audit the endpoint for
the list of connections present.

7.5 Return Codes and Error Codes

All MGCP commands receive a response. The response carries a return code that indicates the status of the
command. The return code is an integer number, for which five value ranges have been defined:

• value 000 indicates a response acknowledgement24,

• values between 100 and 199 indicate a provisional response,

• values between 200 and 299 indicate a successful completion,

• values between 400 and 499 indicate a transient error,

• values between 500 and 599 indicate a permanent error.

The values that have been defined are listed in Table 4 below:
Table 4 - Return Code Definitions

Code Meaning
000 Response acknowledgement.
100 The transaction is currently being executed. An actual completion message will follow later.
200 The requested transaction was executed normally.
250 The connection(s) was deleted.
400 The transaction could not be executed, due to a transient error.
401 The phone is already off hook.
402 The phone is already on hook.
407 Transaction aborted. The transaction was aborted by some external action, e.g., a ModifyConnection

command aborted by a DeleteConnection command.
500 The transaction could not be executed because the endpoint is unknown.
501 The transaction could not be executed because the endpoint is not ready.
502 The transaction could not be executed because the endpoint does not have sufficient resources.
503 "All of" wildcard not fully supported. The transaction contained an "all of" wildcard, however the

gateway does not fully support these. Note that this is currently only permissible for non-empty
NotificationRequests.

505 Unsupported RemoteConnectionDescriptor. This SHOULD be used when one or more mandatory
parameters or values in the RemoteConnectionDescriptor is not supported.

506 Unable to satisfy both LocalConnectionOptions and RemoteConnectionDescriptor. This SHOULD be
used when the LocalConnectionOptions and RemoteConnectionDescriptor contain one or more
mandatory parameters or values that conflict with each other and/or cannot be supported at the same
time (except for codec negotiation failure – see error code 534).

24 Response acknowledgement is used for provisional responses (see Section 8.8).

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 70

Code Meaning
508 Unknown or unsupported quarantine handling.
510 The transaction could not be executed because a protocol error was detected.
511 The transaction could not be executed because the command contained an unrecognized extension.
512 The transaction could not be executed because the gateway is not equipped to detect one of the

requested events.
513 The transaction could not be executed because the gateway is not equipped to generate one of the

requested signals.
514 The transaction could not be executed because the gateway cannot send the specified announcement.
515 The transaction refers to an incorrect connection-id (may have been already deleted).
516 The transaction refers to an unknown call-id.
517 Unsupported or invalid mode.
518 Unsupported or unknown package.
519 Endpoint does not have a digit map.
520 The transaction could not be executed because the endpoint is “restarting”.
521 Endpoint redirected to another Call Agent.
522 No such event or signal.
523 Unknown action or illegal combination of actions.
524 Internal inconsistency in LocalConnectionOptions.
525 Unknown extension in LocalConnectionOptions.
526 Insufficient bandwidth.
527 Missing RemoteConnectionDescriptor.
528 Incompatible protocol version.
529 Internal hardware failure.
532 Unsupported value(s) in LocalConnectionOptions.
533 Response too big.
534 Codec negotiation failure.
538 Event/signal parameter error (e.g., missing, erroneous, unsupported, unknown, etc.).

7.6 Reason Codes

Reason codes are used by the gateway when deleting a connection to inform the Call Agent about the reason for
deleting the connection. They may also be used in a RestartInProgress command, to inform the Call Agent of the
reason for the restart. The reason code is an integer number. Defined values of the reason code are listed in Table 5
below:

Table 5 - Reason Code Definitions

Code Meaning
000 Endpoint state is normal. (This code is used only in response to audit requests.)
900 Endpoint malfunctioning.
901 Endpoint taken out of service.
902 Loss of lower layer connectivity (e.g., downstream sync).

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 71

903 QoS resource reservation was lost.

7.7 Use of Local Connection Options and Connection Descriptors

The normal sequence in setting up a bi-directional connection involves at least three steps:

1. The Call Agent asks the first gateway to "create a connection" on an endpoint. The gateway allocates resources
to that connection, and responds to the command by providing a "session description" (referred to as its
LocalConnectionDescriptor). The session description contains the information necessary for another party to
send packets toward the newly created connection.

2. The Call Agent then asks the second gateway to "create a connection" on an endpoint. The command carries the
"session description" provided by the first gateway (now referred to as the RemoteConnectionDescriptor). The
gateway allocates resources to that connection, and responds to the command by providing its own "session
description" (LocalConnectionDescriptor).

3. The Call Agent uses a "modify connection" command to provide this second "session description" (now
referred to as the RemoteConnectionDescriptor) to the first endpoint. Once this is done, communication can
proceed in both directions.

When the Call Agent issues a Create or Modify Connection command, there are thus three parameters that
determine the media supported by that connection:

• LocalConnectionOptions: Supplied by the Call Agent to control the media parameters used by the gateway for
the connection. When supplied, the gateway must conform to these media parameters until either the connection
is deleted, or a ModifyConnection command is received.

• RemoteConnectionDescriptor: Supplied by the Call Agent to convey the media parameters supported by the
other side of the connection. When supplied, the gateway must conform to these media parameters until either
the connection is deleted, or a ModifyConnection command is received.

• LocalConnectionDescriptor: Supplied by the gateway to the Call Agent to convey the media parameters it
supports for the connection. When supplied, the gateway must honor the media parameters until either the
connection is deleted, or the gateway issues a new LocalConnectionDescriptor. In addition to the media
parameters assigned to the connection, the gateway can also advertise additional supported capabilities in the
LocalConnectionDecriptor. Note that such capabilities MUST be provided outside the "m=" line in the SDP.
The gateway is free to advertise all of its supported capabilities independent of the LCO or RCD parameters
received from the Call Agent, and independent of the media parameters associated with the connection.

Codec and packetization period selection must only be performed, as described in this section, if either:

a) The gateway receives a CRCX, or

b) The gateway receives a MDCX and any of the following parameters are present:

- encoding method (a: in LocalConnectionOptions)

- packetization period (p: in LocalConnectionOptions)

- multiple packetization period (mp: in LocalConnectionOptions)

- RemoteConnectionDescriptor

Furthermore, this codec and packetization period selection process must only use the information present in the
connection request and not retain any of the values that may have been received in previous connection
requests. For example, if a gateway received a MDCX with all necessary LCO parameters but was missing a
RemoteConnectionDescriptor, it will negotiate as if no RemoteConnectionDescriptor had ever been received for
that connection. As well, if all of the above parameters are omitted in a MDCX command the existing
negotiated codecs and packetization periods will remain intact.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 72

In determining which codec(s) and packetization period(s) to provide in the LocalConnectionDescriptor, there
are three lists of codecs and packetization periods that a gateway needs to consider:

• A list of codecs and packetization periods allowed by the LocalConnectionOptions. A codec is allowed
by the LocalConnectionOptions if it satisfies the constraints specified by the encoding method,
packetization period and multiple packetization periods fields. If one or more of these fields are
omitted, the omitted fields do not impose any constraints on the allowed codecs.

• A list of codecs and packetization periods in the RemoteConnectionDescriptor.

• An internal list of codecs and packetization periods that the gateway can support for the connection. A
gateway may support one or more codecs and packetization periods for a given connection.

Codec selection (including all relevant media parameters) can then be described by the following steps:

1. An approved list of codecs/packetization periods is formed by taking the intersection of the internal list of
codecs/packetization periods and codecs/packetization periods allowed by the LocalConnectionOptions. If
LocalConnectionOptions was not provided, the approved list of codecs/packetization periods thus contains the
internal list. If the LocalConnectionOptions was provided but the codecs parameter was omitted, the
LocalConnectionOptions implicitly allows all codecs in the internal list, provided they are not incompatible
with any packetization period(s) specified. Similarly, if the LocalConnectionOptions was provided but the
packetization period(s) was omitted, the LocalConnectionOptions implicitly contains the set of packetization
periods supported by the internal list.

2. If the approved list of codecs/packetization periods is empty, a codec negotiation failure has occurred and an
error response is generated (error code 534 – codec negotiation failure – is recommended).

3. Otherwise, a negotiated list of codecs/packetization periods is formed by taking the intersection of the approved
list of codecs/packetization periods and codecs/packetization periods allowed by the
RemoteConnectionDescriptor. If a RemoteConnectionDescriptor was not provided, the negotiated list of
codecs/packetization periods thus contains the approved list of codecs/packetization periods. If the
RemoteConnectionDescriptor does not contain any media stream lines, a codec negotiation failure has occurred
and an error response is generated (error code 534 – codec negotiation failure – is recommended). If the
RemoteConnectionDescriptor contains multiple media streams, the MTA SHOULD only accept one of these
and reject the others by setting their port to zero in the LocalConnectionDescriptor. If the
RemoteConnectionDescriptor was provided but the packetization period(s) was omitted, the negotiated list of
packetization periods contains the set of packetization periods from the approved list. The MTA MUST choose
reasonable defaults as referenced or defined in the IPCablecom Audio/Video Codecs Specification [19] if the
packetization period is explicitly omitted from both the LocalConnectionOptions and the
RemoteConnectionDescriptor.

4. If the negotiated list of codecs/packetization periods is empty, a codec negotiation failure has occurred and an
error response is generated (error code 534 – codec negotiation failure – is recommended).

5. Otherwise, codec negotiation has succeeded, and the negotiated list of codecs/packetization periods is returned
in the LocalConnectionDescriptor.

Note that both LocalConnectionOptions and the RemoteConnectionDescriptor can contain a list of codecs ordered
by preference. When both are supplied, the gateway should adhere to the preferences provided in the
LocalConnectionOptions. It should be noted, that the above procedure negotiates both encoding methods and
packetization periods as opposed to just encoding methods. This is done to enable consistent local and far-end QoS
operation in the segmented QoS model used in IPCablecom.

In the case that a gateway supports more than one codec per endpoint, there are two options the gateway can use in
deciding how many codecs it wants to support for that connection:

1. Gateway supports multiple codecs and can switch between different codecs in real-time. The gateway returns all
negotiated codecs in the SDP media stream line and reserves the Least-Upper-Bound (LUB) as per the DQoS
specification [20]. The LUB is reserved to guarantee that a switch to any of these codecs will succeed. Multiple
codecs in the m= line means the device must be ready to receive media packets from any of the negotiated

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 73

codecs. As well, the gateway may send media packets from any of the negotiated codecs and switch between
them as required.

2. Gateway supports one or more codecs but cannot switch between different codecs in real-time. The gateway
therefore negotiates and returns only one codec in the SDP media stream line, (optionally, gateway also puts
additional supported codecs in the SDP ‘X-pc-codecs’ attribute) and reserves the bandwidth for the single
negotiated codec in the media stream line as per the DQoS specification. With this method, a codec change
must be initiated by the CMS in order to change codecs at which time the resulting change in bandwidth is re-
established as per the DQoS specification.

7.7.1 Remote IP and Port Negotiation
The remote IP and port are provided via the Remote Connection Descriptor. Once obtained in a successful
connection handling command (for example: a modify connection) the endpoint MUST continue to use them until
either a new Remote Connection Descriptor is provided which specifies a new remote IP or port, or the connection
is deleted. Note that the receipt of a Modify Connection command without a Remote Connection Descriptor which
may kick off Codec negotiation, does not invalidate the current remote IP and port, even if the media is modified
from audio to image or vice versa.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 74

8 MEDIA GATEWAY CONTROL PROTOCOL
The MGCP implements the media gateway control interface as a set of transactions. The transactions are composed
of a command and a mandatory response. There are eight types of commands:

• CreateConnection

• ModifyConnection

• DeleteConnection

• NotificationRequest

• Notify

• AuditEndpoint

• AuditConnection

• RestartInProgress

The first four commands are sent by the Call Agent to a gateway. The Notify command is sent by the gateway to the
Call Agent. The gateway can also send a DeleteConnection as defined in Section 7.3.6. The Call Agent can send
either of the Audit commands to the gateway and, finally, the gateway can send a RestartInProgress command to the
Call Agent.

8.1 General Description

All commands are composed of a Command header, which for some commands may be followed by a session
description.

All responses are composed of a Response header, which for some commands may be followed by a session
description.

Headers and session descriptions are encoded as a set of text lines, separated by a carriage return and line feed
character (or, optionally, a single line-feed character). The headers are separated from the session description by an
empty line.

MGCP uses a transaction identifier with a value between 1 and 999999999 to correlate commands and responses.
The transaction identifier is encoded as a component of the command header and is repeated as a component of the
response header.

8.2 Command Header

The command header is composed of:

• A command line identifying the requested action or verb, the transaction identifier, the endpoint toward which
the action is requested, and the MGCP protocol version,

• A set of parameter lines composed of a parameter name followed by a parameter value.

Unless otherwise noted or dictated by other referenced standards, each component in the command header is case
insensitive. This goes for verbs as well as parameters and values, and all comparisons MUST treat upper and lower
case as well as combinations of these as being equal.

8.2.1 Command Line
The command line is composed of:

• The name of the requested verb,

• The identification of the transaction,

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 75

• The name of the endpoint(s) that should execute the command (in notifications or restarts, the name of the
endpoint(s) that is issuing the command),

• The protocol version.

These four items are encoded as strings of printable ASCII characters separated by white spaces, i.e., the ASCII
space (0x20) or tabulation (0x09) characters. Embedded clients SHOULD use exactly one ASCII space separator,
however they MUST be able to parse messages with additional white space characters.

8.2.1.1 Requested Verb Coding
Requested verbs are encoded as four letter upper- and/or lower-case ASCII codes (comparisons MUST be case
insensitive) as defined in Table 6 below:

Table 6 - Requested Verb Codings

Verb Code

CreateConnection CRCX

ModifyConnection MDCX

DeleteConnection DLCX

NotificationRequest RQNT

Notify NTFY

AuditEndpoint AUEP

AuditConnection AUCX

RestartInProgress RSIP

New verbs may be defined in future versions of the protocol. It may be necessary, for experimental purposes, to use
new verbs before they are sanctioned in a published version of this protocol. Experimental verbs should be identified
by a four-letter code starting with the letter X (e.g., XPER).

An embedded client that receives a command with an experimental verb it does not support MUST return an error
(error code 511 – unrecognized extension).

8.2.1.2 Transaction Identifiers

Transaction identifiers are used to correlate commands and responses.

An embedded client supports two separate transaction identifier name spaces:

• a transaction identifier name space for sending transactions, and

• a transaction identifier name space for receiving transactions.

At a minimum, transaction identifiers for commands sent to a given embedded client MUST be unique for the
maximum lifetime of the transactions within the collection of Call Agents that control that embedded client (see
Section 8.5). Thus, regardless of the sending Call Agent, embedded clients can always detect duplicate transactions
by simply examining the transaction identifier. The coordination of these transaction identifiers between Call Agents
is outside the scope of this specification though.

Transaction identifiers for all commands sent from a given embedded client MUST be unique for the maximum
lifetime of the transactions (see Section 8.5) regardless of which Call Agent the command is sent to. Thus, a Call
Agent can always detect a duplicate transaction from an embedded client by the combination of the domain-name of
the endpoint and the transaction identifier. The embedded client in turn can always detect a duplicate response
acknowledgement by looking at the transaction Id(s).

The transaction identifier is encoded as a string of up to nine decimal digits. In the command lines, it immediately
follows the coding of the verb.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 76

Transaction identifiers have values between 1 and 999999999. Transaction identifiers should not use any leading
zeroes. Equality is based on numerical value and leading zeroes are ignored. An MGCP entity MUST NOT reuse a
transaction identifier more quickly than three minutes after completion of the previous command in which the
identifier was used.

8.2.1.3 Endpoint, Call Agent, and NotifiedEntity Name Coding
The endpoint names and Call Agent names are encoded as e-mail addresses, as defined in [22]. In these addresses,
the domain name identifies the system where the endpoint is attached, while the left side identifies a specific
endpoint on that system. Both components MUST be case insensitive.

Examples of such names are shown in Table 7 below:

Table 7 - Example Name Coding

aaln/1@ncs2.whatever.net Analog access line 1 in the embedded client ncs2 in
the “whatever” network.

Call-agent@ca.whatever.net Call Agent for the “whatever” network.

The name of notified entities is expressed with the same syntax, with the possible addition of a port number, as in:
Call-agent@ca.whatever.net:5234

In case the port number is omitted, the default MGCP Call Agent port - 2727 will be used. Additional detail on
endpoint names can be found in Section 7.1.1.

8.2.1.4 Protocol Version Coding
The protocol version is coded as the keyword “MGCP” followed by a white space and the version number, which
again is followed by the profile name “NCS” and a profile version number. The version numbers are composed of a
major version number, a dot, and a minor version number. The major and minor version numbers are coded as
decimal numbers. The profile version number defined by this specification is 1.0. The protocol version for this
specification MUST be encoded as:

MGCP 1.0 NCS 1.0

The “NCS 1.0” portion signals that this is the NCS 1.0 profile of MGCP 1.0.

An entity that receives a command with a protocol version it does not support, MUST respond with an error (error
code 528 – Incompatible Protocol Version).

8.2.2 Parameter Lines
Parameter lines are composed of a parameter name, which in most cases is composed of a single upper-case
character, followed by a colon, a white space, and the parameter value. Parameter names and values are still case-
insensitive though. The parameters that can be present in commands are defined in Table 8.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 77

Table 8 - Parameter Definitions

Parameter Name Code Parameter Value

ResponseAck25 K See description.
CallId C Hexadecimal string, MUST NOT exceed 32 characters. Call

Identifiers are compared as strings rather than numerical values.
ConnectionId I Hexadecimal string, MUST NOT exceed 32 characters.

Connection Identifiers are compared as strings rather than
numerical values.

NotifiedEntity N An identifier, in RFC 2821 format, composed of an arbitrary
string and of the domain name of the requesting entity, possibly
completed by a port number, as in:
 Call-agent@ca.whatever.net:5234

RequestIdentifier X Hexadecimal string, length MUST NOT exceed 32 characters.

LocalConnectionOptions L See description.
Connection Mode M See description.
RequestedEvents R See description.
SignalRequests S See description.
DigitMap D A text encoding of a digit map.
ObservedEvents O See description.
ConnectionParameters P See description.
ReasonCode E See description.
SpecificEndPointId Z An identifier, in RFC 2821 format, composed of an arbitrary

string, optionally followed by an “@” followed by the domain
name of the embedded client to which this endpoint is attached.

MaxEndPointIds ZM Decimal string, length MUST NOT exceed 16 characters.

NumEndPoints ZN Decimal string, length MUST NOT exceed 16 characters.

RequestedInfo F See description.
QuarantineHandling Q See description.
DetectEvents T See description.
EventStates ES See description.
ResourceID DQ-RI See description.
RestartMethod RM See description.
RestartDelay RD A number of seconds encoded as a decimal number.
Capabilities A See description.
VersionSupported VS See description.
MaxMGCPDatagram MD See description.

25 The ResponseAck parameter was not shown in Section 7.3 as transaction identifiers are not visible in our example API.
Implementers may choose a different approach.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 78

The parameters are not necessarily present in all commands. Table 9 provides the association between parameters
and commands. The letter M stands for mandatory, O for optional, and F for forbidden:

Table 9 - Association of Parameters with Commands

Parameter Name CRCX MDCX DLCX RQNT NTFY AUEP AUCX RSIP

ResponseAck25 O O O O O O O O

CallId M M O F F F F F

ConnectionId F M O F F F M F

RequestIdentifier O O O M M F F F

LocalConnectionOptions O O F F F F F F

Connection Mode M O F F F F F F

RequestedEvents O* O* O* O* F F F F

SignalRequests O* O* O* O* F F F F

NotifiedEntity O O O O O F F F

ReasonCode F F O F F F F O

ObservedEvents F F F F M F F F

DigitMap O O O O F F F F

Connection parameters F F O F F F F F

Specific Endpoint Id F F F F F O F F

MaxEndPointIds F F F F F O F F

NumEndPoints F F F F F F F F

RequestedInfo F F F F F O O F

QuarantineHandling O O O O F F F F

DetectEvents O O O O F F F F

EventStates F F F F F F F F

ResourceID F F F F F F F F

RestartMethod F F F F F F F M

RestartDelay F F F F F F F O

Capabilities F F F F F F F F

VersionSupported F F F F F F F F

MaxMGCPDatagram F F F F F F F F

RemoteConnection
Descriptor

O O F F F F F F

* The RequestedEvents and SignalRequests parameters are optional in the NotificationRequest. If these parameters are omitted,
the corresponding lists will be considered empty. For the connection handling commands, omission of these two parameters
when the command includes a RequestIdentifier means the corresponding lists will be considered empty.

Embedded clients and Call Agents SHOULD always provide mandatory parameters before optional ones, however
embedded clients MUST NOT fail if this recommendation is not followed.

