

Data Standards Subcommittee

AMERICAN NATIONAL STANDARD

ANSI/SCTE 24-10 2016 (R2022)

IPCablecom 1.0 Part 10: Security Specification

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 2

NOTICE

The Society of Cable Telecommunications Engineers (SCTE) Standards and Operational Practices (hereafter called
“documents”) are intended to serve the public interest by providing specifications, test methods and procedures that
promote uniformity of product, interoperability, interchangeability, best practices, and the long term reliability of
broadband communications facilities. These documents shall not in any way preclude any member or non-member
of SCTE from manufacturing or selling products not conforming to such documents, nor shall the existence of such
standards preclude their voluntary use by those other than SCTE members.

SCTE assumes no obligations or liability whatsoever to any party who may adopt the documents. Such adopting
party assumes all risks associated with adoption of these documents and accepts full responsibility for any damage
and/or claims arising from the adoption of such documents.

NOTE: The user’s attention is called to the possibility that compliance with this document may require the use of an
invention covered by patent rights. By publication of this document, no position is taken with respect to the validity
of any such claim(s) or of any patent rights in connection therewith. If a patent holder has filed a statement of
willingness to grant a license under these rights on reasonable and nondiscriminatory terms and conditions to
applicants desiring to obtain such a license, then details may be obtained from the standards developer. SCTE shall
not be responsible for identifying patents for which a license may be required or for conducting inquiries into the
legal validity or scope of those patents that are brought to its attention.

Patent holders who believe that they hold patents which are essential to the implementation of this document have
been requested to provide information about those patents and any related licensing terms and conditions. Any such
declarations made before or after publication of this document are available on the SCTE web site at https://scte.org.

All Rights Reserved
©2022 Society of Cable Telecommunications Engineers, Inc.

140 Philips Road
Exton, PA 19341

Note: DOCSIS® is a registered trademark of Cable Television Laboratories, Inc., and is used in this document

with permission.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 3

Document Types and Tags
Document Type: Specification
Document Tags:
☐ Test or Measurement ☐ Checklist ☐ Facility
☒ Architecture or Framework ☐ Metric ☒ Access Network
☐ Procedure, Process or Method ☐ Cloud ☐ Customer Premises

Document Release History

Release Date
SCTE 24-10 2000 3/28/2001
SCTE 24-10 2006 5/19/2006
SCTE 24-10 2009 6/5/2009
SCTE 24-10 2016 10/7/2016

Note: This document is a reaffirmation of SCTE 24-10 2016. No substantive changes have been made to this
document. Information components may have been updated such as the title page, NOTICE text, headers, and
footers.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 4

Table of Contents
1 SCOPE AND INTRODUCTION ... 8

1.1 PURPOSE .. 8
1.2 SCOPE .. 8

1.2.1 Goals .. 9
1.2.2 Assumptions ... 9
1.2.3 Prerequisite .. 9

1.3 REQUIREMENTS AND CONVENTIONS ... 9
1.4 DOCUMENT OVERVIEW .. 10

2 REFERENCES .. 11

2.1 NORMATIVE REFERENCES ... 11
2.2 INFORMATIVE REFERENCES ... 13

3 TERMS AND DEFINITIONS .. 14

4 ABBREVIATIONS AND ACRONYMS ... 18

5 ARCHITECTURAL OVERVIEW OF IPCABLECOM SECURITY... 25

5.1 IPCABLECOM REFERENCE ARCHITECTURE .. 25
5.1.1 HFC Network .. 25
5.1.2 Call Management Server ... 25
5.1.3 Functional Categories .. 26

5.2 THREATS ... 27
5.2.1 Theft of Network Services .. 29
5.2.2 Bearer Channel Information Threats ... 30
5.2.3 Signaling Channel Information Threats ... 30
5.2.4 Service Disruption Threats ... 31
5.2.5 Repudiation .. 31
5.2.6 Threat Summary .. 32

5.3 SECURITY ARCHITECTURE ... 33
5.3.1 Overview of Security Interfaces ... 33
5.3.2 Security Assumptions ... 36
5.3.3 Susceptibility of Network Elements to Attack .. 37

6 SECURITY MECHANISMS .. 41

6.1 IPSEC ... 41
6.1.1 Overview .. 41
6.1.2 IPCablecom Profile for IPsec ESP (Transport Mode) ... 41

6.2 INTERNET KEY EXCHANGE (IKE) ... 43
6.2.1 Overview .. 43
6.2.2 IPCablecom Profile for IKE .. 43

6.3 SNMPV3 ... 44
6.3.1 SNMPv3 Transform Identifiers ... 45
6.3.2 SNMPv3 Authentication Algorithms .. 45

6.4 KERBEROS / PKINIT .. 45
6.4.1 Overview .. 45
6.4.2 PKINIT Exchange .. 48
6.4.3 Symmetric Key AS Request / AS Reply Exchange ... 55
6.4.4 Kerberos TGS Request / TGS Reply Exchange... 58
6.4.5 Kerberos Server Locations and Naming Conventions ... 60
6.4.6 MTA Principal Names ... 63

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 5

6.4.7 Mapping of MTA MAC Address to MTA FQDN ... 63
6.4.8 Server Key Management Time Out Procedure ... 67
6.4.9 Service Key Versioning ... 68
6.4.10 Kerberos Cross-Realm Operation ... 68

6.5 KERBERIZED KEY MANAGEMENT .. 69
6.5.1 Overview .. 69
6.5.2 Kerberized Key Management Messages .. 69
6.5.3 Kerberized IPsec ... 79
6.5.4 Kerberized SNMPv3 .. 84