If implementers need to experiment with new parameters, for example when developing a new MGCP application,
they should identify these parameters by names that begin with the string “X-” or “X+”, such as for example:

X-FlowerOfTheDay: Daisy

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 79

Parameter names that start with “X+” are mandatory parameter extensions. A gateway that receives a mandatory
parameter extension that it cannot understand MUST respond with an error (error code 511 – unrecognized
extension).

Parameter names that start with “X-” are non critical parameter extensions. A gateway that receives a non critical
parameter extension that it cannot understand can safely ignore that parameter.

It should be noted that experimental verbs are of the form XABC, whereas experimental parameters are of the form
X-ABC.

If a parameter line is received with a forbidden parameter, or any other formatting error, the receiving entity should
respond with the most specific error code for the error in question. The least specific error code is 510 – protocol
error. Commentary text can always be provided.

8.2.2.1 Response Acknowledgement
The response acknowledgement parameter25 is used to support the three-way handshake described in Section 8.7. It
contains a comma separated list of "confirmed transaction-id ranges".

Each "confirmed transaction-id range" is composed of either one decimal number, when the range includes exactly
one transaction, or two decimal numbers separated by a single hyphen, describing the lower and higher transaction
identifiers included in the range.

An example of a response acknowledgement is:
K: 6234-6255, 6257, 19030-19044

8.2.2.2 RequestIdentifier
The request identifier correlates a Notify command with the NotificationRequest that triggered it. A
RequestIdentifier is a hexadecimal string; length MUST not exceed 32 characters. RequestIdentifiers are compared
as strings rather than numerical values. The string “0” is reserved for reporting of persistent events in the case where
no NotificationRequest has been received yet (see Section 7.3.2).

8.2.2.3 Local Connection Options

The local connection options describe the operational parameters that the Call Agents instructs the gateway to use
for a connection. These parameters are:

• The packetization period in milliseconds, encoded as the keyword “p” followed by a colon and a decimal
number.

• The multiple packetization period in milliseconds for each codec in the encoding method LCO, encoded as the
keyword “mp” followed by a colon and a list of decimal numbers or hyphens, with one entry for each entry in
the Encoding Method Field. Each packetization period value is separated from its successor by a single
semicolon. The first entry in the list MUST be a decimal number. Subsequent entries in the list MUST be either
a decimal number or a hyphen.

• The literal name of the compression algorithm as specified in the IPCablecom Audio/Video Codec Specification
[19], encoded as the keyword “a” followed by a colon and a character string. If the Call Agent specifies a list of
values, these values will be separated by a semicolon. For RTP, audio codecs MUST be specified by using
encoding names defined in the RTP AV Profile [3], encoding names registered with the IANA, or encoding
names referenced or defined in the IPCablecom Audio/Video Codecs Specification [19]. It is
RECOMMENDED that other well-known variants of the literal codec names be supported as well.

• The echo-cancellation parameter, encoded as the keyword “e” followed by a colon and the value “on” or “off”.

• The type of service parameter, encoded as the keyword “t” followed by a colon and the value encoded as two
hexadecimal digits.

• The silence suppression parameter, encoded as the keyword “s” followed by a colon and the value “on” or
“off”.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 80

The LocalConnectionOptions parameters used for Dynamic Quality of Service are:

• The D-QoS GateID encoded as the keyword “dq-gi” followed by a colon and a string of up to 8 hex characters
corresponding to a 32 bit identifier for the GateID.

• The D-QoS Resource Reservation parameter encoded as the keyword “dq-rr” followed by a colon and a
character string. A list of values may be specified in which case the values will be separated by a semicolon.
The possible values are shown in Table 10 below:

Table 10 - DQoS Resource Reservation Parameter Values

Mode Meaning

sendresv Reserve in the send direction only.
recvresv Reserve in the receive direction only.
snrcresv Reserve in the send and receive direction.
sendcomt Commit in the send direction only.
recvcomt Commit in the receive direction only.
snrccomt Commit in the send and receive direction.

• The ResourceID encoded as the keyword “dq-ri” followed by a colon and a string of up to 8 hex characters

corresponding to a 32 bit identifier for the ResourceID.

• The ReserveDestination is encoded as the keyword “dq-rd” followed by a colon and an IP-address encoded
similarly to an IP-address for the domain name portion of an endpoint name. The ReserveDestination may
optionally be followed by a colon and up to 5 decimal characters for a UDP port number to use.

The LocalConnectionOptions parameters used for Security are encoded as follows:

• The RTP ciphersuite is encoded as the keyword “sc-rtp” followed by a colon and an RTP ciphersuite string as
defined below. A list of values may be specified in which case the values MUST be separated by a single
semicolon.

• The RTCP ciphersuite is encoded as the keyword “sc-rtcp” followed by a colon and an RTCP ciphersuite
string as defined below. A list of values may be specified in which case the values MUST be separated by a
single semicolon.

The RTP and RTCP ciphersuite strings follow the grammar:

ciphersuite = [AuthenticationAlgorithm] “/” [EncryptionAlgorithm]

AuthenticationAlgorithm = 1*(ALPHA / DIGIT / “-“ / “_“)

EncryptionAlgorithm = 1*(ALPHA / DIGIT | “-“ / “_“)

where ALPHA, and DIGIT are defined in [26].

Whitespaces MUST NOT be sent within a ciphersuite, or between adjacent ciphersuites when multiple ciphersuites
are provided. The following example illustrates the formatting of a ciphersuite and a ciphersuite list:

sc-rtp:62/51;64/51;60/50

The actual list of IPCablecom supported ciphersuites is provided in the IPCablecom Security Specification [20].

When several parameters are present, the values are separated by a comma. It MUST be considered an error to
include a parameter without a value (error code 524 – LocalConnectionOptions inconsistency.)

Examples of local connection options are:
L: p:10, a:PCMU
L: p:10, a:PCMU, e:off, t:20, s:on
L: p:30, a:G729, e:on, t:A0, s:off

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 81

The type of service hex value “20” implies an IP precedence of 1, and a type of service hex value of “A0” implies an
IP precedence of 5.

This set of attributes may be extended by extension attributes. Extension attributes are composed of an attribute
name, followed by a colon, and a semicolon separated list of attribute values. The attribute name MUST start with
the two characters "x+", for a mandatory extension, or "x-", for a non mandatory extension. If a gateway receives a
mandatory extension attribute that it does not recognize, it MUST reject the command with an error (error code 525
– Unknown extension in LocalConnectionOptions).

8.2.2.4 Capabilities
Capabilities inform the Call Agent about the endpoint’s capabilities when audited. The encoding of capabilities is
based on the Local Connection Options encoding for the parameters that are common to both. In addition,
capabilities can also contain a list of supported packages, and a list of supported modes.

The parameters used are:

• The packetization period in milliseconds, encoded as the keyword “p” followed by a colon and a decimal
number. A range may be specified as two decimal numbers separated by a hyphen.

• The literal name of the compression algorithm, encoded as the keyword “a” followed by a colon and a character
string. The literal names defined in the IPCablecom Audio/Video Codecs Specification [19] MUST be used. A
list of values may be specified in which case the values will be separated by a semicolon.

• The bandwidth in kilobits per second (1000 bits per second), encoded as the keyword “b” followed by a colon
and a decimal number. A range may be specified as two decimal numbers separated by a hyphen.

• The echo-cancellation parameter, encoded as the keyword “e” followed by a colon and the value “on” if echo
cancellation is supported, “off” otherwise.

• The type of service parameter, encoded as the keyword “t” followed by a colon and the value “0” if type of
service is not supported, all other values indicate support for type of service.

• The silence suppression parameter, encoded as the keyword “s” followed by a colon and the value “on” if
silence suppression is supported, “off” otherwise.26

• The event packages supported by this endpoint encoded as the keyword “v” followed by a colon and then a
semicolon-separated list of package names supported. The first value specified will be the default package for
the endpoint.

• The connection modes supported by this endpoint encoded as the keyword “m” followed by a colon and a
semicolon-separated list of connection modes supported as defined in Section 8.2.2.7.

• The keyword “dq-gi” if Dynamic Quality of Service is supported.

• The keyword “sc-rtp” followed by a colon and a semi-colon separated list of RTP ciphersuites, using the same
encoding as in the LocalConnectionOptions.

• The keyword “sc-rtcp” followed by a colon and a semi-colon separated list of RTCP ciphersuites, using the
same encoding as in the LocalConnectionOptions.

When several parameters are present, the values are separated by a comma.

Examples of capabilities are:
A: a:PCMU;p:10-30, e:on, s:off, v:L;S,
 m:sendonly;recvonly;sendrecv;inactive
A: a:G729; p:10-20, e:on, s:off, v:L;S,
 m:sendonly;recvonly;sendrecv;inactive
A: a:G729; p:30-90, e:on, s:on, v:L;S,
 m:sendonly;recvonly;sendrecv;inactive;confrnce,
 dq-gi, sc-rtp: 64/51;60/51, sc-rtcp: 71/81

26 Silence suppression on is equivalent to VAD enable and silence suppression off is equivalent to VAD disable.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 82

Note that the codecs and security algorithms are merely examples – separate IPCablecom specifications detail the
actual codecs and algorithms supported, as well as the encoding used (see [19] and [20]). Note also that each set of
capabilities is provided on a single line. The examples above show each set on multiple lines due only to formatting
restraints of this document.

8.2.2.5 Connection Parameters
Connection parameters are encoded as a string of type and value pairs, where the type is one of the codes in Table
11 below, and the value is a decimal integer. Types are separated from values by an “=”sign. Parameters are
separated from each other by a comma.

Table 11 - Connection Parameters

Connection
Parameter Name

Code Connection Parameter Value

Packets sent PS The number of packets that were sent on the connection.
Octets sent OS The number of octets that were sent on the connection.
Packets received PR The number of packets that were received on the connection.
Octets received OR The number of octets that were received on the connection.
Packets lost PL The number of packets that were not received on the connection, as deduced

from gaps in the sequence number.
Jitter JI The average inter-packet arrival jitter, in milliseconds, expressed as an

integer number.
Latency LA Average latency, in milliseconds, expressed as an integer number.
Remote Packets sent PC/RPS The number of packets that were sent on the connection from the perspective

of the remote endpoint.
Remote Octets sent PC/ROS The number of octets that were sent on the connection from the perspective

of the remote endpoint.
Remote Packets lost PC/RPL The number of packets that were not received on the connection, as deduced

from gaps in the sequence number from the perspective of the remote
endpoint.

Remote Jitter PC/RJI The average inter-packet arrival jitter, in milliseconds, expressed as an
integer number from the perspective of the remote endpoint.

Extension connection parameter names are composed of the string "X-" followed by a two or three letter extension
parameter name. Call Agents that receive unrecognized extensions MUST silently ignore these extensions. If an
endpoint receives RTCP packets with these statistics, it MUST return the Remote parameters (Rxx above) in the
response to the Delete-Connection and Audit-Connection commands.

An example of a connection parameter encoding is:
P: PS=1245, OS=62345, PR=0, OR=0, PL=0, JI=0, LA=48, PC/RPS=0, PC/ROS=0,
PC/RPL=0, PC/RJI=0

8.2.2.6 Reason Codes

Reason codes are three-digit numeric values. The reason code is optionally followed by a white space and
commentary, e.g.:

E: 900 Endpoint malfunctioning

A list of reason-codes can be found in Section 7.6.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 83

8.2.2.7 Connection Mode

The connection mode describes the connection’s operation mode. The possible values are shown in Table 12 below:
Table 12 - Connection Mode

Mode Meaning

M: sendonly The gateway should only send packets.
M: recvonly The gateway should only receive packets.
M: sendrecv The gateway should send and receive packets.
M: confrnce The gateway should send and receive packets according to conference mode.
M: inactive The gateway should neither send nor receive packets.
M: replicate The gateway should only send packets according to replicate mode.
M: netwloop The gateway should place the endpoint in Network Loopback mode.
M: netwtest The gateway should place the endpoint in Network Continuity Test mode.

8.2.2.8 Event/Signal Name Coding

Event/signal names are composed of an optional package name, separated by a slash (/) from the name of the actual
event. The event name can optionally be followed by an at sign (@) and the identifier of a connection on which the
event should be observed. Event names are used in the RequestedEvents, SignalRequests, DetectEvents,
ObservedEvents, and EventStates parameters. Each event is identified by an event code. These ASCII encodings are
not case sensitive. Values such as “hu”, “Hu”, “HU” or “hU” should be considered equal.

Table 13 provides examples of event names:

Table 13 - Event Name Examples

L/hu On-hook transition, in the line package.
L/0 Digit 0 in the Line package.
Hf Flash-hook, assuming that the line package is the default package for the

endpoint.
L/rt@0A3F58 Ringback on connection “0A3F58”.

In addition, the range and wildcard notation of events can be used, instead of individual names, in the
RequestedEvents and DetectEvents (but not SignalRequests, ObservedEvents, or EventStates): Table 14 provides
examples of valid range and wildcard notation.

Table 14 - Event Range and Wildcard Notation

L/[0-9] Digits 0 to 9 in the Line package.
L/X Digits 0 to 9 in the Line package.
[0-9*#A-D] All digits and letters in the Line package (default for endpoint).
L/all All events in the Line package.

Finally, the star sign can be used to denote "all connections", and the dollar sign can be used to denote the "current"
connection. Table 15 provides examples of valid use of the star and dollar sign notations:

Table 15 - "All" and "‘Current" Connection Notation

L/ma@* The RTP media start event on all connections for the endpoint.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 84

L/rt@$ Ringback on the current connection.

An initial set of event packages for embedded clients can be found in Appendix I.

8.2.2.9 RequestedEvents

The RequestedEvents parameter provides the list of events that have been requested. The currently defined event
codes are described in Appendix I.

Each event can be qualified by a requested action, or by a list of actions. Not all actions can be combined – please
refer to Section 7.3.1 for valid combinations. The actions, when specified, are encoded as a list of keywords
enclosed in parenthesis and separated by commas. The codes for the various actions are shown in Table 16 below:

Table 16 - Requested Events Actions

Action Code

Notify immediately N

Accumulate A

Accumulate according to digit map D

Ignore I

Keep Signal(s) active K

Embedded NotificationRequest E

Embedded ModifyConnection C

If a digit map is not provided when the “accumulate according to digit map” action is specified, the endpoint simply
uses its current digit map. If the endpoint does not have any digit maps currently, an error MUST be returned (error
code 519 – no digit map).

When no action is specified, the default action is to notify the event. This means that, for example, “ft” and “ft(N)”
are equivalent. Events that are not listed are discarded, except for persistent events.

The digit-map action can only be specified for the digits, letters, and timers.

The requested events list is encoded on a single line, with event/action groups separated by commas. Examples of
RequestedEvents encodings are:

R: hu(N), hf(N) Notify on-hook, notify hook-flash.
R: hu(N), [0-9#T](D) Notify on-hook, accumulate digits according to digit map.

The embedded NotificationRequest follows the format:
E (R(<RequestedEvents>), D(<Digit Map>), S(<SignalRequests>))

with each of R, D, and S being optional and possibly supplied in another order. The following example illustrates
the use of Embedded NotificationRequest:

R: hd(A, E(S(dl), R(oc(N), [0-9#T](D)), D((1xxxxxxxxxx|9011x.T))))

On off-hook, accumulate the event, provide dial-tone and start accumulating digits according to the digit map
supplied. Stop dial-tone when the first digit is input, or, if no digit is input before the dial-tone times out, Notify the
operation complete. Otherwise, notify the off-hook and collected digits when a match, mismatch, or inter-digit
timeout has occurred. It should be noted, that since on-hook is a persistent event, it will still be detected and notified
although it has not been specified here.

The embedded ModifyConnection action follows the format:
C(M(<ConnectionMode1>(<ConnectionID1>)) , … ,
M(<ConnectionModen>(ConnectionIDn)))

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 85

The following example illustrates the use of Embedded ModifyConnection:
R: hf(A, C(M(inactive(X43DC)), M(sendrecv($)))), oc(N), of(N)

On hook-flash, change the connection mode of connection “X43DC” to “inactive”, and then change the connection
mode of the “current connection” to “send receive”. Notify events on “operation complete” and “operation failure”.

8.2.2.10 SignalRequests
The SignalRequests parameter provides the name of the signals that have been requested. The currently defined
signals can be found in Appendix A. A given signal can only appear once in the list, and all signals will, by
definition, be applied at the same time. The MTA MUST support, at a minimum, a single signal on each endpoint
and simultaneously support the generation of one signal on each connection for a given endpoint. Specific packages
MAY define requirements beyond these minimum capabilities. For signal combinations beyond this minimum
requirement that the MTA does not support, it SHOULD return error code 502.

Some signals can be qualified by signal parameters. When a signal is qualified by multiple signal parameters, the
signal parameters are separated by commas. Each signal parameter MUST follow the format specified below (white
spaces allowed):
signal-parameter = signal-parameter-value |
 signal-parameter-name “=”signal-parameter-value |
 signal-parameter-name “(” signal-parameter-list “)”
signal-parameter-list = signal-parameter-value 0*(“,” signal-parameter-value)

where signal-parameter-value may be either a string or a quoted string, i.e., a string surrounded by two double
quotes. Two consecutive double-quotes in a quoted string will escape a double-quote within that quoted string. For
example, “ab””c” will produce the string ab”c.

Each signal has one of the following signal-types associated with it (see Section 7.3.1):

• On/Off (OO),

• Time-out (TO),

• Brief (BR).

On/Off signals can be parameterized with a “+” to turn the signal on, or a “-” to turn the signal off. If an on/off
signal is not parameterized, the signal is turned on. Both of the following will turn the vmwi signal on:

vmwi(+), vmwi

Time-out signals can be parameterized with the signal parameter “TO” and a time-out value that overrides the
default time-out value. If a time-out signal is not parameterized with a time-out value the default time-out value will
be used. Both of the following will apply the ringing signal for 6 seconds:

rg(to=6000)
rg(to(6000))

Individual signals may define additional signal parameters.

The signal parameters will be enclosed within parenthesis, as in (assuming “Line” is the default package):
S: ci(10/14/17/26, “555 1212”, CableLabs)

When several signals are requested, their codes are separated by a comma, as in:
S: rg, rt@FDE234C8

8.2.2.11 ObservedEvents

The observed events parameters provide the list of events that have been observed. The event codes are the same as
those used in the NotificationRequest. When an event is detected on a connection, the observed event will identify
the connection the event was detected on using the “@<connection>” syntax. Examples of observed events are:

O: hu
O: ma@A43B81

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 86

O: 8,2,9,5,5,5,5,T
O: hf,hf,hu
O: 8,2,9,5,mt,5,5,5,T

Events that have been accumulated according to digit map, are reported as individual events in the order they were
detected. Other events may be mixed in between them. It should be noted that if the “current dial string” is non-
empty with a partial match, and another event occurs that results in a Notify message being generated, the partially
matched “current dial string” will be included in the list of observed events, and the “current dial string” will then be
cleared – please refer to Section 7.4.3.1 for details.

8.2.2.12 RequestedInfo
The RequestedInfo parameter contains a comma separated list of parameter codes, as defined in the “Parameter
lines” section – Section 7.3.8 lists the parameters that can be audited. The values listed in Table 17 below are
supported as well:

Table 17 - RequestedInfo Parameter Values

RequestedInfo Parameter Code

LocalConnectionDescriptor LC

RemoteConnectionDescriptor RC

For example, if one wants to audit the value of the NotifiedEntity, RequestIdentifier, RequestedEvents,
SignalRequests, DigitMap, DetectEvents, EventStates, LocalConnectionDescriptor, and
RemoteConnectionDescriptor parameters, the value of the RequestedInfo parameter will be:

F: N,X,R,S,D,T,ES,LC,RC

The capabilities request, for the AuditEndPoint command, is encoded by the parameter code “A", as in:
F: A

8.2.2.13 QuarantineHandling
The quarantine handling parameter contains a list of comma separated keywords:

• The keyword "process" or "discard" to indicate the treatment of quarantined and observed events. If neither
process nor discard is present, process is assumed.

• The keyword "step" or "loop" to indicate whether at most one notification is expected, or whether multiple
notifications are allowed. If neither "step" nor "loop" is present, "step" is assumed. Support for these two
keywords is mandatory.

The following values are valid examples:

Q: loop

Q: process

Q: loop, discard

8.2.2.14 DetectEvents
The DetectEvents parameter is encoded as a comma separated list of events, such as for example:

T: hu,hd,hf,[0-9#*]

It should be noted, that no actions can be associated with the events.

8.2.2.15 EventStates

The EventStates parameter is encoded as a comma separated list of events, such as for example:
ES: hu

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 87

It should be noted, that no actions can be associated with the events.