6.6 END-TO-END SECURITY FOR RTP ... 87
6.7 END-TO-END SECURITY FOR RTCP ... 88
6.8 BPI+ .. 89

7 SECURITY PROFILE ... 90

7.1 DEVICE AND SERVICE PROVISIONING ... 91
7.1.1 Device Provisioning .. 94
7.1.2 Subscriber Enrollment .. 100

7.2 QUALITY OF SERVICE (QOS) SIGNALING .. 101
7.2.1 Dynamic Quality of Service (DQoS) .. 101

7.3 BILLING SYSTEM INTERFACES ... 103
7.3.1 Security Services ... 103
7.3.2 Cryptographic Mechanisms ... 103
7.3.3 Key Management ... 104
7.3.4 Billing System Summary Security Profile Matrix .. 105

7.4 CALL SIGNALING ... 105
7.4.1 Network Call Signaling (NCS) ... 105
7.4.2 Call Signaling Security Profile Matrix ... 109

7.5 PSTN GATEWAY INTERFACE ... 109
7.5.1 Reference Architecture .. 109
7.5.2 Security Services ... 110
7.5.3 Cryptographic Mechanisms ... 110
7.5.4 Key Management ... 111
7.5.5 MGC-MG-CMS-SG Summary Security Profile Matrix ... 111

7.6 MEDIA STREAM .. 111
7.6.1 Security Services ... 111
7.6.2 Cryptographic Mechanisms ... 112

7.7 AUDIO SERVER SERVICES .. 130
7.8 ELECTRONIC SURVEILLANCE INTERFACES .. 130
7.9 CMS PROVISIONING ... 130

8 IPCABLECOM CERTIFICATES ... 131

8.1 GENERIC STRUCTURE ... 131
8.1.1 Version ... 131
8.1.2 Public Key Type .. 131
8.1.3 Extensions .. 131
8.1.4 Signature Algorithm ... 131
8.1.5 SubjectName and IssuerName ... 131
8.1.6 Certificate Profile Notation .. 132

8.2 CERTIFICATE TRUST HIERARCHY ... 132
8.2.1 Certificate Validation ... 132
8.2.2 MTA Device Certificate Hierarchy .. 133
8.2.3 CableLabs Service Provider Certificate Hierarchy .. 135
8.2.4 Certificate Revocation .. 140

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 6

9 CRYPTOGRAPHIC ALGORITHMS ... 141

9.1 AES ... 141
9.2 DES ... 141

9.2.1 XDESX ... 141
9.2.2 DES-CBC-PAD ... 141
9.2.3 3DES-EDE ... 141

9.3 BLOCK TERMINATION .. 142
9.4 RSA SIGNATURE ... 146
9.5 HMAC-SHA1 ... 146
9.6 KEY DERIVATION ... 147
9.7 THE MMH-MAC ... 147

9.7.1 The MMH Function .. 147
9.7.2 The MMH-MAC .. 149

9.8 RANDOM NUMBER GENERATION ... 149

10 PHYSICAL SECURITY ... 150

10.1 PROTECTION FOR MTA KEY STORAGE .. 150
10.2 MTA KEY ENCAPSULATION... 152

11 SECURE SOFTWARE DOWNLOAD .. 153

APPENDIX I IPCABLECOM ADMIN GUIDELINES & BEST PRACTICES (INFORMATIVE) 154

I.1 ROUTINE CMS SERVICE KEY REFRESH ... 154

APPENDIX II KERBEROS NETWORK AUTHENTICATION SERVICE (NORMATIVE) ... 155

APPENDIX III PKINIT SPECIFICATION ... 248

APPENDIX IV PKCROSS SPECIFICATION ... 267

APPENDIX V EXAMPLE OF MMH ALGORITHM IMPLEMENTATION (INFORMATIVE) 268

APPENDIX VI OAKLEY GROUPS ... 273

List of Figures
FIGURE 1. IPCABLECOM SINGLE ZONE ARCHITECTURE ... 25
FIGURE 2. IPCABLECOM SECURED INTERFACES ... 28
FIGURE 3. IPCABLECOM SECURITY INTERFACES WITH KEY-MANAGEMENT ... 34
FIGURE 4. KERBEROS-BASED KEY MANAGEMENT FOR IPSEC ... 47
FIGURE 5. PKINIT EXCHANGE ... 49
FIGURE 6. SYMMETRIC-KEY AS REQUEST / AS REPLY EXCHANGE ... 57
FIGURE 7. KERBEROS TGS REQUEST / TGS REPLY EXCHANGE ... 58
FIGURE 8. KERBEROS AP REQUEST / AP REPLY EXCHANGE ... 70
FIGURE 9. REKEY MESSAGE TO ESTABLISH A SECURITY PARAMETER .. 75
FIGURE 10. IPCABLECOM PROVISIONING FLOWS .. 92
FIGURE 11. QOS SIGNALING INTERFACES IN IPCABLECOM NETWORK ... 101
FIGURE 12. NCS REFERENCE ARCHITECTURE ... 106
FIGURE 13. KEY MANAGEMENT FOR NCS CLUSTERS ... 108
FIGURE 14. RTP PACKET HEADER FORMAT ... 113
FIGURE 15. FORMAT OF ENCODED RTP PACKET ... 113
FIGURE 16. RTP PACKET PROFILE CHARACTERISTICS ... 115

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 7

FIGURE 17. RTCP PACKET FORMAT ... 118
FIGURE 18. RTCP ENCRYPTED PACKET FORMAT .. 118
FIGURE 19. END-END SECRET DISTRIBUTION OVER NCS .. 121
FIGURE 20. IPCABLECOM CERTIFICATE HIERARCHY ... 132
FIGURE 21. CBC MODE .. 142
FIGURE 22. CBC PAD MODE ... 143
FIGURE 23. DESX-XEX AS BLOCK CIPHER ... 144
FIGURE 24. 3DES-EDE AS BLOCK CIPHER ... 145
FIGURE 25. CBC WITH RESIDUAL BLOCK TERMINATION ... 146