8.2.2.16 ResourceID
The ResourceID parameter is a return parameter used for Dynamic Quality of Service to signal the resource ID
assigned for the gate in question. The ResourceID is encoded as a string of up to 8 hex characters, such as for
example:

DQ-RI: AB345DC

8.2.2.17 RestartMethod
The RestartMethod parameter is encoded as one of the keywords “graceful”, “cancel-graceful”, “forced”, “restart”,
or “disconnected”, as for example:

RM: restart

8.2.2.18 VersionSupported

The VersionSupported parameter is encoded as a comma separated list of versions supported, such as for example:
VS: MGCP 1.0, MGCP 1.0 NCS 1.0

8.2.2.19 MaxMGCPDatagram

The MaxMGCPDatagram parameter is encoded as a string of up to nine decimal digits – leading zeroes are not
permitted. The following example illustrate the use of this parameter:

MD: 8100

8.3 Response Header Formats

The response header is composed of a response line optionally followed by headers that encode the response
parameters.

The response line starts with the response code, which is a three-digit numeric value. The code is followed by a
white space, the transaction identifier, and optional commentary preceded by a white space, e.g.:

200 1201 OK

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 88

Table 18 below summarizes the response parameters whose presence is mandatory or optional in a response header,
as a function of the command that triggered the response. The reader should still study the individual command
definitions though as this table only provides summary information. The letter M stands for mandatory, O for
optional, and F for forbidden.

Table 18 - Association of Response Header Parameters and Commands

Parameter Name CRCX MDCX DLCX RQNT NTFY AUEP AUCX RSIP
ResponseAck25 O1 O1 O1 O1 O1 O1 O1 O1

CallId F F F F F F O F

ConnectionId O2 F F F F O F F

RequestIdentifier F F F F F O F F

LocalConnectionOptions F F F F F O O F

Connection Mode F F F F F F O F

RequestedEvents F F F F F O F F

SignalRequests F F F F F O F F

NotifiedEntity F F F F F O O O

ReasonCode F F F F F O F F

ObservedEvents F F F F F O F F

DigitMap F F F F F O F F

ConnectionParameters F F O3 F F F O F

Specific Endpoint ID O F F F F O F F

MaxEndPointIds F F F F F F F F

NumEndPoints F F F F F O F F

RequestedInfo F F F F F F F F

QuarantineHandling F F F F F F F F

DetectEvents F F F F F O F F

EventStates F F F F F O F F

ResourceID O O F F F F F F

RestartMethod F F F F F F F F

RestartDelay F F F F F F F F

Capabilities F F F F F O F F

VersionSupported F F F F F O F O

MaxMGCPDatagram F F F F F O F F

LocalConnection Descriptor O4 O4 F F F F O F

RemoteConnection Descriptor F F F F F F O F

NOTE:
1. The ResponseAck parameter MUST NOT be used with any other responses than a final response issued after a provisional response for the
transaction in question. In that case, the presence of the ResponseAck parameter MUST trigger a Response Acknowledgement message – any
ResponseAck values provided will be ignored.
2. In the case of a CreateConnection message, the response line is followed by a Connection-Id parameter and a LocalConnectionDescriptor. It
may also be followed by a Specific-Endpoint-Id parameter, if the creation request was sent to a wildcarded Endpoint-Id. The connection-Id and
LocalConnectionDescriptor parameter are marked as optional in the table. In fact, they are mandatory with all positive responses, when a
connection was created, and forbidden when the response is negative, and no connection was created.
3. Connection-Parameters are only valid in a successful response to a non-wildcarded DeleteConnection command sent by the Call Agent
4. A LocalConnectionDescriptor MUST be transmitted with a positive response (code 200) to a CreateConnection. It MUST also be
transmitted in response to a ModifyConnection command, if the modification resulted in a change of the Local Connection Descriptor. The
LocalConnectionDescriptor is encoded as a "session description", as defined in Section 5.4. It is separated from the response header by an
empty line.

The response parameters are described for each of the commands in the following subsections.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 89

8.3.1 CreateConnection
In the case of a CreateConnection message, the response line is followed by a Connection-Id parameter with a
successful response (code 200). A LocalConnectionDescriptor is furthermore transmitted with a positive response.
The LocalConnectionDescriptor is encoded as a “session description”, as defined in Section 8.4. It is separated from
the response header by an empty line, e.g.:

200 1204 OK
I: FDE234C8

v=0
o=- 25678 753849 IN IP4 128.96.41.1
s=-
c=IN IP4 128.96.41.1
t=0 0
m=audio 3456 RTP/AVP 96 97 0
a=rtpmap:96 G726-32/8000
a=rtpmap:97 telephone-event/8000
a=mptime: 10 - 10

When a provisional response has been issued previously, the final response may furthermore contain the Response
Acknowledgement parameter, and when Dynamic Quality of Service is used, the final response may also contain a
ResourceID, as in:

200 1204 OK
K:
I: FDE234C8
DQ-RI: 23DB4A43

v=0
o=- 25678 753849 IN IP4 128.96.41.1
s=-
c=IN IP4 128.96.41.1
t=0 0
m=audio 3456 RTP/AVP 96 97 0
a=rtpmap:96 G726-32/8000
a=rtpmap:97 telephone-event/8000
a=mptime: 10 - 10

The final response is acknowledged by a Response Acknowledgement:
000 1204

8.3.2 ModifyConnection
In the case of a successful ModifyConnection message, the response line is followed by a
LocalConnectionDescriptor, if the modification resulted in a modification of the session parameters (e.g., changing
only the mode of a connection does not alter the session parameters). The LocalConnectionDescriptor is encoded as
a “session description”, as defined in Section 8.4. It is separated from the response header by an empty line.

200 1207 OK

v=0
o=- 25678 753849 IN IP4 128.96.41.1
s=-
c=IN IP4 128.96.41.1
t=0 0
m=audio 3456 RTP/AVP 0
a=mptime: 20

The response may also contain a ResourceID when Dynamic Quality of Service is used as in:
200 1207 OK
DQ-RI: 12345

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 90

When a provisional response has been issued previously, the final response may furthermore contain the Response
Acknowledgement parameter as in:

526 1207 No bandwidth
K:

The final response is acknowledged by a Response Acknowledgement:
000 1207 OK

8.3.3 DeleteConnection
Depending on the variant of the DeleteConnection message, the response line may be followed by a Connection
Parameters parameter line, as defined in Section 8.2.2.5.

250 1210 OK
P: PS=1245, OS=62345, PR=780, OR=45123, PL=10, JI=27, LA=48,
 PC/RPS=782, PC/ROS=45238, PC/RPL=5, PC/RJI=26

8.3.4 NotificationRequest
A NotificationRequest response does not include any additional response parameters.

8.3.5 Notify
A Notify response does not include any additional response parameters.

8.3.6 AuditEndpoint
In the case of an AuditEndPoint the response line may be followed by information for each of the parameters
requested–each parameter will appear on a separate line. Parameters for which no value currently exists, e.g., digit
map, will still be provided.

Each local endpoint name “expanded” by a wildcard character will appear on a separate line using the
“SpecificEndPointId” parameter code, e.g.:

200 1200 OK
Z: aaln/1@rgw.whatever.net
Z: aaln/2@rgw.whatever.net

An example of a response to an AuditEndPoint message containing a non-wildcarded endpoint name is shown
below. Note that the SpecificEndPointId is not provided in this case. Note also that each set of capabilities is
provided on a single line. The example below shows each set on multiple lines due only to formatting restraints of
this document.

200 1200 OK
A: a:PCMU; p:10, e:on, s:off, t:1, v:L,
 m:sendonly;recvonly;sendrecv;inactive
A: a:G728; p:20, e:on, s:off, t:1, v:L,
 m:sendonly;recvonly;sendrecv;inactive
A: a:G729; p:30, e:on, s:on, t:1, v:L,
 m:sendonly;recvonly;sendrecv;inactive;confrnce

8.3.7 AuditConnection
In the case of an AuditConnection, the response may be followed by information for each of the parameters
requested. Parameters for which no value currently exists will still be provided. Connection descriptors will always
appear last and each will be preceded by an empty line, as for example:

200 1203 OK
C: A3C47F21456789F0
N: CA-1@myhost.whatever.net:2345
L: mp:20;10, a:PCMU;G728
M: sendrecv

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 91

P: PS=622, OS=31172, PR=390, OR=22561, PL=5, JI=29, LA=50,
 PC/RPS=391, PC/ROS=22619, PC/RPL=5, PC/RJI=26
v=0
o=- 4723891 7428910 IN IP4 128.96.63.25
s=-
c=IN IP4 128.96.63.25
t=0 0
m=audio 1296 RTP/AVP 96
a=rtpmap:96 G728/8000
a=mptime: 10

If both a local and a remote connection descriptor are provided, the local connection descriptor will be the first of
the two. If a connection descriptor is requested, but it does not exist for the connection audited, that connection
descriptor will appear with the SDP protocol version field only.

8.3.8 RestartInProgress
The response to a RestartInProgress may include the name of another Call Agent to contact, for instance when the
Call Agent redirects the endpoint to another Call Agent as in:

521 1204 Redirect
N: CA-1@ca.whatever.net

8.4 Session Description Encoding

The session description is encoded in conformance with the session description protocol (SDP), however, embedded
clients may make certain simplifying assumptions about the session description as specified in the following. It
should be noted, that session descriptions are case sensitive per[4].

SDP usage depends on the type of session, as specified in the “media” parameter:

• If the media is set to “audio”, the session description is for an audio service,

• If the media is set to “video”, the session description is for a video service.

For an audio service, the gateway will consider the information provided in SDP for the “audio” media, and for a
video service the gateway will consider the information provided in SDP for the “video” media.

8.4.1 SDP Audio Service Use
In a voice-only gateway, we only have to describe sessions that use exactly one media, audio. The parameters of
SDP that are relevant for the voice based application are specified below. Embedded clients MUST support session
descriptions that conform to these rules and in the following order:

1. The SDP profile presented below

2. SDP: Session Description Protocol [4]

The CMS should be careful if it decides it is necessary to alter the SDP received from an endpoint. SDP provides a
means of communicating the capabilities of an endpoint to another endpoint. If the CMS chooses to modify the
SDP, it MUST NOT alter the SDP such that it violates the rules defined in this section.

The SDP profile provided describes the use of the session description protocol in NCS. The general description and
explanation of the individual parameters can be found in[4], however below we detail what values NCS endpoints
need to provide for these fields (send) and what NCS endpoints should do with values supplied or not supplied for
these fields (receive). It should be noted, that the SDP profile used here does not comply with the offer/answer
model defined in[36]. Thus, if a CMS needs to interact with another entity that uses the offer/answer model, the
CMS may need to edit the SDP it receives from the endpoint.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 92

8.4.1.1 Protocol Version (v=)
v= <version>
”v= 0”

Send: MUST be provided in accordance with [4] (i.e., v=0).

Receive: MUST be provided in accordance with [4].

8.4.1.2 Origin (o=)
The origin field (o=) consists of 6 sub-fields in [4]:
o= <username> <session-ID> <version> <network-type> <address-type> <address>
"o= - 2987933615 2987933615 IN IP4 126.16.64.4"

Username:

Send: Hyphen MUST be used as username when privacy is requested. Hyphen SHOULD be used
otherwise.27

Receive: This field SHOULD be ignored.

Session-ID:

Send: MUST be in accordance with [4] for interoperability with non-IPCablecom clients.

Receive: This field SHOULD be ignored.

Version:

Send: MUST be in accordance with [4].

Receive: This field SHOULD be ignored.

Network Type:

Send: Type ‘IN’ MUST be used.

Receive: This field SHOULD be ignored.

Address Type:

Send: Type “IP4” MUST be used.

Receive: This field SHOULD be ignored.

Address:

Send: MUST be in accordance with [4] for interoperability with non-IPCablecom clients.

Receive: This field MUST be ignored.

8.4.1.3 Session Name (s=)
s= <session-name>
”s= -“

Send: Hyphen MUST be used as Session name.

Receive: This field MUST be ignored.

8.4.1.4 Session and Media Information (i=)
i= <session-description>

Send: For NCS, the field MUST NOT be used.

Receive: This field MUST be ignored.

27 Since NCS endpoints do not know when privacy is requested, they should always use a hyphen.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 93

8.4.1.5 URI (u=)
u= <URI>

Send: For NCS, the field MUST NOT be used.

Receive: This field MUST be ignored.

8.4.1.6 E-Mail Address and Phone Number (e=, p=)
e= <e-mail-address>
p= <phone-number>

Send: For NCS, the field MUST NOT be used.

Receive: This field MUST be ignored.

8.4.1.7 Connection Data (c=)
The connection data consists of 3 sub-fields:
c= <network-type> <address-type> <connection-address>
“c= IN IP4 10.10.111.11”

Network Type:

Send: Type ‘IN’ MUST be used.

Receive: Type “IN” MUST be present.

Address Type:

Send: Type “IP4” MUST be used.

Receive: Type “IP4” MUST be present.

Connection Address:

Send: This field MUST be filled with a unicast IP address at which the application will receive the
media stream. Thus a TTL value MUST NOT be present and a “number of addresses” value
MUST NOT be present. The field MUST NOT be filled with a fully-qualified domain name
instead of an IP address. A non-zero address specifies both the send and receive address for
the media stream(s) it covers.

Receive: A unicast IP address or a fully qualified domain name MUST be present. A non-zero address
specifies both the send and receive address for the media stream(s) it covers.

8.4.1.8 Bandwidth (b=)
b= <modifier> : <bandwidth-value>
”b= AS : 64”

Send: Bandwidth information is optional in SDP but it SHOULD always be included.28 When an
rtpmap or a non well-known codec29 is used, the bandwidth information MUST be used.

Receive: Bandwidth information SHOULD be included. If a bandwidth modifier is not included, the
receiver MUST assume reasonable default bandwidth values for well-known codecs.

Modifier:

Send: Type ‘AS’ MUST be used.

Receive: Type “AS” MUST be present.

28 If this field is not used, the Gate Controller might not authorize the appropriate bandwidth.
29 A non well-known codec is a codec not defined in the IPCablecom Codec specification [19].

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 94

Bandwidth Value:

Send: The field MUST be filled with the Maximum Bandwidth requirement of the Media stream in
kilobits per second.

Receive: The maximum bandwidth requirement of the media stream in kilobits per second MUST be
present. Refer to the IPCablecom Codec specification [19], for the details of calculating the
bandwidth value.

8.4.1.9 Time, Repeat Times and Time Zones (t=, r=, z=)
t= <start-time> <stop-time>
”t= 36124033 0”
r= <repeat-interval> <active-duration> <list-of-offsets-from-start-time>
z= <adjustment-time> <offset>

Send: Time MUST be present; start time MAY be zero, but SHOULD be the current time, and stop
time SHOULD be zero. Repeat Times and Time Zones SHOULD NOT be used, if they are
used it should be in accordance with [4].

Receive: If any of these fields are present, they SHOULD be ignored.

8.4.1.10 Encryption Keys
k= <method>
k= <method> : <encryption-keys>

Security services for IPCablecom are defined by the IPCablecom Security specification [20]. The security services
specified for RTP and RTCP do not comply with those of [2], [3], and [4]. In the interest of interoperability with
non-IPCablecom devices, the “k” parameter will therefore not be used to convey security parameters.

Send: MUST NOT be used.

Receive: This field SHOULD be ignored.

8.4.1.11 Attributes (a=)
a= <attribute> : <value>
a= rtpmap : <payload type> <encoding name>/<clock rate> [/<encoding parameters>]
a= rtpmap : 0 PCMU / 8000
a= fmtp:<format><format specific parameters>
a= X-pc-codecs: <alternative 1> <alternative 2> …
a= mptime: <alternative 1> <alternative 2 > …
a= X-pc-secret: <method>:<encryption key> [pad]
a= X-pc-csuites-rtp: <alternative 1> <alternative 2> …
a= X-pc-csuites-rtcp: <alternative 1> <alternative 2> …
a= X-pc-nrekey: <value>= <attribute>
a= recvonly
a= sendrecv
a= sendonly
a= ptime

Send: One or more of the “a” attribute lines specified below MAY be included.

Receive: One or more of the “a” attribute lines specified below MAY be included and MUST be acted
upon accordingly.

rtpmap:

Send: When used, the field MUST be used in accordance with [4]. This field MAY be used for well
known as well as non well-known codecs. The encoding names used are provided in a
separate IPCablecom specification (see [19]).The mapping of codec to RTP dynamic payload
type given with this attribute defines the payload type that this sender is prepared to receive
on the connection. It also provides a strong hint to the other party that it should also use this

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 95

payload mapping for its receive side, although there may be cases where this is not possible.
On a given connection, once an MTA has mapped a dynamic payload type to a given
encoding method for its receive media stream, that payload type MUST NOT subsequently be
mapped to another encoding method for its receive media stream.

Receive: When used, the field MUST be used in accordance with [4]. This attribute defines the
mapping of codec to RTP payload type that the other side of the connection is prepared to
receive. MTAs MUST, therefore, use this payload type mapping when transmitting media on
this connection. When received in a CreateConnection command, the MTA SHOULD use this
payload type mapping for its own receive side (i.e., it should return a Local Connection
Descriptor containing the same rtpmap attribute). If an MTA receives a rtpmap attribute in a
ModifyConnection command with a different mapping, the MTA MUST leave its own
receive payload type mapping as is (so that asymmetric payload types are used).

fmtp:

Send: This field MAY be used to provide parameters specific to a particular format. For example,
the field could be used to describe telephone events supported for an [27] format. When used,
the format MUST be one of the formats specified for the media. The parameters specified are
provided in a separate specification that details the usage of the format.

Receive: When used, the field MUST be used in accordance with [4].

X-pc-codecs:

This attribute is a media-level attribute defined by IPCablecom.

Send: The field contains a list of alternative codecs that the endpoint is capable of using for this
connection. The list is ordered by decreasing degree of preference, i.e., the most preferred
alternative codec is the first one in the list. A codec is encoded similarly to “encoding name”
in rtpmap.

Receive: Conveys a list of codecs that the remote endpoint is capable of using for this connection. The
codecs MUST NOT be used until signaled through a media (m=) line.

mptime:

This attribute is a media-level attribute defined by IPCablecom. The mptime attribute defines a list of
packetization period values the endpoint is capable of using (sending and receiving) for this connection.

Send: The mptime attribute MUST be present. There MUST be precisely one entry in the list for
each <format> entry provided in the “m=” line. Entry number j in this list defines the
packetization period for entry number j in the "m=" line. The first entry in the list MUST be a
decimal number whereas subsequent entries in the list MUST be either a decimal number or a
hyphen. For those media formats where a single packetization rate does not apply (e.g., non-
voice codecs such as telephone-event or comfort noise), a hyphen (“-“) MUST be encoded at
the corresponding location in the list of packetization periods.

Receive: Conveys the list of packetization periods that the remote endpoint is capable of using for this
connection; one for each media format in the “m=” line. For media formats whose
packetization period is specified as a hyphen (“-“), the endpoint MUST use one of the
packetization periods that was actually specified in the list. If the ”mptime” attribute is absent,
then the value of the “ptime” attribute, if present, MUST be taken as indicating the
packetization period for all codecs present in the “m=” line.

X-pc-secret:

This attribute is a media-level attribute defined by IPCablecom.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 96

Send: The field contains an end-to-end secret and (possibly) the PAD to be used for RTP and RTCP
security. The secret and pad are encoded similarly to the encryption key (k=) parameter of [4]
with the following constraints:

• The encryption key MUST NOT contain a ciphersuite, only a passphrase.

• The <method> specifying the encoding of the pass-phrase MUST be either “clear” or
“base64” as defined in [25], except for the maximum line length which is not specified
here. The method “clear” MUST NOT be used if the secret or pad contains any characters
that are prohibited in SDP.

The requirements for when to transmit PAD are described in [20]. If present, it MUST be
separated by at least one whitespace from the secret. PAD and secret MUST use the same
encode method.

Receive: Conveys the end-to-end secret and PAD to be used for RTP and RTCP security. If present, its
use is as described in [20] and it MUST be separated by at least one white space from the
secret. PAD and secret MUST use the same encode method.

X-pc-csuites-rtp:

X-pc-csuites-rtcp:

These attributes are media-level attributes defined by IPCablecom.

Send: The field contains a list of ciphersuites that the endpoint is capable of using for this
connection (respectively RTP and RTCP). The first ciphersuite listed is what the endpoint is
currently expecting to use. Any remaining ciphersuites in the list represent alternatives
ordered by decreasing degree of preference, i.e., the most preferred alternative ciphersuite is
the second one in the list. A ciphersuite is encoded as specified below:

ciphersuite = [AuthenticationAlgorithm] “/” [EncryptionAlgorithm]

AuthenticationAlgorithm = 1*(ALPHA / DIGIT / “-“ / “_”)

EncryptionAlgorithm = 1*(ALPHA / DIGIT / “-“ / “_”)

where ALPHA, and DIGIT are defined in [26]. Whitespaces are not allowed within a
ciphersuite. The following example illustrates the use of ciphersuite: 62/51
The actual list of ciphersuites is provided in the IPCablecom Security Specification [20].