List of Tables
TABLE 1. IPCABLECOM SECURITY INTERFACES TABLE ... 35
TABLE 2. IPSEC ESP TRANSFORM IDENTIFIERS.. 42
TABLE 3. IPSEC AUTHENTICATION ALGORITHMS ... 42
TABLE 4. SNMPV3 TRANSFORM IDENTIFIERS .. 45
TABLE 5. SNMPV3 AUTHENTICATION ALGORITHMS ... 45
TABLE 6. MTA FQDN REQUEST FORMAT ... 64
TABLE 7. KRB_SAFE FORMAT ... 64
TABLE 8. MTA FQDN FORMAT .. 65
TABLE 9. KRB_SAFE DATA FORMAT ... 65
TABLE 10. MAPPING OF KRB_MTAMAP_ERR TO KRB_ERR .. 67
TABLE 11. SAMPLE IPSEC SECURITY POLICY DATABASE ENTRIES FOR NCS SIGNALING BETWEEN MTA AND CMS............................... 80
TABLE 12. REQUIRED FORMAT FOR DATA IN THE AP REQUEST .. 84
TABLE 13. REQUIRED FORMAT FOR DATA IN THE AP REPLY .. 85
TABLE 14. RTP PACKET TRANSFORM IDENTIFIERS ... 87
TABLE 15. RTP IPCABLECOM AUTHENTICATION ALGORITHMS .. 88
TABLE 16. RTCP PACKET TRANSFORM IDENTIFIERS .. 88
TABLE 17. RTCP AUTHENTICATION ALGORITHMS ... 88
TABLE 18. RTP – RTCP SECURITY PROFILE MATRIX ... 90
TABLE 19. KERBEROS KEY MANAGEMENT DURING MTA PROVISIONING... 93
TABLE 20. POST-MTA PROVISIONING SECURITY FLOWS .. 97
TABLE 21. SECURITY PROFILE MATRIX – MTA DEVICE PROVISIONING .. 100
TABLE 22. SECURITY PROFILE MATRIX – DQOS .. 103
TABLE 23. SECURITY PROFILE MATRIX – RADIUS .. 105
TABLE 24. SECURITY PROFILE MATRIX – NETWORK CALL SIGNALING .. 109
TABLE 25. SECURITY PROFILE MATRIX – TCAP/IP AND TGCP .. 111
TABLE 26. SECURITY PROFILE MATRIX – RTP & RTCP .. 130
TABLE 27. MTA ROOT CERTIFICATE... 133
TABLE 28. MTA MANUFACTURER CERTIFICATE .. 134
TABLE 29. MTA DEVICE CERTIFICATE ... 135
TABLE 30. CABLELABS SERVICE PROVIDER ROOT CERTIFICATE ... 136
TABLE 31. SERVICE PROVIDER CA CERTIFICATE .. 137
TABLE 32. LOCAL SYSTEM CA CERTIFICATE .. 138
TABLE 33. KEY DISTRIBUTION CENTER CERTIFICATE ... 138
TABLE 34. IPCABLECOM SERVER CERTIFICATES .. 139

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 8

1 SCOPE AND INTRODUCTION

1.1 Purpose

IPCablecom is a project aimed at identifying, qualifying, and supporting packet-based voice and video products over
cable systems. These products represent new classes of services utilizing cable-based packet communication
networks. New service classes in the near term include voice communications and videoconferencing over cable
networks and the Internet.

IPCablecom is a set of protocols and associated element functional requirements developed to provide the capability
to deliver Quality-of-Service (QoS) enhanced secure communications services using packetized data transmission
technology to a consumer’s home over the cable television Hybrid Fiber/Coax (HFC) data network. IPCablecom
utilizes a network superstructure that overlays the two-way data-ready cable television network. While the initial
service offerings in the IPCablecom product line are anticipated to be Packet Voice and Packet Video, the long-term
project vision encompasses a large family of packet-based services.

The purpose of any security technology is to protect items of value, whether a revenue stream, or a purchasable
information asset of some type. Threats to this revenue stream exist when a user of the network perceives the value,
expends effort and money, and invents a technique to get around the necessary payments. Some network users will
go to extreme lengths to steal when they perceive extreme value. The addition of security technology to protect
value has an associated cost; the more expended, the more secure one can be. The proper engineering task is to
employ a reasonable costing security technology to force any user with the intent to steal or disrupt network services
to spend an unreasonable amount of money to circumvent it. Security effectiveness is thus basic economics.

In addition, an IPCablecom network used to offer voice communications must be at least as secure as the Public
Switched Telephone Network (PSTN) networks are today. Much of the PSTN security depends on the fact that each
telephone is connected to a dedicated line. In order to provide the same level of privacy and resistance to denial-of-
service attacks when an IPCablecom IP network is used for voice communications, appropriate cryptography-based
security mechanisms have been specified. This secures both voice and signaling data transmitted over a shared HFC
network and over a shared IP backbone.

1.2 Scope

The scope of this document is to define the IPCablecom Security architecture, protocols, algorithms, associated
functional requirements and any technological requirements that can provide for the security of the system for the
IPCablecom network. Authentication, access control, signaling and media content integrity, confidentiality, and non-
repudiation security services must be provided as defined herein for each of the network element interfaces.

IPCablecom security spans the entire IPCablecom architecture. The IPCablecom Architecture Technical Report [1]
defines the overall IPCablecom architecture, as well as the system elements, interfaces, and functional requirements
for the entire IPCablecom network.