Receive: Conveys a list of ciphersuites that the remote endpoint is capable of using for this connection.
Any other ciphersuite than the first in the list cannot be used until signaled through a new
ciphersuite line with the desired ciphersuite listed first.

recvonly:

Send: This attribute should not be supplied by an embedded client.

Receive: The field MUST be ignored.

sendrecv:

Send: This attribute should not be supplied by an embedded client.

Receive: The field MUST be ignored.

sendonly:

Send: This attribute should not be supplied by an embedded client.

Receive: The field MUST be ignored.

ptime:

Send: The ptime SHOULD be sent if it was received in a Remote Connection Descriptor or if the
CMS used the packetization period (‘p:’) LocalConnectionOption.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 97

Receive: The field MUST be ignored if the SDP contains the “mptime” attribute (as required in
IPCablecom compliant devices). If the “mptime” attribute is not present, then this field is used
to define the packetization interval for all codecs present in the SDP description and the MTA
MUST use the ptime in the calculation of QoS reservations.

X-pc-nrekey:

This attribute is a media-level attribute defined by IPCablecom.

Send: The field contains a 16 bit, integer, counter for the number of rekey events. This field may be
required when voice security is used. Requirements for its usage are defined in [20].

Receive: Conveys the number of rekey events. The field may be present when RTP security is used and
its use is as defined in [20].

8.4.1.12 Media Announcements (m=)
Media Announcements (m=) consists of 4 sub-fields:
m= <media> <port> <transport> <fmt list>
”m= audio 3456 RTP/AVP 0 97”

Media:

Send: The ‘audio’ media type MUST be used.

Receive: The type received MUST be ‘audio’.

Port:

Send: MUST be filled in accordance with [4]. The port specified is the receive port, regardless of
whether the stream is unidirectional or bi-directional. The sending port may be different.

Receive: MUST be used in accordance with [4]. The port specified is the receive port. The sending port
may be different.

Transport:

Send: The transport protocol ‘RTP/AVP’ MUST be used.

Receive: The transport protocol MUST be ‘RTP/AVP’.

Media Formats:

Send: Appropriate media type as defined in [4] MUST be used. Specifically, this field contains a list
of one or more RTP payload types that this MTA is prepared to receive on the connection and
that it would prefer to send with. Each payload type is mapped uniquely to a codec, either
statically or dynamically. The static mapping SHOULD be used if available (e.g., 0 for
PCMU, 8 for PCMA). If a dynamic payload mapping is used, an RTPMAP attribute MUST
also be present and the guidelines in Section 8.4.1.11 MUST be followed.

Receive: In accordance with [4]. Specifically this indicates the payload type(s) that the other side of
this connection is prepared to receive.

8.5 Transmission Over UDP

8.5.1 Reliable Message Delivery
MGCP messages are transmitted over UDP. Commands are sent to one of the IP addresses defined in the Domain
Name System (DNS) for the specified endpoint or Call Agent. The responses are sent back to the source address of
the command. However, it should be noted that the response may, in fact, come from another IP address than the
one to which the command was sent.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 98

When no port is provisioned for the endpoint,30 the commands MUST be sent to the default MGCP port, which is
2427 for commands sent to Gateways and 2727 for commands sent to Call Agent. To minimize backward
compatibility issues it is RECOMMENDED that the Call Agent always explicitly state the MGCP port to use in
NCS messages (and not rely on the default). MGCP messages, carried over UDP, may be subject to losses. In the
absence of a timely response, commands are repeated. MGCP entities are expected to keep, in memory, a list of the
responses sent to recent transactions, i.e., a list of all the responses sent over the last Tthist seconds, as well as a list of
the transactions that are being executed currently. Transaction identifiers of incoming commands are compared to
transaction identifiers of the recent responses. If a match is found, the MGCP entity does not execute the transaction,
but simply repeats the response. If no match is found, the MGCP entity examines the list of currently executing
transactions. If a match is found, the MGCP entity will not execute the transaction: If the command is a
CreateConnection or ModifyConnection command a provisional response is sent, otherwise the command is simply
ignored.

It is the responsibility of the requesting entity to provide suitable timeouts for all outstanding commands and to retry
commands when timeouts have been exceeded. A retransmission strategy is specified in Section 8.5.2.

Furthermore, when repeated commands fail to get a response, the destination entity is assumed to be unavailable. It
is the responsibility of the requesting entity to seek redundant services and/or clear existing or pending connections
as specified in Section 7.4.

8.5.2 Retransmission Strategy
This specification avoids specifying any static values for the retransmission timers since these values are typically
network-dependent. Normally, the retransmission timers should estimate the timer by measuring the time spent
between sending a command and the return of a response. Embedded clients MUST implement a retransmission
strategy using exponential back-off with configurable initial and maximum retransmission timer values.

Embedded clients SHOULD use the algorithm implemented in TCP/IP, which uses two variables (see, e.g.,[16]):

• The average acknowledgement delay, AAD, estimated through an exponentially smoothed average of the
observed delays,

• The average deviation, ADEV, estimated through an exponentially smoothed average of the absolute value of
the difference between the observed delay and the current average.

The retransmission timer, RTO, in TCP, is set to the sum of the average delay plus N times the average deviation,
where N is a constant.

After any retransmission, the MGCP entity should do the following:

• It should double the estimated value of the average delay, AAD,

• It should compute a random value, uniformly distributed between 0.5 AAD and AAD,

• It should set the retransmission timer (RTO) to the minimum of:

• the sum of that random value and N times the average deviation.

• RTOmax, where the default value for RTOmax is 4 seconds.

This procedure has two effects. Because it includes an exponentially increasing component, it will automatically
slow down the stream of messages in case of congestion subject to the needs of real-time communication. Because it
includes a random component, it will break the potential synchronization between notifications triggered by the
same external event.

The initial value used for the retransmission timer is 200 milliseconds by default and the maximum value for the
retransmission timer is 4 seconds by default. These default values may be altered by the provisioning process.

30 Each endpoint may be provisioned with a separate Call Agent address and port.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 99

8.5.3 Maximum Datagram Size, Fragmentation, and Reassembly
MGCP messages being transmitted over UDP rely on IP for fragmentation and reassembly of large datagrams. The
maximum theoretical size of an IP datagram is 65535 bytes. With a 20-byte IP header, and an 8-byte header, this
leaves us with a maximum theoretical MGCP message size of 65507 bytes when using UDP.

However, IP does not require a host to receive IP datagrams larger than 576 bytes [23] which would provide an
unacceptably small MGCP message size. Consequently, MGCP mandates that implementations MUST support
MGCP datagrams up to at least 4000 bytes, which requires the corresponding IP fragmentation and reassembly to be
supported. Note, that the 4000 byte limit applies to the MGCP level. Lower layer overhead will require support for
IP datagrams that are larger than this: UDP and IP overhead will be at least 28 bytes, and e.g., IPsec will add more
as well.

It should be noted, that the above applies to both Call Agents and endpoints. Call Agents can audit endpoints to
determine if they support larger MGCP datagrams than specified above. Endpoints do currently not have a similar
capability to determine if a Call Agent supports larger MGCP datagram sizes.

8.6 Piggy-Backing

There are cases when a Call Agent will want to send several messages at the same time to one or more endpoints in
a gateway and vice versa. When several messages have to be sent in the same UDP packets, they are separated by a
line of text that contains a single dot, as in for example:

200 2005 OK
.
DLCX 1244 aaln/2@rgw.whatever.net MGCP 1.0 NCS 1.0
C: A3C47F21456789F0
I: FDE234C8

The piggy-backed messages MUST be processed as if they had been received one at a time in several separate
datagrams. Each message in the datagram must be processed to completion and in order starting with the first
message, and each command MUST be responded to.

Errors encountered in a message that was piggybacked MUST NOT affect any of the other messages received in that
packet – each message is processed on its own.

Piggy-backing can be used to achieve two things:

• Guaranteed in-order delivery and processing of messages.

• Fate sharing of message delivery.

When piggy-backing is used to guarantee in-order delivery of messages, entities MUST ensure that this in-order
delivery property is retained on retransmissions of the individual messages. An example of this is when multiple
Notify(s) are sent using piggy-backing (as described in Section 7.4.3.1).

Fate sharing of message delivery ensures that either all the messages are delivered, or none of them are delivered.
When piggy-backing is used to guarantee this fate-sharing, entities MUST also ensure that this property is retained
upon retransmission. For example, upon receiving a Notify from an endpoint operating in lockstep mode, the Call
Agent may wish to send the response and a new NotificationRequest command in a single datagram to ensure
message delivery fate-sharing of the two.

8.7 Transaction Identifiers and Three Way Handshakes

Transaction identifiers are integer numbers in the range from 1 to 999,999,999. Call-agents may decide to use a
specific number space for each of the gateways that they manage, or to use the same number space for all gateways
that belong to some arbitrary group. Call agents may decide to share the load of managing a large gateway between
several independent processes. These processes will share the same transaction number space. There are multiple
possible implementations of this sharing, such as having a centralized allocation of transaction identifiers, or pre-
allocating non-overlapping ranges of identifiers to different processes. The implementations MUST guarantee that
unique transaction identifiers are allocated to all transactions that originate from any call agent sent to a particular

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 100

gateway within a period of Tthist seconds. Gateways can simply detect duplicate transactions by looking at the
transaction identifier only.

The Response Acknowledgement parameter can be found in any command. It carries a set of "confirmed
transaction-id ranges" for final responses received – provisional responses MUST NOT be confirmed.

MGCP gateways may choose to delete the copies of the responses to transactions whose id is included in “confirmed
transaction-id ranges” received in a message, however the fact that the transaction was executed MUST still be
retained for Tthist seconds. Also, when a Response Acknowledgement message31 is received, the response that is
being acknowledged by it can be deleted. Gateways should silently discard further commands from that Call Agent
when the transaction-id falls within these ranges, and the response was issued less than Tthist seconds ago.

Let termnew and termold be the endpoint-name in respectively a new command, cmdnew, and some old command.
cmdold. The transaction-ids to be confirmed in cmdnew SHOULD then be determined as follows:

1. If termnew does not contain any wildcards:

a. Unconfirmed responses to old commands where termold equals termnew.

b. Optionally, one or more unconfirmed responses where termold contained the “any-of” wildcard, and the
endpoint-name returned in the response was termnew.

c. Optionally, one or more unconfirmed responses where termold contained the “all” wildcard, and termnew is
covered by the wildcard in termold.

d. Optionally, one or more unconfirmed responses where termold contained the “any-of” wildcard, no
endpoint-name was returned, and termnew is covered by the wildcard in termold.

2. If termnew contains the “all” wildcard:

e. Optionally, one or more unconfirmed responses where termold contained the “all” wildcard, and termnew is
covered by the wildcard in termold.

3. If termnew contains the “any of” wildcard:

f. Optionally, one or more unconfirmed responses where termold contained the “all” wildcard, and termnew is
covered by the wildcard in termold if the “any of” wildcard in termnew was replaced with the “all” wildcard.

A given response SHOULD NOT be confirmed in two separate messages.

The following examples illustrate the use of these rules:

• If termnew is “aaln/1” and termold is “aaln/1” then the old response can be confirmed per rule 1a.

• If termnew is “aaln/1” and termold is “*” then the old response can be confirmed per rule 1c.

• If termnew is “aaln/*” and termold is “*” then the old response can be confirmed per rule 2a.

• If termnew is “aaln/$” and termold is “aaln/*” then the old response can be confirmed per rule 3a.

The "confirmed transaction-id ranges" values SHOULD NOT be used if more than Tthist seconds have elapsed since
the gateway issued its last response to that call agent, or when a gateway resumes operation. In this situation,
commands should be accepted and processed, without any test on the transaction-id.

Also, a response SHOULD NOT be confirmed if the response was received more than Tthist seconds ago.

Messages that confirm responses may be transmitted and received in disorder. The gateway shall retain the union of
the confirmed transaction-ids received in recent commands.

8.8 Provisional Responses

In some cases, transaction completion times may be significantly longer than otherwise32. NCS uses UDP as the
transport protocol and reliability is achieved by selective time-out based retransmissions where the time-out is based

31 As opposed to a command with a Response Acknowledgement parameter.
32 For instance, when resources are reserved and committed externally as part of a transaction.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 101

on an estimate of the sum of the network roundtrip time and transaction completion time. Significant variance in the
transaction completion time is therefore problematic when rapid message loss detection without excessive overhead
is desired.

In order to overcome this problem, a provisional response MUST therefore be issued if the transaction completion
time is expected to exceed a small period of time (200ms is RECOMMENDED). The provisional response
acknowledges the receipt of the command although the outcome of the command may not yet be known, e.g., due to
a pending resource reservation. As a guideline, a transaction that requires external communication to complete, e.g.,
network resource reservation, should issue a provisional response. Furthermore, if a duplicate CreateConnection or
ModifyConnection command is received, and the transaction has not yet finished executing, a provisional response
MUST then be sent back.

Pure transactional semantics would imply, that provisional responses should not return any other information than
the fact that the transaction is currently executing, however an optimistic approach allowing some information to be
returned enables a reduction in the delay that would otherwise be incurred in the system.

Provisional responses MUST only be sent in response to a CreateConnection or ModifyConnection command. In
order to reduce the delay in the system, a connection identifier and session description MUST be included in the
provisional response to the CreateConnection command. If a session description will be returned by the
ModifyConnection command, the session description MUST be included in the provisional response here as well. If
the transaction completes successfully, the information returned in the provisional response MUST be repeated in
the final response. It is considered a protocol error not to repeat this information or to change any of the previously
supplied information in a successful response. If the transaction fails, an error code is returned – the information
returned previously is no longer valid.

A currently executing CreateConnection or ModifyConnection transaction MUST be cancelled if a
DeleteConnection command for the endpoint is received. In that case, a response for the cancelled transaction
SHOULD still be returned automatically, and a response for the cancelled transaction MUST be returned if a
retransmission of the cancelled transaction is detected. (Error code 407 SHOULD be used.)

When a provisional response is received, the timeout period for the transaction in question MUST be set to a
significantly higher value for this transaction (Ttlongtran). The purpose of this timer is primarily to detect endpoint
failure. The default value of Ttlongtran is 5 seconds, however the provisioning process may alter this.

When the transaction finishes execution, the final response is sent and the by now obsolete provisional response is
deleted. In order to ensure rapid detection of a lost final response, final responses issued after provisional responses
for a transaction MUST be acknowledged. The endpoint MUST therefore include an empty “ResponseAck”
parameter in those, and only those, final responses. The presence of the “ResponseAck” parameter in the final
response will trigger a “Response Acknowledgement” response to be sent back to the endpoint. Thus, the CMS
MUST issue a "Response Acknowledgement" response whenever it receives a final response containing an empty
"ResponseAck" parameter regardless of the receipt of a provisional response to the transaction since the provisional
response may have been lost. The “Response Acknowledgement” response will include the transaction-id of the
response it acknowledges in the response header. Receipt of this “Response Acknowledgement” response is subject
to the same time-out and retransmission strategies and procedures as responses to commands (see Section 7.4), i.e.,
the sender of the final response will retransmit it if the “Response Acknowledgement” is not received in time. The
“Response Acknowledgment ” response is never acknowledged.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 102

9 SECURITY
If unauthorized entities could use the MGCP, they would be able to set up unauthorized calls or interfere with
authorized calls. Security is not provided as an integral part of MGCP. Instead, MGCP assumes the existence of a
lower layer providing the actual security.

Security requirements and solutions for NCS are provided in the IPCablecom Security specification [21] which
should be consulted for further information.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 103

Appendix I Event Packages

This section defines an initial set of event packages for the various types of endpoints currently defined by
IPCablecom for embedded clients.

Each package defines a package name for the package and event codes and definitions for each of the events in the
package. In the tables of events/signals for each package, there are five columns:

Code The package unique event code used for the event/signal.

Description A short description of the event/signal.

Event A check mark appears in this column if the event can be Requested by the Media Gateway
Controller. Alternatively, one or more of the following symbols may appear:

“P” indicating that the event is persistent,

“S” indicating that the event is an event-state that may be audited,

“C” indicating that the event/signal may be detected/applied on a connection.

Signal If nothing appears in this column for an event, then the event cannot be signaled on command by
the Media Gateway Controller. Otherwise, the following symbols identify the type of event:

“OO” On/Off signal. The signal is turned on until commanded by the Media Gateway
Controller to turn it off, and vice versa.

“TO” Timeout signal. The signal lasts for a given duration unless it is superseded by a new
signal. Default time-out values are supplied. A value of zero indicates that the time-out period is
infinite. The provisioning process may alter these default values.

“BR” Brief signal. The event has a short, known duration.

Additional info Provides additional information about the event/signal, e.g., the default duration of TO signals.

Unless otherwise stated, all of the events/signals are detected/applied on endpoints and audio generated by them is
not forwarded on any connection the endpoint may have. Audio generated by events/signals that are
detected/applied on a connection will however be forwarded on the associated connection irrespective of the
connection mode.

I.1 Analog Access Lines
The following packages are currently defined for Analog Access Line endpoints:

• Line

I.2 Line Package
Package name: L

The codes listed in Table 19 below are used to identify events and signals for the “line” package for “analog access
lines”.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 104

Table 19 - Line Package Codes for Events and Signals

Code Description Event Signal Additional Information

0-9,*,#,A,
B,C,D

DTMF tones
 BR

bz Busy tone - TO Time-out = 30 seconds.
cf Confirmation tone - BR
ci(ti, nu,
na)

Caller Id - BR “ti” denotes time, “nu” denotes number, and “na”
denotes name.

dl Dial tone - TO Time-out = 16 seconds.
ft Fax tone -
hd Off-hook transition P, S -
hf Flash hook P -
hu On-hook transition P, S -
L DTMF long duration -
ld Long duration connection C -
ma Media start C -
mt Modem tones -
mwi Message waiting indicator - TO Time-out = 16 seconds.
oc Operation complete -
of Operation failure -
osi Open interval - TO Default=900ms.
ot Off-hook warning tone - TO Time-out = infinite.
r0, r1, r2,
r3, r4, r5,
r6 or r7

Distinctive ringing (0..7) - TO Time-out = 180 seconds.

rg Ringing - TO Time-out = 180 seconds.
ro Reorder tone - TO Time-out = 30 seconds.
rs Ringsplash - BR
rt Ring back tone - C, TO Time-out = 180 seconds.
sl Stutter dial tone - TO Time-out = 16 seconds.
t Timer -
TDD Telecomm Devices for the

Deaf (TDD) tones
-

vmwi Visual message waiting
indicator

- OO

wt1, wt2,
wt3, wt4

Call waiting tones - TO Time-out = [(MaxReps + 1) + (MaxReps *
Delay)] seconds, where the default values for
MaxReps = 1 and Delay = 10 as defined in the
NCS Signalling MIB specification.

X DTMF tones wildcard - Matches any of the digits “0-9”.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 105

The definition of the individual events and signals are as follows:

DTMF tones (0-9,*,#,A, B,C,D): Detection and generation of DTMF signals is described in GR-506-CORE –
LSSGR: SIGNALING [28], Section 15. It is considered an error to try and play DTMF tones on a phone that is on
hook and an error should consequently be returned when such attempts are made (error code 402 – phone on hook).

Busy tone (bz): Station Busy is a combination of two AC tones with frequencies of 480 and 620 Hertz and levels of
–24 dBm each, to give a combined level of –21 dBm. The cadence for Station Busy Tone is 0.5 seconds on followed
by 0.5 seconds off, repeating. See Section 17.2.6. It is considered an error to try and play busy tone on a phone that
is on hook and an error should consequently be returned when such attempts are made (error code 402 – phone on
hook).

Confirmation tone (cf): Confirmation Tone uses the same frequencies and levels as dial tone (350 and 440 Hertz)
but with a cadence of 0.1 second on, 0.1 second off repeated three times. See [27], Section 17.2.4. It is considered an
error to try and play confirmation tone on a phone that is on hook and an error should consequently be returned
when such attempts are made (error code 402 – phone on hook).

Caller Id (ci(time, number, name)): See TR-NWT-001188, [27], and TR-NWT-000031. Each of the three fields
are optional, however each of the commas will always be included.

• The time parameter is coded as “MM/DD/HH/MM”, where the first MM is a two-digit value for Month
between 01 and 12, DD is a two-digit value for Day between 1 and 31, and Hour and Minute are two-digit
values coded according to military local time, e.g., 00 is midnight, 01 is 1 a.m., and 13 is 1 p.m.

• The number parameter is coded as an ASCII character string of decimal digits that identify the calling line
number. White spaces are permitted if the string is quoted, however they will be ignored.

• The name parameter is coded as a string of ASCII characters that identify the calling line name. White spaces,
commas, and parentheses are permitted if the string is quoted.