From time to time this document refers to the voice communications capabilities of an IPCablecom network in terms
of "IP Telephony." The legal/regulatory classification of IP-based voice communications provided over cable
networks and otherwise, and the legal/regulatory obligations, if any, borne by providers of such voice
communications, are not yet fully defined by appropriate legal and regulatory authorities. Nothing in this
specification is addressed to, or intended to affect, those issues.

In particular, while this document uses standard terms such as "call," "call signaling," telephony," etc., it should be
recalled that while an IPCablecom network performs activities analogous to these PSTN functions, the manner by
which it does so differs considerably from the manner in which they are performed in the PSTN by
telecommunications carriers, and that these differences may be significant for legal/regulatory purposes. Moreover,
while reference is made here to "IP Telephony," it should be recognized that this term embraces a number of
different technologies and network architectures, each with different potential associated legal/regulatory
obligations. No particular legal/regulatory consequences are assumed or implied by the use of this term. This
specification makes use of existing standards wherever possible. Whenever there is an existing standard used in the
definition of any requirement in this specification, the related existing standard will be referenced. When there are

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 9

options defined with respect to the existing standards, this specification will explicitly define the options within the
existing standard that are supported.

1.2.1 Goals
This standard describes the security relationships between the elements on the IPCablecom network. The general
goals of the IPCablecom network security specification and any implementations that encompass the requirements
defined herein should be:

• Secure network communications: The IPCablecom network security must define a security architecture,
methods, algorithms and protocols that meet the stated security service requirement. All media packets and all
sensitive signaling communication across the network must be safe from eavesdropping. Unauthorized message
modification, insertion, deletion and replays anywhere in the network must be easily detectable and must not
affect proper network operation.

• Reasonable cost: The IPCablecom network security must define security methods, algorithms and protocols
that meet the stated security service requirements such that a reasonable implementation can be manifested with
reasonable cost and implementation complexity.

• Network element interoperability: All of the security services for any of the IPCablecom network elements
must inter-operate with the security services for all of the other IPCablecom network elements. Multiple
vendors may implement each of the IPCablecom network elements as well as multiple vendors for a single
IPCablecom network element.

• Extensibility: The IPCablecom security architecture, methods, algorithms and protocols must provide a
framework into which new security methods and algorithms may be incorporated as necessary.

1.2.2 Assumptions
The following assumptions are made relative to the current scope of the IPCablecom Security Specification:

• Embedded Multimedia Terminal Adapters (E-MTAs) and Standalone Multimedia Terminal Adapters (S-MTAs)
are within the scope of this specification.

• NCS is the only call signaling method, on the access network, addressed in this specification.

• This version of the IPCablecom Security Specification specifies security for a single administrative domain and
the communications between domains.

• Security for chained RADIUS servers is not currently in the scope.

• The IPCablecom Security Specification does not have a requirement for exportability outside the United States;
exportability of encryption algorithms is not addressed in this specification.

• This specification also does not include requirements for associated security operational issues (e.g., site
security), back-office or inter/intra back-office security, service authorization policies or secure database
handling. Record Keeping Servers (RKS), Network Management Systems, File Transfer Protocol (FTP) servers
and Dynamic Host Configuration Protocol (DHCP) servers are all considered to be unique to any service
provider’s implementation and are beyond the scope of this standard.

1.2.3 Prerequisite
The following requirement is made relative to the current scope of the IPCablecom Security Specification:

• All E-MTAs must use DOCSIS 1.1-compliant cable modems and must implement BPI+ [9].

1.3 Requirements and Conventions

Throughout this document, the words that are used to define the significance of particular requirements are
capitalized. These words are:

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 10

“MUST” This word or the adjective “REQUIRED” means that the item is an absolute
requirement of this specification.

“MUST NOT” This phrase means that the item is an absolute prohibition of this specification.
“SHOULD” This word or the adjective “RECOMMENDED” means that there may exist valid

reasons in particular circumstances to ignore this item, but the full implications should
be understood and the case carefully weighed before choosing a different course.

“SHOULD NOT” This phrase means that there may exist valid reasons in particular circumstances when
the listed behavior is acceptable or event useful, but the full implications should be
understood and the case carefully weighed before implementing any behavior
described with this label.

“MAY” This word or the adjective “OPTIONAL” means that this item is truly optional. One
vendor may choose to include the item because a particular marketplace requires it or
because it enhances the product, for example; another vendor may omit the same item.

The legal/regulatory classification of IP-based voice communications provided over cable networks and otherwise,
and the legal/regulatory obligations, if any, borne by providers of such voice communications, are not yet fully
defined by appropriate legal and regulatory authorities. Nothing in this specification is addressed to, or intended to
affect, those issues. In particular, while this document uses standard terms such as "call," "call signaling,"
"telephony," etc., it will be evident from this document that while a Packet-Cable network performs activities
analogous to these PSTN functions, the manner by which it does so differs considerably from the manner in which
they are performed in the PSTN by telecommunications carriers. These differences may be significant for
legal/regulatory purposes.

1.4 Document Overview

This standard covers security for the entire IPCablecom architecture. This specification describes the IPCablecom
architecture, identifies security risks and specifies mechanisms to secure the architecture. The document is
structured as follows:

• Architectural Overview of IPCablecom. The initial section describes the IPCablecom architecture as a point of
reference for the remainder of the document. Refer to the IPCablecom 1.0 Architecture [1] and each individual
specification for full details.

• Security Threats are described in the context of the reference architecture.

• The overall security architecture and security assumptions are described.