A “P” in the number or name field is used to indicate a private number or name, and an “O” is used to indicate
an unavailable number or name. The following example illustrates the use of the caller-id signal:

S: ci(10/14/17/26, “555 1212”, CableLabs)

In addition to the generic signaling requirements described in Section 8.2.2.10, the MTA MUST support, at a
minimum, the combination of one signal on an endpoint along with CallerId (ci) within the same SignalRequest
line (e.g., S: rg, ci(time,number,name)) and a signal on each connection associated with the endpoint.

Dial-tone (dl): Dial Tone is a combination of two continuous AC tones with frequencies of 350 and 440 Hertz and
levels of –13dBm each to give a combined level of –10 dBm. See [27], Section 17.2.1. It is considered an error to try
and play dial-tone on a phone that is on hook and an error should consequently be returned when such attempts are
made (error code 402 – phone on hook).

Fax tone (ft): The fax tone event is generated whenever a fax call is detected by presence of V.21 fax preamble. The
fax tone event SHOULD also be generated when the T.30 CNG tone is detected. See ITU-T Recommendations T.30
[29] and V.21[31].

Off-hook transition (hd): See [27], Section 12.

Flash hook (hf): See [27], Section 12.

On-hook transition (hu): See [27]. The timing for the on-hook signal is for flash response enabled.

DTMF Long duration (L): The “DTMF Long duration” is observed when a DTMF signal is produced for a
duration longer than two seconds. In this case, the gateway will detect two successive events: first, when the signal
has been recognized, the DTMF signal, and then, 2 seconds later, the long duration signal.

Long duration connection (ld): The “long duration connection” is detected when a connection has been established
for more than a certain period of time. The default value is 1 hour, however this may be changed by the provisioning
process.

The event is detected on a connection. When no connection is specified, the event applies to all connections for the
endpoint, regardless of when the connections are created.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 106

Media start (ma): The media start event occurs on a connection when the first valid33 RTP media packet is received
on the connection. This event can be used to synchronize a local signal, e.g., ringback, with the arrival of media
from the other party.

The event is detected on a connection. When no connection is specified, the event applies to all connections for the
endpoint, regardless of when the connections are created.

Modem tones (mt): Modem tone (mt): The modem tone event is generated whenever a data call is detected by
presence of V.25 answer tone (ANS) with or without phase reversal or V.8 modified answer tone (ANSam) with or
without phase reversal. See ITU-T Recommendation V.25 [32] and V.8 [30].

Message Waiting Indicator (mwi): Message Waiting indicator tone uses the same frequencies and levels as dial
tone (350 and 440 Hertz at –13dBm each) but with a cadence of 0.1 second on, 0.1 second off repeated 10 times
followed by steady application of dial tone. See [27], Section 17.2.3. It is considered an error to try and play
message waiting indicator on a phone that is on hook and an error should consequently be returned when such
attempts are made (error code 402 – phone on hook).

Open Switch Interval (osi): See [27]: Voiceband Data Transmission Interface, Section 2.2.2. See also [27], Section
4.5.2.1.

Operation complete (oc): The operation complete event is generated when the gateway was asked to apply one or
several signals of type TO on the endpoint, and one or more of those signals completed without being stopped by the
detection of a requested event such as off-hook transition or dialed digit. The completion report may carry as a
parameter the name of the signal that came to the end of its live time, as in:

O: L/oc(L/dl)

When the reported signal was applied on a connection, the parameter supplied will include the name of the
connection as well, as in:

O: L/oc(L/rt@0A3F58)

When the operation complete event is requested, it cannot be parameterized with any event parameters. When the
package name is omitted, the default package name is assumed.

The operation complete event may additionally be generated as defined in the base protocol, e.g., when an
embedded ModifyConnection command completes successfully, as in:

O: L/oc(B/C)

Note the use of “B” above as the prefix for the parameter reported.

Operation failure (of): In general, the operation failure event may be generated when the endpoint was asked to
apply one or several signals of type TO on the endpoint, and one or more of those signals failed prior to timing out.
The completion report may carry as a parameter the name of the signal that failed, as in:

O: L/of(L/rg)

When the reported signal was applied on a connection, the parameter supplied will include the name of the
connection as well, as in:

O: L/of(L/rt@0A3F58)

When the operation failure event is requested, event parameters cannot be specified. When the package name is
omitted, the default package name is assumed.

The operation failure event may additionally be generated as specified in the base protocol, e.g., when an embedded
ModifyConnection command fails, as in:

O: L/of(B/C(M(sendrecv(AB2354))))

Note the use of “B” above as the prefix for the parameter reported.

33 When authentication and integrity security services are used, an RTP packet is not considered valid until it has passed the
security checks.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 107

Off-hook warning tone (ot): Receiver Off Hook Tone (ROH Tone) is the irritating noise a telephone makes when it
is not hung up correctly. ROH Tone is generated by combining four tones at frequencies of 1400 Hertz, 2060 Hertz,
2450 Hertz and 2600 Hertz at a cadence of 0.1 second on, 0.1 second off, repeating. GR-506-CORE, Section 17.2.8
contains details about required power levels. It is considered an error to try and play off-hook warning tone on a
phone that is on hook and an error should consequently be returned when such attempts are made (error code 402 –
phone on hook).

Distinctive ringing (r0, r1, r2, r3, r4, r5, r6 or r7): See [27], Section 14. The values for r1 to r5 are as defined for
distinctive ringing pattern 1 to 5 as defined in [27]. The provisioning process MAY define the ringing cadence for
each of the r0-r7 signals. The MTA MUST support provisioning for r0, r6 and r7. It is considered an error to try and
ring a phone that is off hook and an error should consequently be returned when such attempts are made (error code
401 – phone off hook).

Ringing (rg): See [27], Section 14. The value for rg is as defined for distinctive ringing pattern 1 as defined in[27].
The provisioning process MAY define the ringing cadence. The ringing signal may be parameterized with the signal
parameter “rep” which specifies the maximum number of ringing cycles (repetitions) to apply. The following will
apply the ringing signal for up to 6 ringing cycles:

S: rg(rep=6)

It is considered an error to try and ring a phone that is off hook and an error should consequently be returned when
such attempts are made (error code 401 – phone off hook).

Reorder tone (ro): Reorder tone is a combination of two AC tones with frequencies of 480 and 620 Hertz and
levels of –24 dBm each, to give a combined level of –21 dBm. The cadence for reorder tone is 0.25 seconds on
followed by 0.25 seconds off, repeating continuously. See [27], Section 17.2.7. It is considered an error to try and
play reorder tone on a phone that is on hook and an error should consequently be returned when such attempts are
made (error code 402 – phone on hook).

Ringsplash (rs): Ringsplash, also known as “Reminder ring” is a burst of ringing that may be applied to the
physical forwarding line (when idle) to indicate that a call has been forwarded and to remind the user that a Call
Forwarding subfeature is active. In the US, it is defined to be a 0.5(-0,+0.1) second burst of power ringing. See TR-
TSY-000586 – Call Forwarding Subfeatures. The provisioning process MAY define the cadence for ringsplash. It is
considered an error to try and ring a phone that is off hook and an error should consequently be returned when such
attempts are made (error code 401 – phone off hook).

Ring back tone (rt): Audible Ring Tone is a combination of two AC tones with frequencies of 440 and 480 Hertz
and levels of –19 dBm each, to give a combined level of –16 dBm. In the U.S. the cadence for Audible Ring Tone is
defined to be 2 seconds on followed by 4 seconds off. The definition of the tone is defined by the national
characteristics of the Ringback Tone, and MAY be established via provisioning. See [27], Section 17.2.5.

The ringback signal can be applied to both an endpoint and a connection.

When the ringback signal is applied to an endpoint, it is considered an error to try and play ring back tones, if the
endpoint is considered on hook and an error should consequently be returned when such attempts are made (error
code 402 – phone on hook). When the ringback signal is applied to a connection, no such check is to be made.

Stutter Dial tone (sl): Stutter Dial Tone (also called Recall Dial Tone) is generated by supplying Confirmation
Tone, followed by continuous Dial Tone. See [27], Section 17.2.2. The stutter dial tone signal may be parameterized
with the signal parameter “del” which will specify a delay in milliseconds to apply between the confirmation tone
and the dial tone34. The following will apply stutter dial tone with a delay of 1.5 seconds between the confirmation
tone and the dial tone:

S: sl(del=1500)

It is considered an error to try and play stutter dial tone on a phone that is on hook and an error should consequently
be returned when such attempts are made (error code 402 – phone on hook).

Timer (t): As described in Section 7.1.5, timer T is a provisionable timer that can only be cancelled by DTMF input.
When timer T is used with the “accumulate according to digit map” action, the timer is not started until the first digit

34 This feature is needed for, e.g., Speed Dialing.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 108

is entered, and the timer is restarted after each new digit is entered until either a digit map match or mismatch
occurs. In this case, timer T functions as an inter-digit timer and takes on one of two values, Tpar or Tcrit. When at
least one more digit is required for the digit string to match any of the patterns in the digit map, timer T takes on the
value Tpar, corresponding to partial dial timing. If a timer is all that is required to produce a match, timer T takes on
the value Tcrit corresponding to critical timing. An example use is:

S: dl
R: [0-9T](D)

When timer T is used without the “accumulate according to digit map” action, timer T takes on the value Tcrit, and
the timer is started immediately and simply cancelled (but not restarted) as soon as a digit is entered. In this case,
timer T can be used as an inter-digit timer when overlap sending is used, e.g.:

R: [0-9](N), T(N)

Note, that only one of the two forms can be used at a time, since a given event can only be specified once.

The default value for Tpar is 16 seconds and the default value for Tcrit is 4 seconds. The provisioning process may
alter both of these.

Telecomm Devices for the Deaf tones (TDD): The TDD event is generated whenever a TDD call is detected – see
e.g., ITU-T recommendation V.18 [33].

Visual Message Waiting Indicator (vmwi): The transmission of the VMWI messages will conform to the
requirements in TR-H-000030 – Section 2.3.2, “On-hook Data Transmission Not Associated with Ringing”, and the
CPE guidelines in SR-TSV-002476. VMWI messages will only be sent from the embedded client to the attached
equipment when the line is idle. If new messages arrive while the line is busy, the VMWI indicator message will be
delayed until the line goes back to the idle state. When the endpoint restarts, it should not attempt to turn off a visual
message waiting indicator, even if it believes it should be off. The Call Agent should periodically refresh the CPE’s
visual indicator. See TR-NWT-001401 – Visual Message Waiting Indicator Generic Requirements; and [27]
Voiceband Data Transmission Interface.

Call Waiting tone1 (wt1, .., wt4): Call Waiting tones are defined in [27], Section 14.2 – the number refers to the
tone pattern used. The duration of the tone pattern lasts for up to 1 second. GR-571-CORE (FSD 01-02-1201)
indicates that two tone patterns should be played separated by a period of 10 seconds. The default maximum number
of repetitions and delay between repetitions may be altered by the provisioning process. The default Call Waiting
tone is a 440-Hz tone applied for 300 ± 50 ms. The talking path should be interrupted for a maximum of 400 ms for
the application of each CW tone pattern. When this signal is requested, the embedded client will play the two tone
patterns as specified in [27] before the "TO" signal times out. It is considered an error to try and apply call waiting
tones on a phone that is on hook and an error SHOULD consequently be returned when such attempts are made
(error code 402 – phone on hook).

The default time-out is calculated based on the default (or provisioned) number of repetitions, default (or
provisioned) delay between repetitions and length of time to generate the call waiting tone itself (1 second). For
example, if Call Waiting Delay is set to 12 seconds and Call Waiting Maximum Number of Repetitions is set to 2,
then the call waiting tone will be heard up to three times (played once and repeated twice). Therefore, the default
time-out is calculated by adding the length of time it takes to play the call waiting tone three times (3 seconds) and
the delay between repetitions (2 * 12 seconds). The calculated default timeout in this example is therefore 27
seconds. Upon request the call waiting signal may be parameterized with the signal parameter “to” which in essence
overrides the calculated default timeout described above.

DTMF tones wildcard (X): The DTMF tones wildcard matches any DTMF digit between 0 and 9.

I.3 Video
Event packages for video will be provided in a future version of this document.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 109

Appendix II Connection Mode

An MGCP connection can establish one or more media streams. These streams are either incoming or outgoing. The
“connection mode” parameter controls the flow of media on the media stream. When there is only one connection
to an endpoint, the mapping of these streams is straightforward. However, when several connections are established
to an endpoint, there can be many incoming and outgoing streams. Depending on the connection mode used, these
streams may mix differently with each other and the streams going to/from the handset. Table 20 below describes
how media from different connections should be mixed when one or more connections exist. The table assumes that
there are no signals being applied on a connection. Table 20 uses the following conventions:

• Ain is the incoming media stream from Connection A

• Bin is the incoming media stream from Connection B

• Hin is the incoming media stream from the Handset Microphone

• Aout is the outgoing media stream to Connection A

• Bout is the outgoing media stream to Connection B

• Hout is the outgoing media stream to the Handset earpiece

• NA indicates no stream whatsoever

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 110

Table 20 - Control of Media Streams by Connection Mode

 Connection A Mode

sendonly recvonly sendrecv confrnce inactive netwloop
/netwtest

replicate

C
on

ne
ct

io
n

B
 M

od
e

se
nd

on
ly

 Aout= Hin

Bout= Hin

Hout=NA

Aout=NA

Bout=Hin

Hout= Ain

Aout=Hin

Bout=Hin

Hout=Ain

Aout=Hin

Bout=Hin

Hout=Ain

Aout= NA

Bout= Hin

Hout=NA

Aout=Ain

Bout= Hin

Hout=NA

Aout= Hin

Bout= Hin

Hout=NA

re
cv

on
ly

 Aout= NA

Bout= NA

Hout=Ain+Bin

Aout= Hin

Bout= NA

Hout=Ain+Bin

Aout=Hin

Bout=NA

Hout=Ain+Bin

Aout=NA

Bout=NA

Hout= Bin

Aout= Ain

Bout= NA

Hout= Bin

Aout= Hin+Bin

Bout= NA

Hout= Bin

se
nd

re
cv

 Aout= Hin

Bout= Hin

Hout=Ain+Bin

Aout= Hin

Bout=Hin

Hout=Ain+Bin

Aout= NA

Bout= Hin

Hout= Bin

Aout= Ain

Bout= Hin

Hout= Bin

Aout= Hin+Bin

Bout= Hin

Hout= Bin

co
nf

rn
ce

 Aout=Hin+Bin

Bout=Hin+Ain

Hout=Ain+Bin

Aout= NA

Bout= Hin

Hout= Bin

Aout= Ain

Bout= Hin

Hout= Bin

Aout= Hin+Bin

Bout= Hin

Hout= Bin

in
ac

tiv
e

 Aout= NA

Bout= NA

Hout= NA

Aout= Ain

Bout= NA

Hout=NA

Aout= Hin

Bout= NA

Hout=NA

ne
tw

lo
op

/
ne

tw
te

st

 Aout= Ain

Bout= Bin

Hout=NA

Aout= Hin

Bout= Bin

Hout=NA

re
pl

ca
te

 Aout= Hin

Bout= Hin

Hout=NA

For clarity, Table 20 above is repeated below in graphical form:

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 111

sendonly recvonly sendrecv confrnce inactive newloop/
newtest

replcate

 se

nd
on

ly

 re

cv
on

ly

 se

nd
re

cv

 co

nf
rn

ce

 in

ac
tiv

e

 ne

w
lo

op
/

ne
w

te
st

 re

pl
ca

te

Figure 6 - Control of Media Streams by Connection Mode - Graphical Representation

C
on

ne
ct

io
n

B
 M

od
e

(L
ef

t)

Connection A Mode (Top)

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 112

If there are three or more connections, their media will still be mixed as defined in the Table 20 above. If internal
resources are not available such that the media cannot be mixed, the gateway should return error code 502
(insufficient resources).

These connections can be graphically represented as such:

Connection CConnection B

Connection A

Figure 7 - Graphical Representation of Connections

For example, if Connection A is sendrecv, Connection B is confrnce, and Connection C is recvonly, from Table 20
above, the outputs in each mode will be illustrated in Figure 8 below:

A to B Interaction: Bout= Hin Aout=Hin Hout=Ain+Bin

A to C Interaction: Aout= Hin Cout= NA Hout=Ain+Cin

B to C Interaction: Bout=Hin Cout=NA Hout=Bin+ Cin

Figure 8 - Individual Media Streams on Connections

A to B to C interaction:

Aout=Hin

Bout=Hin

Cout=NA

Hout= Bin+ Ain+ Cin

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 113

Figure 9 - A to B to C Interaction

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 114

Appendix III Dynamic Quality-of-Service

In this appendix, we provide additional detail on the usage of Dynamic Quality-of-Service (D-QoS) in NCS. We
describe the expected MTA behavior in more detail and include a state machine and pseudo-code that the MTA
MUST follow to support the D-QoS behavior described. The IPCablecom Dynamic Quality-of-Service Specification
[20] should be consulted for further details.

III.1 Introduction
MTAs implementing support for Dynamic Quality of Service need to store and maintain D-QoS state on a per
connection basis. Whenever D-QoS has been used for a connection, the endpoint will keep the following D-QoS
information associated with the connection until it is deleted:

• GateID The current GateID used for the connection.

• ResourceID The current ResourceID used for the connection.

• Last reservation The parameters for the most recent reservation for the connection. This includes classifiers as
well as media parameters in both the send and receive direction.

• Last commit The parameters for the most recent commit for the connection. This includes classifiers as well as
media parameters in both the send and receive direction.

• Reserve Destination An IP address and port that may be used to enable resource reservations where the remote
address info is not yet known as explained below.

The GateID is the key to resource reservation. Once a GateID has been provided for a connection, a D-QoS state
machine is created for the connection, and all of the above information will be maintained for the connection until it
is deleted.

Resources can be reserved and committed independently in both the send and receive direction by the MTA. The
send destination IP address and port as well as the source IP address are taken from the
RemoteConnectionDescriptor, when a RemoteConnectionDescriptor has been provided. In that case, the MTA
MUST use the following classifiers identified in Table 21 below for the resource reservation and commit:

Table 21 - Classifiers for Resource Reservation and Commit: Remote
Connection Descriptor Provided

 MTA-o (DOCSIS)

Downstream/receive
 Source IP IP(SDP-t)
 Source Port *
 Destination IP IP(SDP-o)
 Destination Port Port(SDP-o)
Upstream/send
 Source IP IP(SDP-o)
 Source Port Port(o)
 Destination IP IP(SDP-t)
 Destination Port Port(SDP-t)

where

• IP(SDP-o) refers to the media IP address in MTA-o’s LocalConnectionDescriptor.

• IP(SDP-t) refers to the media IP address in MTA-o’s RemoteConnectionDescriptor.

• Port(SDP-o) refers to the media port in MTA-o’s LocalConnectionDescriptor.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 115

• Port(SDP-t) refers to the media port in MTA-t’s LocalConnectionDescriptor.

• Port(o) refers to the source port MTA-o will be using when sending media on this connection. Note, that this
may or may not be the same as Port(SDP-o).

When a RemoteConnectionDescriptor has not yet been provided, the actual send destination IP address and port is
unknown and the ReserveDestination address is therefore used instead. For the receive direction, the source IP
address and port is wild-carded. This enables a reservation and a receive commit of the resource on the access link.
The classifiers identified in Table 22 MUST be used:

Table 22 - Classifiers for Resource Reservation and Commit: Remote
Connection Descriptor Not Provided

 MTA-o (DOCSIS)

Downstream/receive
 Source IP *
 Source Port *
 Destination IP IP(SDP-o)
 Destination Port Port(SDP-o)
Upstream/send
 Source IP IP(SDP-o)
 Source Port Port(o)
 Destination IP IP(RD-o)
 Destination Port Port(RD-o)

where

• IP(RD-o) refers to the IP address in the ReserveDestination supplied.

• IP(Port-o) refers to the port number in the ReserveDestination supplied. If no port number is specified a default
value of 9 applies.

Once the actual send destination and receive source media addresses and port are known, the reservations are
updated with the appropriate classifiers.

III.2 NCS/D-QoS State Machine
As explained above, the MTA maintains state for the Dynamic Quality of Service used on a connection. The state is
derived from a state machine which is driven by the following:

• Current state which consists of the pair (SendQoSState, ReceiveQoSState), where each QoS state may be one
of the following:

• N No resource reservation exists for the direction.

• R A resource reservation exists for the direction, but no resources are currently committed.

• C A resource reservation exists for the direction, some resources are currently committed.

• Connection mode which is the NCS connection mode. The connection modes “Conference”, “Network
Loopback”, and “Network Continuity Test” are not shown explicitly in the state machine, as they are all similar
to “SendReceive”. The connection mode “Replicate” is also not shown as it is similar to “SendOnly”.

• Resource Change which is one or more of the following:

• RemoteConnectionDescriptor IP address or port changes (classifier needs to be updated). This includes
the case where it arrives for first time.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 116

• Codec changes

• Ptime changes

• etc.