• Security Mechanisms. This section specifies how public domain security mechanisms are to be implemented in
IPCablecom including IPsec, Internet Key Exchange (IKE), Kerberos with PKINIT, media stream security,
BPI+ and RADIUS.

• Security Profile. This section profiles the security for each major area of the IPCablecom architecture. The
profile includes a description of the security requirements as well as the specifications for securing at-risk
interfaces. Refer to the individual specifications for details about each IPCablecom interface.

• IPCablecom X.509 Certificate Profile and Management. X.509 Certificates are specified for a number of
devices and functions within the IPCablecom architecture. This section describes the format of the Certificates
as well as the trust hierarchy for Certificate management within IPCablecom.

• Cryptographic Algorithms. This section specifies the details of cryptographic algorithms specified in the
IPCablecom security architecture.

• Physical Security. This section documents assumptions about the physical security of the MTA keys.

• Secure Software Download. This section specifies the secure loading and upgrading of software to the MTAs.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 11

2 REFERENCES
The following documents contain provisions which, through reference in this text, constitute provisions of this
standard. At the time of Subcommittee approval, the editions indicated were valid. All documents are subject to
revision, and while parties to agreement based on this standard are encouraged to investigate the possibility of
applying the most recent editions of the documents listed below, they are reminded that newer editions of those
documents might not be compatible with the referenced version.

2.1 Normative References

All references are subject to revision, and users of this document are encouraged to investigate the possibility of
applying the most recent editions of the documents listed below.

[1] ANSI/SCTE 24-01 2016, IPCablecom 1.0 Part 1: Architecture Framework for the Delivery of Time-Critical
Services over Cable Television Networks Using Cable Modems.

[2] ANSI/SCTE 24-03 2016, IPCablecom 1.0 Part 3: Network Call Signaling Protocol for the Delivery of Time-
Critical Services over Cable Television Using Data Modems.

[3] ANSI/SCTE 24-04 2016, IPCablecom 1.0 Part 4: Dynamic Quality of Service for the Provision of Real-Time
Services over Cable Television Networks Using Data Modem.

[4] ANSI/SCTE 24-05 2016, IPCablecom 1.0 Part 5: Media Terminal Adapter (MTA) Device Provisioning
Requirements for the Delivery of Real-Time Services over Cable Television Using Cable Modems.

[5] ANSI/SCTE 24-12 2016, IPCablecom 1.0 Part 12: Trunking Gateway Control Protocol (TGCP).

[6] ANSI/SCTE 24-09 2016, IPCablecom 1.0 Part 9: Event Message Requirements.

[7] ANSI/SCTE 24-02 2016, IPCablecom 1.0 Part 2: Audio Codec Requirements for the Provision of Bi-
directional Audio Service over Cable Television Networks Using Cable Modems.

[8] ANSI/SCTE 23-01 2010, DOCSIS 1.1 Part 1: Radio Frequency Interface.

[9] ANSI/SCTE 23-02 2012, DOCSIS 1.1 Part 2: Baseline Privacy Plus Interface.

[10] RTP: A Transport Protocol for Real-Time Applications, IETF (H. Schulzrinne, S. Casner, R. Frederick, V.
Jacobson), Internet Proposed Standard, RFC 1889, January, 1996.

[11] HMAC: Keyed-Hashing for Message Authentication, IETF (Krawczyk, Bellare, and Canetti), Internet
Proposed Standard, RFC 2104, February 1997.

[12] Cryptographic Message Syntax, IETF (R. Housley), Internet Proposed Standard, RFC 2630, June 1999.

[13] RADIUS Accounting, IETF (C. Rigney), Internet Proposed Standard, RFC 2139, April 1997.

[14] SDP: Session Description Protocol, IETF (M. Handley, V. Jacobson), Internet Proposed Standard, RFC 2327,
April 1998.

[15] Secure Hash Algorithm, Department of Commerce, NIST, FIPS 180-1, April, 1995.

[16] PKCS#1: RSA Cryptography Specifications Version 2.0, IETF (B. Kaliski, J. Staddon), Internet
Informational Standard, RFC 2437, October 1998.

[17] The TLS Protocol Version 1.0, IETF (T. Dierks, C. Allen), Internet Proposed Standard, RFC 2246, January
1999.

[18] S. Halevi and H. Krawczyk, "MMH: Software Message Authentication in Gbit/sec Rates," Proceedings of the
4th Workshop on Fast Software Encryption, (1997) vol. 1267 Springer-Verlag, pp. 172-189.

[19] Security Architecture for the Internet Protocol, IETF (S. Kent, R. Atkinson), Internet Proposed Standard,
RFC 2401, November 1998.

[20] IP Encapsulating Security Payload (ESP), IETF (D. Piper), Internet Proposed Standard, RFC 2406,
November 1998.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 12

[21] The Internet IP Security Domain of Interpretation for ISAKMP, IETF (S. Kent, R. Atkinson), Internet
Proposed Standard, RFC 2407, November 1998.

[22] The ESP CBC-Mode Cipher Algorithms, IETF (R. Pereira, R. Adams), Internet Proposed Standard, RFC
2451, November 1998.

[23] The Use of HMAC-SHA-1-96 within ESP and AH, IETF (C. Madson, R. Glenn), Internet Proposed Standard,
RFC 2404, November 1998.

[24] The Internet Key Exchange (IKE), IETF (D. Harkins, D. Carrel), Internet Proposed Standard, RFC 2409,
November 1998.

[25] ANSI/SCTE 24-07 2016, IPCablecom 1.0 Part 7: Media Terminal Adapter (MTA) Management Information
Base (MIB) Requirements.

[26] ANSI/SCTE 24-08 2016, IPCablecom 1.0 Part 8: Network Call Signaling Management Information Base
(MIB) Requirements.

[27] User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3),
IETF (U. Blumenthal, B. Wijnen), Internet Proposed Standard, RFC 2574, April 1999.

[28] PF_KEY Key Management API, Version 2, IETF (D. McDonald, C. Metz, B. Phan), Internet Proposed
Standard, RFC 2367, July 1998.

[29] FIPS-81, Federal Information Processing Standards Publication (FIPS PUB) 81, DES Modes of Operation,
December 1980.

[30] RSVP Cryptographic Authentication, IETF (F. Baker, B. Lindell and M. Talwar), Internet Proposed Standard,
RFC 2747, January 2000.

[31] ITU-T Recommendation X.509 (1997 E): Information Technology - Open Systems Interconnection - The
Directory: Authentication Framework, June 1997.

[32] Internet X.509 Public Key Infrastructure Certificate and CRL Profile, IETF (.R. Housley, W. Ford, W. Polk,
D. Solo) Internet Proposed Standard, RFC2459, January 1999.

[33] FIPS197 Advanced Encryption Standard (AES), Department of Commerce, NIST FIPS197, November 26,
2001.

[34] ITU-T Recommendation X.690: Information technology – ASN.1 encoding rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER),
December, 1997.

[35] The Use of HMAC-MD5-96 within ESP and AH, IETF (C. Madson, R. Glenn), Internet Proposed Standard,
RFC 2403, November, 1998.

[36] RFC 2669 DOCSIS Cable Device MIB Cable Device Management Information Base for DOCSIS compliant
Cable Modems and Cable Modem Termination Systems, August 1999

[37] RFC 4131, Management Information Base for DOCSIS Cable Modems and Cable Modem Termination
Systems for Baseline Privacy Plus, September 2005, Cable Television Laboratories, Inc.

[38] RSA Laboratories, PKCS #7, Cryptographic Message Syntax Standard, An RSA Laboratories Technical
Note, Version 1.5, Revised November 1, 1993.

[39] FIPS186-2 Digital Signature Standard, Department of Commerce, NIST FIPS186-2, January 27, 2000.

[40] Message Processing and Dispatching for the Simple Network Management Protocol (SNMP), IETF (J. Case,
D. Harrington, R. Presuhn, B. Wijnen), Internet Proposed Standard, RFC 2572, April 1999.

[41] Domain Names, Implementation and Specification, IETF (P. Mockapetris), IETF STD13, RFC1035,
November 1987.

[42] A DNS RR for specifying the location of services (DNS SRV), IETF (A. Gulbrandsen, P. Vixie, L. Esibov),
Internet Proposed Standard, RFC2782, February 2000.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 13

2.2 Informative References

The following documents may provide valuable information to the reader but are not required when complying with
this standard.

[43] B. Schneier, "Applied Cryptography," John Wiley & Sons Inc, second edition, 1996.

[44] Randomness Recommendations for Security, Informational RFC (Donald Eastlake, Stephen Crocker and Jeff
Schiller) RFC 1750, December 1994.

[45] How to Protect DES Against Exhaustive Key Search, J. Killian, P. Rogaway, (Edited version presented at
Proceedings of Crypto ’96), July 1997.

[46] ReSource ReSerVation Protocol (RSVP) -- Version 1 Functional Specification, IETF (R. Braden, L. Zhang,
S. Berson, S. Herzog, S. Jamin), Internet Proposed Standard, RFC 2205, September, 1997.

[47] FIPS 140-2, Federal Information Processing Standards Publication (FIPS PUB) 140-2, Security Requirements
for Cryptographic Modules, May 2000.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 14

3 TERMS AND DEFINITIONS
This standard uses the following terms:

Access Control Limiting the flow of information from the resources of a system only to authorized
persons, programs, processes, or other system resources on a network.

Active A service flow is said to be "active" when it is permitted to forward data packets. A
service flow must first be admitted before it is active.

Admitted A service flow is said to be "admitted" when the CMTS has reserved resources (e.g.,
bandwidth) for it on the DOCSIS network.

A-link A-Links are SS7 links that interconnect STPs and either SSPs or SCPs. ‘A’ stands for
"Access."

Asymmetric Key An encryption key or a decryption key used in public key cryptography, where
encryption and decryption keys are always distinct.

Audio Server An Audio Server plays informational announcements in IPCablecom network. Media
announcements are needed for communications that do not complete and to provide
enhanced information services to the user. The component parts of Audio Server
services are Media Players and Media Player Controllers.

Authentication The process of verifying the claimed identity of an entity to another entity.
Authenticity The ability to ensure that the given information is without modification or forgery and

was in fact produced by the entity that claims to have given the information.
Authorization The act of giving access to a service or device if one has permission to have the access.
Cipher An algorithm that transforms data between plaintext and ciphertext.
Ciphersuite A set which must contain both an encryption algorithm and a message authentication

algorithm (e.g., a MAC or an HMAC). In general, it may also contain a key-
management algorithm, which does not apply in the context of IPCablecom.

Ciphertext The (encrypted) message output from a cryptographic algorithm that is in a format that
is unintelligible.

Cleartext The original (unencrypted) state of a message or data. Also called plaintext.
Confidentiality A way to ensure that information is not disclosed to anyone other than the intended

parties. Information is encrypted to provide confidentiality. Also known as privacy.
Cryptanalysis The process of recovering the plaintext of a message or the encryption key without

access to the key.
Cryptographic
algorithm

An algorithm used to transfer text between plaintext and ciphertext.