• The D-QoS rules provided in Section 7.3.3.

As a result of a CreateConnection or a ModifyConnection command, if the DOCSIS QoS parameters, Classifier or
Authorization Block changed from the previous state, then a new DSA/DSC message MUST be sent by the E-MTA
to the CMTS containing the updated parameters. An E-MTA MAY send a DSC message to the CMTS if the
DOCSIS QoS parameters, Classifier and Authorization Block have not changed as a result of a CreateConnection or
a ModifyConnection command. If a ResourceID is supplied as well and it is the same as the old ResourceID, the
reservation(s) for the new state machine MUST be performed before the reservation(s) for the old state machine are
released.

The set of possible states are:

• (N, N) Send resources not reserved, receive resources not reserved.

• (R, R) Send resources reserved, receive resources reserved.

• (C, R) Send resources reserved and committed, receive resources reserved.

• (R, C) Send resources reserved, receive resources reserved and committed.

• (C, C) Send resources reserved and committed, receive resources reserved and committed.

• (R, N) Send resources reserved, receive resources not reserved.

• (C, N) Send resources reserved and committed, receive resources not reserved.

• (N, R) Send resources not reserved, receive resources reserved.

• (N, C) Send resources not reserved, receive resources reserved and committed.

Once resources have been reserved and/or committed for a direction, a reservation for that direction will exist for the
lifetime of the connection. The relationship between states and connection mode or D-QoS reservation parameters is
shown in Table 23 below:

Table 23 - States Related to Connection Modes and DQoS Reservation Parameters

 SendState RecvState

No Reserve/Commit parameter supplied – connection mode:
 inactive R R
 sendonly, replcate C R
 recvonly R C
 sendrecv, confrnce, netwloop, netwtest C C
Reserve/Commit parameter supplied:
 sendresv R N, R*
 recvresv N, R* R
 snrcresv R R
 sendcomt C N, R*
 recvcomt N, R* C
 snrccomt C C
* If resources have been reserved or committed previously for the direction, the state will be R, otherwise the

state will be N.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 117

The actual state transition diagram is depicted in Figure 10 and Figure 11 below:

Figure 10 - NCS/D-QoS State Diagram (1:2)

Null

CreateConnection ModifyConnection DeleteConnection

GateID
Included

?

Null Null

Init D-QoS
SendState =

Null
RecvState =

Null

Yes

No

DDQ

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 118

SendReserve
= true

RecvReserve
= true

Modify
Connection

Resv.
param.

supplied
?

Mode =
inactive

?

Yes
SendUnCommit

= true

Yes
SendState
= Commit

?

Yes
ReceiveUnCo
mmit = true

RecvState = Commit
?

No

SendCommit
= true

Yes
RecvUn
Commit
= true

RecvState
= Commit

?

Mode =
sendonly

?
Yes

RecvCommit
= true

Yes
SendUn
Commit
= true

SendState
= Commit

?

Mode =
recvonly

?
Yes

No

SendCommit
= true

RecvCommit
= true

Mode sendrecv
?

Yes

No

No

RCU

No RCU RCU

No No

RCU

Yes
Send/

SendRecv
Reserve

supplied ?

Yes
No

SendReserve
= true

Recv/
SendRecv
Reserv supplied

RecvReserve
= true
Yes

Send/
SendRecv

Commit
supplied ?

No

SendState
 = Null

?

SendReserve
= true

Recv/
SendRecv
Commit
supplied ?

No

Yes

Yes

SendCommit
= true

Yes

No

RecvState
= Null

?

RecvReserve
= true
Yes

RecvCommit
= true

No

SendState
=Commit

?

SendUnCom
mit = true

Yes

RecvState
= Commit

?

RecvUnCom
mit = true

Yes

No

No

RCU

Perform
Reserve,

Commit and
UnCommit

actions

SendState =
UpdateState
(SendReserve,
SendCommit,
SendState)

RecvState =
UpdateState
(RecvReserve
RecvCommit,
RecvState)

Idle

Idle

Succes

SendStat
e = Null

? No SendDelete =
true

RecvState
= Null

?
No RecvDelete

= true

Perform
Delete
actions

Success

Null

DeleteConn
 ction

Set all Reserve,
Commit &
Uncommit
variables to false

Set all Delete
variables to

false

Actions
Succeeded?

Yes
No Failure

Idle

No

DDQ

Yes

Yes
No

Figure 11 - NCS/D-QoS State Diagram (2:2)

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 119

When executing the state machine, boolean variables will be set to indicate whether reserve, unreserve, commit, and
uncommit operations are to be performed. The pseudo-code below then provides details on individual D-QoS
procedures that are to be executed as indicated by these booleans. The following actions specify the D-QoS actions
to be taken in each of these procedures:

• SR means a D-QoS Send Reservation will be performed,

• RR means a D-QoS Receive Reservation will be performed,

• SC means a D-QoS Send Commit will be performed,

• RC means a D-QoS Receive Commit will be performed,

• SD means a D-QoS Send Reservation Delete will be performed,

• RD means a D-QoS Receive Reservation Delete will be performed,

• SU means a D-QoS Send Uncommit, i.e., lower committed send resources to zero, will be performed,

• RU means a D-QoS Receive Uncommit, i.e., lower committed send resources to zero, will be performed.

SendReserve()

If <current resources reserved ≠ resources to reserve> then { -- skip reservation if existing reservation OK

If <RemoteConnectionDescriptor provided> then

 SR(RemoteConnectionDescriptor) -- Use RemoteConnectionDescriptor classifier

else if <ReserveDestination provided> then

 SR(ReserveDestination) -- Use ReserveDestination classifier

else ERROR
}

ReceiveReserve()

If <current resources reserved ≠ resources to reserve> then { -- skip reservation if existing reservation OK

If <RemoteConnectionDescriptor provided> then
RR(RemoteConnectionDescriptor) -- Use RemoteConnectionDescriptor classifier

else RR(*) Use wildcard classifier

}

SendCommit()

If <current resources committed ≠ resources to commit> then { -- skip commit if existing OK
If <RemoteConnectionDescriptor provided> then {

 If not <resources to commit ⊂ resources reserved > then { -- old reservation does not
SR(RemoteConnectionDescriptor) -- satisfy what is about to be

} -- committed, so update reservation
if (DOCSIS QoS)

SC(RemoteConnectionDescriptor)
} else ERROR. -- Cannot commit send direction without RemoteConnectionDescriptor

}
ReceiveCommit()
If <current resources committed ≠ resources to commit> then { -- skip commit if existing OK

If not <resources to commit ⊂ resources reserved> then {
If <RemoteConnectionDescriptor provided> then

 RR(RemoteConnectionDescriptor)

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 120

else

RR(*) -- Use wildcard classifier

}

If <RemoteConnectionDescriptor provided> then

RC(RemoteConnectionDescriptor)

else

RC(*) -- Use wildcard classifier

}
SendReserveDelete()
If <send resources reserved> then
 SD() -- delete the reservation
ReceiveReserveDelete()
If <receive resources reserved> then
 RD() -- delete the reservation
SendUnCommit()
If <send resources committed> then
 SU() -- uncommit committed resources
ReceiveUnCommit()
If <receive resources committed> then
 RU() -- uncommit committed resources
State UpdateState(DoCommit, DoReserve, OldState)
If <DoCommit = true> then
 return Commit
else if <DoReserve = true> then
 return Reserve
else
 return OldState

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 121

Appendix IV Example Command Encodings

This appendix provides examples of commands and responses shown with the actual encoding used. Examples are
provided for each command. All commentary shown in the commands and responses is optional.

IV.1 NotificationRequest
The first example illustrates a NotificationRequest that will ring a phone and look for an off-hook event:
RQNT 1201 aaln/1@rgw-2567.whatever.net MGCP 1.0 NCS 1.0
N: ca@ca1.whatever.net:5678
X: 0123456789AC
R: hd(N)
S: rg

The response indicates that the transaction was successful:
200 1201 OK

The second example illustrates a NotificationRequest that will look for and accumulate an off-hook event, and then
provide dial-tone and accumulate digits according to the digit map provided. The “notified entity” is set to
“ca@ca1.whatever.net:5678”, and since the SignalRequests parameter is empty35, all currently active TO signals
will be stopped. All events in the quarantine buffer will be processed, and the list of events to detect in the
“notification” and “lockstep” state will include fax tones in addition to the “requested events” and persistent events:
RQNT 1202 aaln/1@rgw-2567.whatever.net MGCP 1.0 NCS 1.0
N: ca@ca1.whatever.net:5678
X: 0123456789AC
R: hd(A, E(S(dl), R(oc, hu, [0-9#*T](D))))
D: (0T|00T|#xxxxxxx|*xx|91xxxxxxxxxx|9011x.T)
S:
Q: process
T: ft

The response indicates that the transaction was successful:
200 1202 OK

IV.2 Notify
The example below illustrates a Notify message that notifies an off-hook event followed by a 12-digit number
beginning with “91”. A request identifier correlating the Notify with the NotificationRequest it results from is
included. The command is sent to the current “notified entity”, which typically will be the actual value supplied in
the NotifiedEntity parameter, i.e., “ca@ca1.whatever.net:5678” – a failover situation could have changed this:
NTFY 2002 aaln/1@rgw-2567.whatever.net MGCP 1.0 NCS 1.0
N: ca@ca1.whatever.net:5678
X: 0123456789AC
O: hd,9,1,2,0,1,8,2,9,4,2,6,6

The Notify response indicates that the transaction was successful:
200 2002 OK

IV.3 CreateConnection
The first example illustrates a CreateConnection command to create a connection on the endpoint specified. The
connection will be part of the specified CallId. The LocalConnectionOptions specify that G.711 u-law will be the
codec used and the packetization period will be 10 ms. The connection mode will be “receive only”:
CRCX 1204 aaln/1@rgw-2567.whatever.net MGCP 1.0 NCS 1.0
C: A3C47F21456789F0

35 It could have been omitted as well.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 122

L: p:10, a:PCMU
M: recvonly

The response indicates that the transaction was successful, and a connection identifier for the newly created
connection is therefore included. A session description for the new connection is included as well – note that it is
preceded by an empty line.
200 1204 OK
I: FDE234C8

v=0
o=- 25678 753849 IN IP4 128.96.41.1
s=-
c=IN IP4 128.96.41.1
t=0 0
m=audio 3456 RTP/AVP 0
a=mptime:10

The second example illustrates a CreateConnection command containing a notification request and a
RemoteConnectionDescriptor:
CRCX 1205 aaln/1@rgw-2569.whatever.net MGCP 1.0 NCS 1.0
C: A3C47F21456789F0
L: p:10, a:PCMU
M: sendrecv
X: 0123456789AD
R: hd
S: rg
v=0
o=- 25678 753849 IN IP4 128.96.41.1
s=-
c=IN IP4 128.96.41.1
t=0 0
m=audio 3456 RTP/AVP 0
a=mptime:10

The response indicates that the transaction failed, because the phone was already off-hook. Consequently, neither a
connection-id nor a session description is returned:
401 1205 Phone off-hook

Our third example illustrates the use of the provisional response and the three-way handshake. We create another
connection this time using dynamic quality of service and acknowledging the previous response received:
CRCX 1206 aaln/1@rgw-2569.whatever.net MGCP 1.0 NCS 1.0
K: 1205
C: A3C47F21456789F0
L: p:10, a:PCMU, dq-gi:A735C2
M: inactive

v=0
o=- 25678 753849 IN IP4 128.96.41.1
s=-
c=IN IP4 128.96.41.1
t=0 0
m=audio 3456 RTP/AVP 0 18
 a=mptime:10 10

A provisional response is returned initially:
100 1206 Pending
I: DFE233D1

v=0
o=- 4723891 7428910 IN IP4 128.96.63.25
s=-

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 123

c=IN IP4 128.96.63.25
t=0 0
m=audio 3456 RTP/AVP 0
a=mptime:10

Note that the endpoint elected to support only the PCMU codec, i.e., payload number 0.

A little later, the final response is received:
200 1206 OK
K:
DQ-RI: A12D5F1
I: DFE233D1

v=0
o=- 4723891 7428910 IN IP4 128.96.63.25
s=-
c=IN IP4 128.96.63.25
t=0 0
m=audio 3456 RTP/AVP 0
a=mptime:10

The Call Agent acknowledges the final response as requested:
000 1206

and the transaction is complete.

IV.4 ModifyConnection
The first example shows a ModifyConnection command that simply sets the connection mode of a connection to
“send/receive” – the “notified entity” is set as well:
MDCX 1209 aaln/1@rgw-2567.whatever.net MGCP 1.0 NCS 1.0
C: A3C47F21456789F0
I: FDE234C8
N: ca@ca1.whatever.net
M: sendrecv

The response indicates that the transaction was successful:
200 1209 OK

In the second example, we pass a session description and include a notification request with the ModifyConnection
command. The endpoint will start playing ring-back tones to the user until it detects audio on the connection
specified for the media start event:
MDCX 1210 aaln/1@rgw-2567.whatever.net MGCP 1.0 NCS 1.0
C: A3C47F21456789F0
I: FDE234C8
M: recvonly
X: 0123456789AE
R: hu, ma@FDE234C8
S: rt

v=0
o=- 4723891 7428910 IN IP4 128.96.63.25
s=-
c=IN IP4 128.96.63.25
t=0 0
m=audio 3456 RTP/AVP 0
a=mptime:10

The response indicates that the transaction was successful:
200 1206 OK

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 124

IV.5 DeleteConnection (From the Call Agent)
In this example, the Call Agent simply instructs the embedded client to delete the connection FDE234C8 on the
endpoint specified:
DLCX 1210 aaln/1@rgw-2567.whatever.net MGCP 1.0 NCS 1.0
C: A3C47F21456789F0
I: FDE234C8

The response indicates success, and that the connection was deleted. Connection parameters for the connection are
therefore included as well:
250 1210 OK
P: PS=1245, OS=62345, PR=780, OR=45123, PL=10, JI=27, LA=48,
 PC/RPS=782, PC/ROS=45238, PC/RPL=5, PC/RJI=26

IV.6 DeleteConnection (From the Embedded Client)
In this example, the embedded client sends a DeleteConnection command to the Call Agent to instruct it that a
connection on the specified endpoint has been deleted. The ReasonCode specifies the reason for the deletion, and
Connection Parameters for the connection are provided as well:
DLCX 1210 aaln/1@rgw-2567.whatever.net MGCP 1.0 NCS 1.0
C: A3C47F21456789F0
I: FDE234C8
E: 900 – Hardware error
P: PS=1245, OS=62345, PR=780, OR=45123, PL=10, JI=27, LA=48,
 PC/RPS=782, PC/ROS=45238, PC/RPL=5, PC/RJI=26

The Call Agent sends a success response to the gateway:
200 1210 OK

IV.7 DeleteConnection (Multiple Connections From the Call Agent)
In the first example, the Call Agent instructs the embedded client to delete all connections related to call
“A3C47F21456789F0” on the specified endpoint:
DLCX 1210 aaln/1@rgw-2567.whatever.net MGCP 1.0 NCS 1.0
C: A3C47F21456789F0

The response indicates success and that the connection(s) were deleted:
250 1210 OK

In the second example, the Call Agent instructs the embedded client to delete all connections related to all of the
endpoints specified:
DLCX 1210 aaln/*@rgw-2567.whatever.net MGCP 1.0 NCS 1.0

The response indicates success:
250 1210 OK

IV.8 AuditEndpoint
In the first example, the Call Agent wants to learn what endpoints are present on the embedded client specified,
hence the use of the “all of” wild-card for the local portion of the endpoint-name:
AUEP 1200 *@rgw-2567.whatever.net MGCP 1.0 NCS 1.0

The embedded client indicates success and includes a list of endpoint names:
200 1200 OK
Z: aaln/1@rgw-2567.whatever.net
Z: aaln/2@rgw-2567.whatever.net

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 125

In the second example, the capabilities of one of the endpoints is requested:
AUEP 1201 aaln/1@rgw-2567.whatever.net MGCP 1.0 NCS 1.0
F:A

The response indicates success and the capabilities as well. Two codecs are supported, however with different
capabilities. Consequently two separate capability sets are returned. Again, each capability set is to be returned on a
single line. The example below shows multiple lines due to formatting restraints:
200 1201 OK
A: a:PCMU,p:10-100,e:on,s:off, v:L;S, m:sendonly;
 recvonly;sendrecv;inactive;netwloop;netwtest
A: a:G729,p:30-90, e:on,s:on,v:L;S, m:sendonly;
 recvonly;sendrecv;inactive;confrnce;netwloop

In the third example, the Call Agent audits all possible information for the endpoint:
AUEP 2002 aaln/1@rgw-2567.whatever.net MGCP 1.0 NCS 1.0
F: R,D,S,X,N,I,T,O,ES,VS,E,MD

The response indicates success:
200 2002 OK
R: L/hd,L/hu,oc(N),[0-9](N)
D:
S: vmwi(+)
X: 0123456789B1
N: Call-agent@ca.whatever.net
I: 32F345E2
T: L/hd,L/hu,L/ft
O: hd,9,1,2
ES: hd
VS: MGCP 1.0, MGCP 1.0 NCS 1.0
E: 000
MD: 4000

The list of requested events contains three events. Where no package name is specified, the default package is
assumed. The same goes for actions, so the default action – Notify - must therefore be assumed for the “L/hu” event.
The omission of a value for the “digit map” means the endpoint currently does not have a digit map. There are
currently no active time-out signals, however the OO signal “vmvi” is currently on and is consequently included – in
this case it was parameterized, however the parameter could have been excluded. The current “notified entity” refers
to an IP-address and only a single connection exists for the endpoint. The current value of DetectEvents is “ft”, and
the list of ObservedEvents contains the four events specified. Finally, the event-states audited reveals that the phone
was off-hook at the time the transaction was processed.

IV.9 AuditConnection
The first example shows an AuditConnection command where we audit the CallId,
NotifiedEntity, LocalConnectionOptions, Connection Mode, LocalConnectionDescriptor,
and the Connection Parameters:
AUCX 2003 aaln/1@rgw-2567.whatever.net MGCP 1.0 NCS 1.0
I: 32F345E2
F: C,N,L,M,LC,P

The response indicates success and includes information for the RequestedInfo:
200 2003 OK
C: A3C47F21456789F0
N: ca@ca1.whatever.net
L: p:10, a:PCMU
M: sendrecv
P: PS=395, OS=22850, PR=615, OR=30937, PL=7, JI=26, LA=47,
 PC/RPS=615, PC/ROS=30937, PC/RPL=5, PC/RJI=26

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 126

v=0
o=- 4723891 7428910 IN IP4 128.96.63.25
s=-
c=IN IP4 128.96.63.25
t=0 0
m=audio 1296 RTP/AVP 0
a=mptime:10

In the second example, we request to audit RemoteConnectionDescriptor and LocalConnectionDescriptor:
AUCX 1203 aaln/2@rgw-2567.whatever.net MGCP 1.0 NCS 1.0
I: FDE234C8
F: RC,LC

The response indicates success, and includes information for the RequestedInfo. In this case, no
RemoteConnectionDescriptor exists, hence only the protocol version field is included for the
RemoteConnectionDescriptor:
200 1203 OK

v=0
o=- 4723891 7428910 IN IP4 128.96.63.25
s=-
c=IN IP4 128.96.63.25
t=0 0
m=audio 1296 RTP/AVP 0
a=mptime:10

v=0

IV.10 RestartInProgress
The first example illustrates a RestartInProgress message sent by an embedded client to inform the Call Agent that
the specified endpoint will be taken out of service in 300 seconds:
RSIP 1200 aaln/1@rgw-2567.whatever.net MGCP 1.0 NCS 1.0
RM: graceful
RD: 300

The Call Agent’s response indicates that the transaction was successful:
200 1200 OK

In the second example, the RestartInProgress message sent by the embedded client informs the Call Agent, that all
of the embedded client’s endpoints are being placed in service in 0 seconds, i.e., they are back in service. The delay
could have been omitted as well:
RSIP 1204 *@rgw-2567.whatever.net MGCP 1.0 NCS 1.0
RM: restart
RD: 0

The Call Agent’s response indicates success, and furthermore provides the endpoints in question with a new
“notified entity”:
200 1204 OK
N: CA-1@ca.whatever.net

Alternatively, the command could have failed with a new “notified entity” as in:
521 1204 OK
N: CA-1@ca.whatever.net

In that case, the command would then have to be retried (as a new transaction) in order to satisfy the “restart
procedure” (see Section 7.4.3.5), this time going to Call Agent “CA-1@whatever.net”.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 127

Appendix V Example Call Flow

In this section we provide an example call flow between two embedded clients, EC-1 and EC-2. It should be noted,
that this call flow, although a valid one, is merely an example that may or may not be used in practice.