Decipherment A procedure applied to ciphertext to translate it into plaintext.
Decryption A procedure applied to ciphertext to translate it into plaintext.
Decryption key The key in the cryptographic algorithm to translate the ciphertext to plaintext.
Digital certificate A binding between an entity’s public key and one or more attributes relating to its

identity, also known as a public key certificate.
Digital signature A data value generated by a public-key algorithm based on the contents of a block of

data and a private key, yielding an individualized cryptographic checksum.
Downstream The direction from the headend toward the subscriber location.
Encipherment A method used to translate plaintext into ciphertext.
Encryption A method used to translate plaintext into ciphertext.
Encryption Key The key used in a cryptographic algorithm to translate the plaintext to ciphertext.
Endpoint A Terminal, Gateway or Multipoint Conference Unit (MCU).

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 15

Errored Second Any 1-second interval containing at least one bit error.
Event Message A message capturing a single portion of a connection.
F-link F-Links are SS7 links that directly connect two SS7 end points, such as two SSPs. ‘F’

stands for "Fully Associated."
Flow [DOCSIS Flow] (a.k.a. DOCSIS-QoS "service flow") A unidirectional sequence of packets associated

with a Service ID (SID) and a QoS. Multiple multimedia streams may be carried in a
single DOCSIS Flow.

Flow [IP Flow] A unidirectional sequence of packets identified by OSI Layer 3 and Layer 4 header
information. This information includes source/destination IP addresses,
source/destination port numbers, protocol ID. Multiple multimedia streams may be
carried in a single IP Flow.

Gateway Devices bridging between the IPCablecom IP Voice Communication world and the
PSTN. Examples are the Media Gateway, which provides the bearer circuit interfaces
to the PSTN and transcodes the media stream, and the Signaling Gateway, which sends
and receives circuit switched network signaling to the edge of the IPCablecom
network.

H.323 An ITU-T recommendation for transmitting and controlling audio and video
information. The H.323 recommendation requires the use of the ITU-T H.225 and ITU-
T H.245 protocol for communication control between a "gateway" audio/video
endpoint and a "gatekeeper" function.

Header Protocol control information located at the beginning of a protocol data unit.
Integrity A way to ensure that information is not modified except by those who are authorized to

do so.
IntraLATA Within a Local Access Transport Area.
Jitter Variability in the delay of a stream of incoming packets making up a flow such as a

voice communication.
Kerberos A secret-key network authentication protocol that uses a choice of cryptographic

algorithms for encryption and a centralized key database for authentication.
Key A mathematical value input into the selected cryptographic algorithm.
Key Exchange The swapping of public keys between entities to be used to encrypt communication

between the entities.
Key Management The process of distributing shared symmetric keys needed to run a security protocol.
Key Pair An associated public and private key where the correspondence between the two are

mathematically related, but it is computationally infeasible to derive the private key
from the public key.

Keying Material A set of cryptographic keys and their associated parameters, normally associated with a
particular run of a security protocol.

Keyspace The range of all possible values of the key for a particular cryptographic algorithm.
Latency The time, expressed in quantity of symbols, taken for a signal element to pass through

a device.
Link Encryption Cryptography applied to data as it travels on data links between the network devices.
Network Layer Layer 3 in the Open System Interconnection (OSI) architecture that provides network

information that is independent from the lower layers.
Network
Management

The functions related to the management of data across the network.

Network
Management OSS

The functions related to the management of data link layer and physical layer resources
and their stations across the data network supported by the hybrid fiber/coax system.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 16

Nonce A random value used only once that is sent in a communications protocol exchange to
prevent replay attacks.

Non-Repudiation The ability to prevent a sender from denying later that he or she sent a message or
performed an action.

Off-Net Call A communication connecting an IPCablecom subscriber out to a user on the PSTN.
On-Net Call A communication placed by one customer to another customer entirely on the

IPCablecom Network.
One-way Hash A hash function that has an insignificant number of collisions upon output.
Plaintext The original (unencrypted) state of a message or data. Also called cleartext.
Pre-shared Key A shared secret key passed to both parties in a communication flow, using an

unspecified manual or out-of-band mechanism.
Privacy A way to ensure that information is not disclosed to any one other than the intended

parties. Information is usually encrypted to provide confidentiality. Also known as
confidentiality.

Private Key The key used in public key cryptography that belongs to an individual entity and must
be kept secret.

Proxy A facility that indirectly provides some service or acts as a representative in delivering
information, thereby eliminating the need for a host to support the service.

Public Key The key used in public key cryptography that belongs to an individual entity and is
distributed publicly. Other entities use this key to encrypt data to be sent to the owner
of the key.

Public Key Certificate A binding between an entity’s public key and one or more attributes relating to its
identity, also known as a digital certificate.

Public Key
Cryptography

A procedure that uses a pair of keys, a public key and a private key, for encryption and
decryption, also known as an asymmetric algorithm. A user’s public key is publicly
available for others to use to send a message to the owner of the key. A user’s private
key is kept secret and is the only key that can decrypt messages sent encrypted by the
user’s public key.

Root Private Key The private signing key of the highest-level Certification Authority. It is normally used
to sign public key certificates for lower-level Certification Authorities or other entities.

Root Public Key The public key of the highest level Certification Authority, normally used to verify
digital signatures generated with the corresponding root private key.

Secret Key The cryptographic key used in a symmetric key algorithm, which results in the secrecy
of the encrypted data depending solely upon keeping the key a secret, also known as a
symmetric key.

Session Key A cryptographic key intended to encrypt data for a limited period of time, typically
between a pair of entities.

Signed and Sealed An "envelope" of information which has been signed with a digital signature and
sealed using encryption.

Subflow A unidirectional flow of IP packets characterized by a single source and destination IP
address and single source and destination UDP/TCP port.

Symmetric Key The cryptographic key used in a symmetric key algorithm, which results in the secrecy
of the encrypted data depending solely upon keeping the key a secret, also known as a
secret key.