In the call flow described in Table 24 below, CA refers to the Call Agent, CDB refers to a configuration database,
and ACC refers to an accounting database.

Table 24 - Example Call Flow

Usr-1 EC-1 CA CDB ACC EC-2 Usr-2
 <− Notification Request
 Ack −>
Off-hook Notify −>
 <− Ack
(Dial-
tone)

<− Create Connection +
Notification Request

 Ack(SDP1) −>
Digits Notify −>
 <− Ack

(progress) <− Notification Request
 Ack −>
 Query(E.164) −>
 <− IP
 Create Connection(SDP1) +

Notification Request
− − − − − − −>

 <− − − − − − − P-Ack(SDP2)
 <− − − − − − − Ack(SDP2) (ringing)
 Ack − − − − − − −>
(ringback) <− Modify Connection(SDP2) +

Notification Request

 Ack −>
 <− − − − − − − Notify Off-hook
 Ack − − − − − − − >
 <− ModifyConnection +

Notification Request

 Ack −>
 (cut in) Call start − − − − >
 Notification Request − − − − − − −>
 <− − − − − − − Ack
 (Call Established)
 <− − − − − − − Notify on hook
 Ack − − − − − − −>

 <− Delete Connection

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 128

Usr-1 EC-1 CA CDB ACC EC-2 Usr-2
 Delete Connection − − − − − − −>
 Ack (Perf

Data)
−>

 <− − − − − − − Ack(Perf
data)

 Call end − − − −>
 Notification Request − − − − − − −>
 <− − − − − − − Ack
On-hook Notify −>
 <− Ack
 <− Notification Request
 Ack −>

During these exchanges the NCS profile of MGCP is used by the Call Agent to control both embedded clients. The
exchanges occur on two sides.

The first command is a NotificationRequest, sent by the Call Agent to the ingress embedded client. The request will
consist of the following lines:
RQNT 1201 aaln/1@ec-1.whatever.net MGCP 1.0 NCS 1.0
N: ca@ca1.whatever.net:5678
X: 0123456789AB
R: hd

The embedded client, at that point, is instructed to look for an off-hook event, and to report it. It will first send a
response to the command, repeating in the response the transaction id that the Call Agent attached to the query and
providing a return code indicating success:
200 1201 OK

When the off hook event is noticed, the embedded client sends a Notify message to the Call Agent:
NTFY 2001 aaln/1@ec-1.whatever.net MGCP 1.0 NCS 1.0
N: ca@ca1.whatever.net:5678
X: 0123456789AB
O: hd

The Call Agent immediately acknowledges the notification:
200 2001 OK

The Call Agent examines the services associated to an off hook event for this endpoint (it could take special actions
in the case of a direct line, no current subscription, etc.). In most cases, it will send a combined CreateConnection
and NotificationRequest command to create a connection, provide dial-tone, and collect DTMF digits36:
CRCX 1202 aaln/1@ec-1.whatever.net MGCP 1.0 NCS 1.0
C: A3C47F21456789F0
L: p:10, a:PCMU
M: recvonly
N: ca@ca1.whatever.net:5678
X: 0123456789AC
R: hu, [0-9#*T](D)
D: (0T | 00T | [2-9]xxxxxx | 1[2-9]xxxxxxxxx | 011xx.T)
S: dl

36 The actual digit map depends on dialing plan in the local area as well as services subscribed to. The digit map presented should
be considered an example digit map only.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 129

The embedded client acknowledges the transaction, sending back the identification of the newly created connection
and the session description used to receive audio data:
200 1202 OK
I: FDE234C8

v=0
o=- 25678 753849 IN IP4 128.96.41.1
s=-
c=IN IP4 128.96.41.1
t=0 0
m=audio 3456 RTP/AVP 0
a=mptime:10

The SDP specification, in our example, specifies the address at which the embedded client is ready to receive audio
data (128.96.41.1), the transport protocol (RTP), the RTP port (3456) and the audio profile (AVP). The audio profile
refers to 9[3], which defines that the payload type 0 has been assigned for G.711 u-law transmission (also, see[17]).

The embedded client will start accumulating digits according to the digit map. When a digit map match
subsequently occurs, the embedded client will notify the observed events to the Call Agent:
NTFY 2002 aaln/1@ec-1.whatever.net MGCP 1.0 NCS 1.0
N: ca@ca1.whatever.net:5678
X: 0123456789AC
O: 1,2,0,1,8,2,9,4,2,6,6

The Call Agent immediately acknowledges that notification:
200 2002 OK

At this stage, the Call Agent will send a NotificationRequest, to stop collecting digits yet continue to watch for an
on-hook transition. The Call Agent furthermore decides to acknowledge receipt of the responses for transaction
1202:
RQNT 1203 aaln/1@ec-1.whatever.net MGCP 1.0 NCS 1.0
K: 1202
X: 0123456789AD
R: hu

The embedded client immediately acknowledges that command:
200 1203 OK

The Call Agent must now create a connection on the egress embedded client, EC-2, and ring the phone attached to
the embedded client as well. It does so by sending a combined CreateConnection and NotificationRequest command
to the embedded client:
CRCX 2001 aaln/1@ec-2.whatever.net MGCP 1.0 NCS 1.0
C: A3C47F21456789F0
L: p:10, a:PCMU
M: sendrecv
X: 0123456789B0
R: hd
S: rg

v=0
o=- 25678 753849 IN IP4 128.96.41.1
s=-
c=IN IP4 128.96.41.1
t=0 0
m=audio 3456 RTP/AVP 0
a=mptime:10

The egress embedded client, at that point, is instructed to ring the phone, and to look for an off-hook event, and
report it. The off-hook event and ringing signal are synchronized, so when the off-hook event occurs, ringing will

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 130

stop. The create connection portion of the command has the same parameters as the command sent to the ingress
embedded client, with two differences:

• The endpoint identifier points towards the outgoing circuit,

• The message carries the session description returned by the ingress embedded client,

• Because the session description is present, the “mode” parameter is set to “send/receive”.

We observe that the call identifier is identical for the two connections. This is normal since the two connections
belong to the same call.

We assume, this command does not finish executing immediately37, and a provisional response is therefore returned
by the egress embedded client acknowledging the command, sending in the session description its own parameters
such as address, ports and RTP profile as well as the connection identifier for the new connection:
100 2001 Pending
I: 32F345E2

v=0
o=- 4723891 7428910 IN IP4 128.96.63.25
s=-
c=IN IP4 128.96.63.25
t=0 0
m=audio 1297 RTP/AVP 0
a=mptime:10

Once the transaction finishes execution, the embedded client sends the final response to the Call Agent, repeating
the information it provided in the provisional response:
200 2001 OK
K:
I: 32F345E2

v=0
o=- 4723891 7428910 IN IP4 128.96.63.25
s=-
c=IN IP4 128.96.63.25
t=0 0
m=audio 1297 RTP/AVP 0
a=mptime:10

When the Call Agent receives the final response, it notices the presence of the empty Response Acknowledgement
attribute and therefore issues a Response Acknowledgement for the transaction:
000 2001

The Call Agent will relay the information to the ingress embedded client, and instruct it to generate local ringback
tones, using a combined ModifyConnection and NotificationRequest command:
MDCX 1204 aaln/1@ec-1.whatever.net MGCP 1.0 NCS 1.0
C: A3C47F21456789F0
I: FDE234C8
M: recvonly
X: 0123456789AE
R: hu
S: rt

v=0
o=- 4723891 7428910 IN IP4 128.96.63.25
s=-
c=IN IP4 128.96.63.25
t=0 0
m=audio 1297 RTP/AVP 0

37 This could, e.g., be due to external resource reservation, although we did not include that in our example.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 131

a=mptime:10

The embedded client immediately acknowledges the modification:
200 1204 OK

At this stage, the Call Agent has established a half duplex transmission path. The phone attached to the ingress
embedded client will be able to receive the signals, such as tones or announcements, that may be generated in case
of any errors, as well as the initial speech that most likely will be generated when the egress user answers the phone.

When the off hook event is observed, the egress embedded client sends a Notify message to the Call Agent:
NTFY 3001 aaln/1@ec-2.whatever.net MGCP 1.0 NCS 1.0
X: 0123456789B0
O: hd

The call agent immediately acknowledges that notification:
200 3001 OK

The Call agent now sends a combined ModifyConnection and NotificationRequest to the ingress embedded client, to
place the connection in send/receive mode and stop the ringback tones:
MDCX 1206 aaln/1@ec-1.whatever.net MGCP 1.0 NCS 1.0
C: A3C47F21456789F0
I: FDE234C8
M: sendrecv
X: 0123456789AF
R: hu

The embedded client immediately responds to the command:
200 1206 OK

In parallel, the Call Agent asks the egress embedded client to notify the occurrence of an on-hook event. It does so
by sending a NotificationRequest to the embedded client38:
RQNT 2002 aaln/1@ec-2.whatever.net MGCP 1.0 NCS 1.0
X: 0123456789B1
R: hu

The embedded client immediately responds to the command:
200 2002 OK

At this point, the call is fully established.

At some later point in time, the phone attached to the egress embedded client, in our scenario, goes on-hook. This
event is notified to the Call Agent, according to the policy received in the last NotificationRequest by sending a
Notify command:
NTFY 2003 aaln/1@ec-2.whatever.net MGCP 1.0 NCS 1.0
X: 0123456789B1
O: hu

The Call Agent immediately responds to the command:
200 2003 OK

The Call Agent now determines that the call is ending, and it therefore sends both embedded clients a
DeleteConnection command:
DLCX 1207 aaln/1@ec-1.whatever.net MGCP 1.0 NCS 1.0
C: A3C47F21456789F0
I: FDE234C8
DLCX 2004 aaln/1@ec-2.whatever.net MGCP 1.0 NCS 1.0
C: A3C47F21456789F0

38 It should be noted, that although on-hook is a persistent event, lockstep mode requires the Call Agent to send a new
NotificationRequest to the embedded client.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 132

I: 32F345E2

The embedded clients will respond with acknowledgements that include the connection parameters for the
connection:
250 1207 OK
P: PS=1245, OS=62345, PR=780, OR=45123, PL=10, JI=27, LA=48,
 PC/RPS=790, PC/ROS=45700, PC/RPL=15, PC/RJI=26
250 2004 OK
P: PS=790, OS=45700, PR=1230, OR=61875, PL=15, JI=27, LA=48,
 PC/RPS=1245, PC/ROS=62345, PC/RPL=10, PC/RJI=27

The Call Agent will also issue a new NotificationRequest to the egress embedded client, to be ready to receive the
next off-hook event detected by the embedded client:
RQNT 2005 aaln/1@ec-2.whatever.net MGCP 1.0 NCS 1.0
X: 0123456789B2
R: hd

The embedded client will acknowledge this message:
200 2005 OK

Finally, the ingress embedded client hangs up the phone thereby generating a Notify message to the Call Agent:
NTFY 1208 aaln/1@ec-1.whatever.net MGCP 1.0 NCS 1.0
X: 0123456789AF
O: hu

The Call Agent immediately responds to the command:
200 1208 OK

The Call Agent will then issue a new NotificationRequest to the ingress embedded client, to be ready to receive the
next off-hook event detected by the embedded client:
RQNT 1209 aaln/1@ec-1.whatever.net MGCP 1.0 NCS 1.0
X: 0123456789B3
R: hd

The embedded client will acknowledge this message:
200 1209 OK

Both embedded clients, at this point, are ready for the next call.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 133

Appendix VI Compatibility Information

This appendix provides NCS protocol compatibility information.

VI.1 MGCP Compatibility
NCS is a profile of MGCP 1.0[1], however NCS has introduced a couple of additions as well. The following lists
NCS additions that are currently not included in MGCP:

• Endpoint Naming Scheme The rules for wildcarding are more restrictive than in MGCP.

• Embedded ModifyConnection A new Embedded ModifyConnection action has been introduced.

• Dynamic Quality of Service IPCablecom Security services are supported in NCS. This affects the
LocalConnectionOptions, Capabilities, and SDP. Also, a new return parameter; ResourceID, is added for
CreateConnection and ModifyConnection.

• Security IPCablecom Security services are supported in NCS. This affects the LocalConnectionOptions,
Capabilities, and SDP.

• Endpoint Name Retrieval The AuditEndpoint command has been extended with a capability to return the
number of endpoints that match a wildcard as well as mechanism for block-wise retrieval of these endpoint
names. Besides extending the AuditEndpoint command, this implies the introduction of two new parameter
names; MaxEndPointIds, and NumEndPoints.

• Supported Versions The RestartInProgress response and the AuditEndpoint command have been extended
with a VersionSupported parameter to enable Call Agents and gateways to determine which protocol versions
each support.

• Error Codes Two new error codes have been introduced; 532 and 533.

• Usage of SDP A new SDP usage profile is included in NCS. Most notably, the profile and all example use
specifically require strict SDP compliance, regardless of the usefulness of the included fields. Also, IPCablecom
specific extensions have been added to SDP.

• Provisional Response Additional detail and specification of the provisional response mechanism has been
included in NCS. A Response Acknowledgement response (000) has been introduced, an empty ResponseAck
parameter has been permitted in final responses that follow provisional responses, and a procedure for the
mechanism specified.

• Signal Parameters Signal parameter syntax has been extended to allow for the usage of balanced parenthesis
within signal parameters. All Time-Out signals can have their time-out value altered by a signal parameter.

• Event Packages NCS introduces a set of new event packages.

• Packetization Period A new multiple packetization period LocalConnectionOption has been defined, and the
MTA is not allowed to choose codecs with a frame size that is inconsistent with the packetization period(s)
specified by the Call Agent. Also, codec negotiation differs by depending on and negotiating packetization
periods as well as codecs.

Finally, it should be noted, that NCS provides interpretations of and in some cases additional specification or
clarification of the base MGCP protocol behavior that may or may not reflect the intended MGCP behavior.

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 134

Appendix VII ABNF Grammar for NCS

RFC 3435 includes a formal description of the MGCP protocol syntax following the "Augmented BNF for Syntax
Specifications". This formal description is referenced by developers for the creation of interoperable devices. A
copy of the MGCP protocol syntax, annotated and edited to indicate its applicability to IPCablecom specifications,
is provided in this appendix.

Implementations SHOULD conform to the portions of this ABNF grammar that relate to their respective
specifications, i.e., NCS, TGCP. Also note that there are a few parameter encodings (e.g., embedded request, digit
maps, vendor extension names) where the NCS grammar and/or TGCP grammar differ from the MGCP grammar.

Five annotations are used to distinguish between four different cases:

1. The language of the RFC has been changed to accommodate NCS and TGCP requirements.

2. The language of the RFC is applicable to NCS only (and possibly MGCP).

3. The language of the RFC is applicable to TGCP only (and possibly MGCP).

4. The language of the RFC is only applicable to NCS and TGCP.

5. The language of the RFC is only applicable to MGCP.

The language in each case is indicated by a different typeface, as defined in the change description below.
;RFC 3435 grammar changed to accommodate NCS and TGCP
;Bold indicates NCS only (and possibly MGCP)
;Italics indicates TGCP only (and possibly MGCP)
;Bold italics indicates NCS and TGCP only
;Text in grey is for MGCP only

MGCPMessage = MGCPCommand / MGCPResponse

MGCPCommand = MGCPCommandLine 0*(MGCPParameter) [EOL *SDPinformation]

MGCPCommandLine = MGCPVerb 1*(WSP) transaction-id 1*(WSP)
 endpointName 1*(WSP) MGCPversion EOL

MGCPVerb = "EPCF" / "CRCX" / "MDCX" / "DLCX" / "RQNT"
 / "NTFY" / "AUEP" / "AUCX" / "RSIP" / extensionVerb

extensionVerb = ALPHA 3(ALPHA / DIGIT) ; experimental starts with X

transaction-id = 1*9(DIGIT)

endpointName = LocalEndpointName "@" DomainName
LocalEndpointName = LocalNamePart 0*("/" LocalNamePart)
LocalNamePart = AnyName / AllName / NameString
AnyName = "$"
AllName = "*"
NameString = 1*(range-of-allowed-characters)
; VCHAR except "$", "*", "/", "@"
range-of-allowed-characters = %x21-23 / %x25-29 / %x2B-2E
 / %x30-3F / %x41-7E

DomainName = 1*255(ALPHA / DIGIT / "." / "-") ; as defined
 / "#" number ; in RFC 821
 / "[" IPv4address / IPv6address "]" ; see RFC 2373

; Rewritten to ABNF from RFC 821
number = 1*DIGIT

;From RFC 2373
IPv6address = hexpart [":" IPv4address]

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 135

IPv4address = 1*3DIGIT "." 1*3DIGIT "." 1*3DIGIT "." 1*3DIGIT
; this production, while occurring in RFC2373, is not referenced
; IPv6prefix = hexpart "/" 1*2DIGIT
hexpart = hexseq / hexseq "::" [hexseq] / "::" [hexseq]
hexseq = hex4 *(":" hex4)
hex4 = 1*4HEXDIG

MGCPversion = "MGCP" 1*(WSP) 1*(DIGIT) "." 1*(DIGIT)
 [1*(WSP) ProfileName]
ProfileName = "NCS 1.0" ; For NCS
 / "TGCP 1.0" ; For TGCP
 / VCHAR *(WSP / VCHAR)

MGCPParameter = ParameterValue EOL

; Check infoCode if more parameter values defined
; Most optional values can only be omitted when auditing
ParameterValue = ("K" ":" 0*(WSP) [ResponseAck])
 / ("B" ":" 0*(WSP) [BearerInformation])
 / ("C" ":" 0*(WSP) CallId)
 / ("I" ":" 0*(WSP) [ConnectionId])
 / ("N" ":" 0*(WSP) [NotifiedEntity])
 / ("X" ":" 0*(WSP) [RequestIdentifier])
 / ("L" ":" 0*(WSP) [LocalConnectionOptions])
 / ("M" ":" 0*(WSP) ConnectionMode)
 / ("R" ":" 0*(WSP) [RequestedEvents])
 / ("S" ":" 0*(WSP) [SignalRequests])
 / ("D" ":" 0*(WSP) [DigitMap]) ; For NCS (and MGCP)
 / ("O" ":" 0*(WSP) [ObservedEvents])
 / ("P" ":" 0*(WSP) [ConnectionParameters])
 / ("E" ":" 0*(WSP) ReasonCode)
 / ("Z" ":" 0*(WSP) [SpecificEndpointID])
 / ("Z2" ":" 0*(WSP) SecondEndpointID)
 / ("I2" ":" 0*(WSP) SecondConnectionID)
 / ("F" ":" 0*(WSP) [RequestedInfo])
 / ("Q" ":" 0*(WSP) QuarantineHandling)
 / ("T" ":" 0*(WSP) [DetectEvents])
 / ("RM" ":" 0*(WSP) RestartMethod)
 / ("RD" ":" 0*(WSP) RestartDelay)
 / ("A" ":" 0*(WSP) [Capabilities])
 / ("ES" ":" 0*(WSP) [EventStates])
 / ("PL" ":" 0*(WSP) [PackageList]) ; Auditing only
 / ("MD" ":" 0*(WSP) MaxMGCPDatagram) ; Auditing only
 / (extensionParameter ":" 0*(WSP) [parameterString])
 / VersionSupported ; NCS and TGCP - response only
 / MaxEndpointIds ; NCS and TGCP
 / NumEndpoints ; NCS and TGCP - response only

; <extensionParameter> ":" parameterString defined by NCS and TGCP
VersionSupported = "VS" ":" MGCPversion *("," 0*(WSP) MGCPversion)
MaxEndpointIds = "ZM" ":" 0*(WSP) 1*16(DIGIT)
NumEndpoints = "ZN" ":" 0*(WSP) 1*16(DIGIT) ; Responses only

; A final response may include an empty ResponseAck
ResponseAck = confirmedTransactionIdRange
 ("," 0(WSP) confirmedTransactionIdRange)

confirmedTransactionIdRange = transaction-id ["-" transaction-id]

BearerInformation = BearerAttribute 0*("," 0*(WSP) BearerAttribute)
BearerAttribute = ("e" ":" BearerEncoding)
 / (BearerExtensionName [":" BearerExtensionValue])
BearerExtensionName = PackageLCOExtensionName

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 136

BearerExtensionValue = LocalOptionExtensionValue
BearerEncoding = "A" / "mu"
CallId = 1*32(HEXDIG)

; The audit request response may include a list of identifiers
ConnectionId = 1*32(HEXDIG) 0*("," 0*(WSP) 1*32(HEXDIG))
SecondConnectionID = ConnectionId

NotifiedEntity = [LocalName "@"] DomainName [":" portNumber]
LocalName = 1*(LocalCallAgentNameCharacters)
LocalCallAgentNameCharacters = %x21-3F / %x41-7E ;VCHAR except "@"

portNumber = 1*5(DIGIT)

RequestIdentifier = 1*32(HEXDIG)

LocalConnectionOptions = LocalOptionValue 0*(WSP)
 0*("," 0*(WSP) LocalOptionValue 0*(WSP))
LocalOptionValue = ("p" ":" packetizationPeriod)
 / ("a" ":" compressionAlgorithm)
 / ("b" ":" bandwidth) ; Only for capabilities in
 ; NCS and TGCP
 / ("e" ":" echoCancellation)
 / ("gc" ":" gainControl)
 / ("s" ":" silenceSuppression)
 / ("t" ":" typeOfService)
 / ("r" ":" resourceReservation)
 / ("k" ":" encryptiondata)
 / ("nt" ":" (typeOfNetwork /
 supportedTypeOfNetwork))
 / (LocalOptionExtensionName
 [":" LocalOptionExtensionValue])
 / MPacketizationPeriod ; NCS and TGCP only
 / RTPciphersuite ; NCS and TGCP only
 / RTCPciphersuite ; NCS and TGCP only
 / DQoSGateID ; NCS only
 / DQoSReservation ; NCS only
 / DQoSResourceID ; NCS only
 / DQoSReserveDestination ; NCS only
 / CallContentId ; TGCP only
 / CallContentDestination ; TGCP only

Capabilities = CapabilityValue 0*(WSP)
 0*("," 0*(WSP) CapabilityValue 0*(WSP))
CapabilityValue = LocalOptionValue
 / ("v" ":" supportedPackages)
 / ("m" ":" supportedModes)

PackageList = pkgNameAndVers 0*("," pkgNameAndVers)
pkgNameAndVers = packageName ":" packageVersion
packageVersion = 1*(DIGIT)

; For NCS and TGCP, range format is only allowed for capabilities
; and not for LocalConnectionOptions.
packetizationPeriod = 1*4(DIGIT) ["-" 1*4(DIGIT)]
compressionAlgorithm = algorithmName 0*(";" algorithmName)
algorithmName = 1*(SuitableLCOCharacter)
bandwidth = 1*4(DIGIT) ["-" 1*4(DIGIT)]
echoCancellation = "on" / "off"
gainControl = "auto" / ["-"] 1*4(DIGIT)
silenceSuppression = "on" / "off"
typeOfService = 1*2(HEXDIG) ; 1 hex only for capabilities
resourceReservation = "g" / "cl" / "be"

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 137

;encryption parameters are coded as in SDP (RFC 2327)
;NOTE: encryption key may contain an algorithm as specified in RFC 1890
encryptiondata = ("clear" ":" encryptionKey)
 / ("base64" ":" encodedEncryptionKey)
 / ("uri" ":" URItoObtainKey)
 / ("prompt") ; defined in SDP, not usable in MGCP!
encryptionKey = 1*(SuitableLCOCharacter) / quotedString
; See RFC 2045
encodedEncryptionKey = 1*(ALPHA / DIGIT / "+" / "/" / "=")
URItoObtainKey = 1*(SuitableLCOCharacter) / quotedString

typeOfNetwork = "IN" / "ATM" / "LOCAL" / OtherTypeOfNetwork
; Registered with IANA - see RFC 2327
OtherTypeOfNetwork = 1*(SuitableLCOCharacter)
supportedTypeOfNetwork = typeOfNetwork *(";" typeOfNetwork)
supportedModes = ConnectionMode 0*(";" ConnectionMode)

supportedPackages = packageName 0*(";" packageName)

packageName = 1*(ALPHA / DIGIT / HYPHEN) ; Hyphen neither first or last

LocalOptionExtensionName = VendorLCOExtensionName
 / PackageLCOExtensionName
 / OtherLCOExtensionName
VendorLCOExtensionName = "x" ("+"/"-") 1*32(SuitableExtLCOCharacter)
PackageLCOExtensionName = packageName "/"
 1*32(SuitablePkgExtLCOCharacter)
; must not start with "x-" or "x+"
OtherLCOExtensionName = 1*32(SuitableExtLCOCharacter)

; <LocalOptionExtensionName> ":" <LocalOptionExtensionvalue>
; defined by NCS/TGCP
MPacketizationPeriod = "mp" ":" multiplepacketizationPeriod
multiplepacketizationPeriod = mpPeriod 0*(";" mpPeriod)
mpPeriod = 1*4(DIGIT) / HYPHEN

RTPciphersuite = "sc-rtp" ":" ciphersuite
RTCPciphersuite = "sc-rtcp" ":" ciphersuite
ciphersuite = [AuthenticationAlgorithm] "/" [EncryptionAlgorithm]
AuthenticationAlgorithm = 1*(ALPHA / DIGIT / "-" / "_")
EncryptionAlgorithm = 1*(ALPHA / DIGIT / "-" / "_")

; <LocalOptionExtensionName> ":" <LocalOptionExtensionvalue>
; defined by NCS only
DQoSGateID = "dq-gi" [":" 1*8(HEXDIG)] ; Only empty for
 ; capabilities
DQoSReservation = "dq-rr" ":" DQoSResMode *(";" DQoSResMode)
DQoSResMode = "sendresv" / "recvresv" / "snrcresv" /
 "sendcomt" / "recvcomt" / "snrccomt"
DQoSResourceID = "dq-ri" ":" 1*8(HEXDIG)
DQoSReserveDestination = "dq-rd" ":" IPv4address [":" portNumber]

; <LocalOptionExtensionName> ":" <LocalOptionExtensionvalue>
; defined by TGCP only
CallContentId = "es-cci" ":" 1*8(HEXDIG)
CallContentDestination = "es-ccd" ":" IPv4address ":" portNumber

LocalOptionExtensionValue = (1*(SuitableExtLCOValChar)
 / quotedString)
 (";" (1(SuitableExtLCOValChar)
 / quotedString))

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 138

;Note: No "data" mode.
ConnectionMode = "sendonly" / "recvonly" / "sendrecv"
 / "confrnce" / "inactive"
 / "loopback" / "conttest" ; TGCP (and MGCP) only
 / "replcate" ; NCS only
 / "netwloop" / "netwtest"
 / ExtensionConnectionMode
ExtensionConnectionMode = PkgExtConnectionMode
PkgExtConnectionMode = packageName "/" 1*(ALPHA / DIGIT)

RequestedEvents = requestedEvent 0*("," 0*(WSP) requestedEvent)
requestedEvent = (eventName ["(" requestedActions ")"])
 / (eventName "(" requestedActions ")"
 "(" eventParameters ")")
eventName = [(packageName / "*") "/"]
 (eventId / "all" / eventRange
 / "*" / "#") ; for DTMF
 ["@" (ConnectionId / "$" / "*")]
eventId = 1*(ALPHA / DIGIT / HYPHEN) ; Hyphen neither first nor last
eventRange = "[" 1*(DigitMapLetter / (DIGIT "-" DIGIT) /
 (DTMFLetter "-" DTMFLetter)) "]"
DTMFLetter = "A" / "B" / "C" / "D"

requestedActions = requestedAction 0*("," 0*(WSP) requestedAction)
requestedAction = "N" / "A"
 / "D" ; For NCS (and MGCP)
 / "S" / "I" / "K"
 / "E" "(" EmbeddedRequest ")"
 / ExtensionAction
 / "C" "(" EmbeddedModeChange ; For NCS and TGCP
 0*("," 0*WSP EmbeddedModeChange) ")" ; only
; NCS and TGCP define the Embedded ModifyConnection action.
; MGCP grammar does not allow for the format used in NCS and TGCP:
EmbeddedModeChange = "M" "(" ConnectionMode "(" EmConnectionId ")" ")"
EmConnectionId = ConnectionId / "$"

ExtensionAction = PackageExtAction
PackageExtAction = packageName "/" Action ["(" ActionParameters ")"]
Action = 1*ALPHA

ActionParameters = eventParameters ; May contain actions

;NOTE: Should tolerate different order when receiving, e.g., for NCS
EmbeddedRequest = ("R" "(" EmbeddedRequestList ")"
 ["," 0*(WSP) "S" "(" EmbeddedSignalRequest ")"]
 ["," 0*(WSP) "D" "(" EmbeddedDigitMap ")"])
 / ("S" "(" EmbeddedSignalRequest ")"
 ["," 0*(WSP) "D" "(" EmbeddedDigitMap ")"])
 / ("D" "(" EmbeddedDigitMap ")")
 / NCSTGCPEmbeddedRequest
;Text below is for NCS and TGCP only. The difference compared to MGCP
;is simply that the order of the items is not fixed. Also for TGCP Digit Maps
; are not used
NCSTGCPEmbeddedRequest = NCSTGCPEmbeddedRequestItem
 2("," 0(WSP) NCSTGCPEmbeddedRequestItem)
NCSTGCPEmbeddedRequestItem = ("R" "(" EmbeddedRequestList ")")
 / ("S" "(" EmbeddedSignalRequest ")")
 / ("D" "(" EmbeddedDigitMap ")")

EmbeddedRequestList = RequestedEvents
EmbeddedSignalRequest = SignalRequests
EmbeddedDigitMap = DigitMap

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 139

SignalRequests = SignalRequest 0*("," 0*(WSP) SignalRequest)
SignalRequest = eventName ["(" eventParameters ")"]

eventParameters = eventParameter 0*("," 0*(WSP) eventParameter)
eventParameter = eventParameterValue
 / eventParameterName "=" eventParameter
 / eventParameterName "(" eventParameters ")"
eventParameterString = 1*(SuitableEventParamCharacter)
eventParameterName = eventParameterString
eventParameterValue = eventParameterString / quotedString

; For NCS (and MGCP)
DigitMap = DigitString / "(" DigitStringList ")"
DigitStringList = DigitString 0*("|" DigitString)
DigitString = 1*(DigitStringElement)
DigitStringElement = DigitPosition ["."]
DigitPosition = DigitMapLetter / DigitMapRange
; NOTE "X" is now included
DigitMapLetter = DIGIT / "#" / "*" / "A" / "B" / "C" / "D" / "T"
 / "X" / ExtensionDigitMapLetter
ExtensionDigitMapLetter = "E" / "F" / "G" / "H" / "I" / "J" / "K"
 / "L" / "M" / "N" / "O" / "P" / "Q" / "R"
 / "S" / "U" / "V" / "W" / "Y" / "Z"
; NOTE "[x]" is now allowed in MGCP.
; In NCS, only the "x" form is allowed
DigitMapRange = "[" 1*DigitLetter "]"
 / "X" ; Added for NCS only
DigitLetter = *((DIGIT "-" DIGIT) / DigitMapLetter)

ObservedEvents = SignalRequests

EventStates = SignalRequests

ConnectionParameters = ConnectionParameter
 0*("," 0*(WSP) ConnectionParameter)
ConnectionParameter = ("PS" "=" packetsSent)
 / ("OS" "=" octetsSent)
 / ("PR" "=" packetsReceived)
 / ("OR" "=" octetsReceived)
 / ("PL" "=" packetsLost)
 / ("JI" "=" jitter)
 / ("LA" "=" averageLatency)
 / (ConnectionParameterExtensionName
 "=" ConnectionParameterExtensionValue)
 / RemotePacketsSent
 / RemoteOctetsSent
 / RemotePacketsLost
 / RemoteJitter
; NCS and TGCP define the following four connection parameter extension
; names:
RemotePacketsSent = "PC/RPS" "=" packetsSent
RemoteOctetsSent = "PC/ROS" "=" octetsSent
RemotePacketsLost = "PC/RPL" "=" packetsLost
RemoteJitter = "PC/JI" "=" jitter

packetsSent = 1*9(DIGIT)
octetsSent = 1*9(DIGIT)
packetsReceived = 1*9(DIGIT)
octetsReceived = 1*9(DIGIT)
packetsLost = 1*9(DIGIT)

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 140

jitter = 1*9(DIGIT)
averageLatency = 1*9(DIGIT)

ConnectionParameterExtensionName = VendorCPExtensionName
 / PackageCPExtensionName
VendorCPExtensionName = "X" "-" 2*ALPHA
 / NCSTGCPVendorCPExtensionName
;Text below is for NCS and TGCP only. The difference compared to MGCP
;is simply that MGCP requires 2 alpha characters whereas NCS and TGCP
;allow 2 or 3 alpha characters for VendorCPExtensionName
NCSTGCPVendorCPExtensionName = "X" "-" 2*3ALPHA

PackageCPExtensionName = packageName "/" CPName
CPName = 1*(ALPHA / DIGIT / HYPHEN)
ConnectionParameterExtensionValue = 1*9(DIGIT)

MaxMGCPDatagram = 1*9(DIGIT)

ReasonCode = 3DIGIT
 [1*(WSP) "/" packageName] ; Only for 8xx
 [WSP 1*(%x20-7E)]

SpecificEndpointID = endpointName
SecondEndpointID = endpointName

RequestedInfo = infoCode 0*("," 0*(WSP) infoCode)

infoCode = "B" / "C" / "I" / "N" / "X" / "L" / "M" / "R" / "S"
 / "D" ; For NCS (and MGCP) only
 / "O" / "P" / "E" / "Z" / "Q" / "T" / "RC" / "LC"
 / "A" / "ES" / "RM" / "RD" / "PL" / "MD" / extensionParameter
 / "VS" / "ZM" / "ZN" ; NCS and TGCP define these
 ; three extensionParameters

;NCS and TGCP allows for process and loop control in either order
QuarantineHandling = loopControl / processControl
 / (loopControl "," 0*(WSP) processControl)
 / (processControl "," 0*(WSP) loopControl)
loopControl = "step" / "loop"
processControl = "process" / "discard"

DetectEvents = SignalRequests

RestartMethod = "graceful" / "forced" / "restart" / "disconnected"
 / "cancel-graceful" / extensionRestartMethod
extensionRestartMethod = PackageExtensionRM
PackageExtensionRM = packageName "/" 1*32(ALPHA / DIGIT / HYPHEN)
RestartDelay = 1*6(DIGIT)

extensionParameter = VendorExtensionParameter
 / PackageExtensionParameter
 / OtherExtensionParameter
VendorExtensionParameter = "X" ("-"/"+") 1*6(ALPHA / DIGIT)
PackageExtensionParameter = packageName "/"
 1*32(ALPHA / DIGIT / HYPHEN)
; must not start with "x-" or x+"
OtherExtensionParameter = 1*32(ALPHA / DIGIT / HYPHEN)

;If first character is a double-quote, then it is a quoted-string
parameterString = (%x21 / %x23-7F) *(%x20-7F) ; first and last must not
 ; be white space
 / quotedString

ANSI/SCTE 24-3 2016 (R2022)

AMERICAN NATIONAL STANDARD ©2022 SCTE 141

MGCPResponse = MGCPResponseLine 0*(MGCPParameter)
 *2(EOL *SDPinformation)

MGCPResponseLine = responseCode 1*(WSP) transaction-id
 [1*(WSP) "/" packageName] ; Only for 8xx
 [WSP responseString] EOL
responseCode = 3DIGIT
responseString = *(%x20-7E)

SuitablePkgExtLCOCharacter = SuitableLCOCharacter

SuitableExtLCOCharacter = DIGIT / ALPHA / "+" / "-" / "_" / "&"
 / "!" / "'" / "|" / "=" / "#" / "?"
 / "." / "$" / "*" / "@" / "[" / "]"
 / "^" / "`" / "{" / "}" / "~"

SuitableLCOCharacter = SuitableExtLCOCharacter / "/"

SuitableExtLCOValChar = SuitableLCOCharacter / ":"

; VCHAR except """, "(", ")", ",", and "="
SuitableEventParamCharacter = %x21 / %x23-27 / %x2A-2B
 / %x2D-3C / %x3E-7E

; NOTE: UTF8 encoded
quotedString = DQUOTE 0*(quoteEscape / quoteChar) DQUOTE
quoteEscape = DQUOTE DQUOTE
quoteChar = (%x00-21 / %x23-FF)

EOL = CRLF / LF

HYPHEN = "-"

; See RFC 2327 for proper SDP grammar instead.
SDPinformation = SDPLine CRLF *(SDPLine CRLF) ; see RFC 2327
SDPLine = 1*(%x01-09 / %x0B / %x0C / %x0E-FF) ; for proper def.

	1 Status of this Document
	1.1 Requirements and Conventions

	2 References
	3 Terms and Definitions
	4 Abbreviations and Acronyms
	5 Scope
	6 Introduction
	6.1 Relation with H.323 Standards
	6.2 Relation with IETF Standards
	6.3 Relation to RFC 3435 and ABNF Grammar

	7 Media Gateway Control Interface (MGCI)
	7.1 Model and Naming Conventions
	7.1.1 Endpoint Names
	7.1.1.1 Embedded Client Endpoint Names
	7.1.1.1.1 Analog Access Line Endpoints
	7.1.1.1.2 Video Endpoints

	7.1.2 Call Names
	7.1.3 Connection Names
	7.1.4 Names of Call Agents and Other Entities
	7.1.5 Digit Maps
	7.1.6 Events and Signals

	7.2 SDP Use
	7.3 Gateway Control Functions
	7.3.1 NotificationRequest
	7.3.2 Notifications
	7.3.3 CreateConnection
	7.3.4 ModifyConnection
	7.3.5 DeleteConnection (from the Call Agent)
	7.3.6 DeleteConnection (from the Embedded Client)
	7.3.7 DeleteConnection (Multiple Connections From the Call Agent)
	7.3.8 Auditing
	7.3.8.1 AuditEndPoint
	7.3.8.2 AuditConnection

	7.3.9 Restart in Progress

	7.4 States, Failover and Race Conditions
	7.4.1 Recaps and Highlights
	7.4.2 Retransmission and Detection of Lost Associations
	7.4.3 Race Conditions
	7.4.3.1 Quarantine List
	7.4.3.2 Explicit Detection
	7.4.3.3 Transactional Semantics
	7.4.3.4 Ordering of Commands, and Treatment of Disorder
	7.4.3.5 Fighting the Restart Avalanche
	7.4.3.6 Disconnected Endpoints
	7.4.3.7 Call Agent Handling of Disconnected Endpoints

	7.5 Return Codes and Error Codes
	7.6 Reason Codes
	7.7 Use of Local Connection Options and Connection Descriptors
	7.7.1 Remote IP and Port Negotiation

	8 Media Gateway Control Protocol
	8.1 General Description
	8.2 Command Header
	8.2.1 Command Line
	8.2.1.1 Requested Verb Coding
	8.2.1.2 Transaction Identifiers
	8.2.1.3 Endpoint, Call Agent, and NotifiedEntity Name Coding
	8.2.1.4 Protocol Version Coding

	8.2.2 Parameter Lines
	8.2.2.1 Response Acknowledgement
	8.2.2.2 RequestIdentifier
	8.2.2.3 Local Connection Options
	8.2.2.4 Capabilities
	8.2.2.5 Connection Parameters
	8.2.2.6 Reason Codes
	8.2.2.7 Connection Mode
	8.2.2.8 Event/Signal Name Coding
	8.2.2.9 RequestedEvents
	8.2.2.10 SignalRequests
	8.2.2.11 ObservedEvents
	8.2.2.12 RequestedInfo
	8.2.2.13 QuarantineHandling
	8.2.2.14 DetectEvents
	8.2.2.15 EventStates
	8.2.2.16 ResourceID
	8.2.2.17 RestartMethod
	8.2.2.18 VersionSupported
	8.2.2.19 MaxMGCPDatagram

	8.3 Response Header Formats
	8.3.1 CreateConnection
	8.3.2 ModifyConnection
	8.3.3 DeleteConnection
	8.3.4 NotificationRequest
	8.3.5 Notify
	8.3.6 AuditEndpoint
	8.3.7 AuditConnection
	8.3.8 RestartInProgress

	8.4 Session Description Encoding
	8.4.1 SDP Audio Service Use
	8.4.1.1 Protocol Version (v=)
	8.4.1.2 Origin (o=)
	8.4.1.3 Session Name (s=)
	8.4.1.4 Session and Media Information (i=)
	8.4.1.5 URI (u=)
	8.4.1.6 E-Mail Address and Phone Number (e=, p=)
	8.4.1.7 Connection Data (c=)
	8.4.1.8 Bandwidth (b=)
	8.4.1.9 Time, Repeat Times and Time Zones (t=, r=, z=)
	8.4.1.10 Encryption Keys
	8.4.1.11 Attributes (a=)
	8.4.1.12 Media Announcements (m=)

	8.5 Transmission Over UDP
	8.5.1 Reliable Message Delivery
	8.5.2 Retransmission Strategy
	8.5.3 Maximum Datagram Size, Fragmentation, and Reassembly

	8.6 Piggy-Backing
	8.7 Transaction Identifiers and Three Way Handshakes
	8.8 Provisional Responses

	9 Security
	Appendix I Event Packages
	Appendix II Connection Mode
	Appendix III Dynamic Quality-of-Service
	Appendix IV Example Command Encodings
	Appendix V Example Call Flow
	Appendix VI Compatibility Information
	Appendix VII ABNF Grammar for NCS