Systems Management Functions in the application layer related to the management of various Open Systems
Interconnection (OSI) resources and their status across all layers of the OSI
architecture.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 17

Transit Delays The time difference between the instant at which the first bit of a Protocol Data Unit
(PDU) crosses one designated boundary, and the instant at which the last bit of the
same PDU crosses a second designated boundary.

Trunk An analog or digital connection from a circuit switch that carries user media content
and may carry voice signaling (MF, R2, etc.).

Tunnel Mode An IPsec (ESP or AH) mode that is applied to an IP tunnel, where an outer IP packet
header (of an intermediate destination) is added on top of the original, inner IP header.
In this case, the ESP or AH transform treats the inner IP header as if it were part of the
packet payload. When the packet reaches the intermediate destination, the tunnel
terminates and both the outer IP packet header and the IPsec ESP or AH transform are
taken out.

Upstream The direction from the subscriber location toward the headend.
X.509 certificate A public key certificate specification developed as part of the ITU-T X.500 standards

directory.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 18

4 ABBREVIATIONS AND ACRONYMS
This standard uses the following abbreviations and acronyms:

AAA Authentication, Authorization and Accounting.
AES Advanced Encryption Standard. A block cipher, used to encrypt the media traffic in

IPCablecom.
AF Assured Forwarding. This is a DiffServ Per Hop Behavior.
AH Authentication header. An IPsec security protocol that provides message integrity for

complete IP packets, including the IP header.
AMA Automated Message Accounting. A standard form of call detail records (CDRs) developed

and administered by Bellcore (now Telcordia Technologies).
ASD Application-Specific Data. A field in some Kerberos key management messages that carries

information specific to the security protocol for which the keys are being negotiated.
AT Access Tandem.
ATM Asynchronous Transfer Mode. A protocol for the transmission of a variety of digital signals

using uniform 53-byte cells.
BAF Bellcore AMA Format, also known as AMA.
BCID Billing Correlation ID.
BPI+ Baseline Privacy Plus Interface Specification. The security portion of the DOCSIS 1.1

standard that runs on the MAC layer.
CA Certification Authority. A trusted organization that accepts certificate applications from

entities, authenticates applications, issues certificates and maintains status information about
certificates.

CA Call Agent. The part of the CMS that maintains the communication state, and controls the line
side of the communication.

CBC Cipher Block Chaining mode. An option in block ciphers that combines (XORs) the previous
block of ciphertext with the current block of plaintext before encrypting that block of the
message.

CBR Constant Bit Rate.
CDR Call Detail Record. A single CDR is generated at the end of each billable activity. A single

billable activity may also generate multiple CDRs.
CIC Circuit Identification Code. In ANSI SS7, a two-octet number that uniquely identifies a DSO

circuit within the scope of a single SS7 Point Code.
CID Circuit ID (Pronounced "kid"). This uniquely identifies an ISUP DS0 circuit on a Media

Gateway. It is a combination of the circuit’s SS7 gateway point code and Circuit Identification
Code (CIC). The SS7 DPC is associated with the Signaling Gateway that has domain over the
circuit in question.

CIF Common Intermediate Format.
CIR Committed Information Rate.
CM DOCSIS Cable Modem.
CMS Cryptographic Message Syntax.
CMS Call Management Server. Controls the audio connections. Also called a Call Agent in

MGCP/SGCP terminology. This is one example of an Application Server.
CMTS Cable Modem Termination System. The device at a cable headend which implements the

DOCSIS RFI MAC protocol and connects to CMs over an HFC network.
Codec COder-DECoder.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 19

COPS Common Open Policy Service. Defined in RFC 2748.
CoS Class of Service. The type 4 tuple of a DOCSIS configuration file.
CRCX Create Connection.
CSR Customer Service Representative.
DA Directory Assistance.
DE Default. This is a DiffServ Per Hop Behavior.
DES Data Encryption Standard.
DF Delivery Function.
DHCP Dynamic Host Configuration Protocol.
DHCP-D DHCP Default. Network Provider DHCP Server.
DNS Domain Name Service.
DOCSIS® Data-Over-Cable Service Interface Specifications.
DPC Destination Point Code. In ANSI SS7, a 3-octet number which uniquely identifies an SS7

Signaling Point, either an SSP, STP, or SCP.
DQoS Dynamic Quality-of-Service. Assigned on the fly for each communication depending on the

QoS requested.
DSA Dynamic Service Add.
DSC Dynamic Service Change.
DSCP DiffServ Code Point. A field in every IP packet that identifies the DiffServ Per Hop Behavior.

In IP version 4, the TOS byte is redefined to be the DSCP. In IP version 6, the Traffic Class
octet is used as the DSCP.

DTMF Dual-tone Multi Frequency (tones).
EF Expedited Forwarding. A DiffServ Per Hop Behavior.
E-MTA Embedded MTA. A single node that contains both an MTA and a cable modem.
EO End Office.
ESP IPsec Encapsulating Security Payload. Protocol that provides both IP packet encryption and

optional message integrity, not covering the IP packet header.
ETSI European Telecommunications Standards Institute.
F-link F-Links are SS7 links that directly connect two SS7 end points, such as two SSPs. ‘F’ stands

for "Fully Associated."
FEID Financial Entity ID.
FGD Feature Group D signaling.
FQDN Fully Qualified Domain Name. Refer to IETF RFC 2821 for details.
GC Gate Controller.
GTT Global Title Translation.
HFC Hybrid Fiber/Coaxial. An HFC system is a broadband bi-directional shared media

transmission system using fiber trunks between the headend and the fiber nodes, and coaxial
distribution from the fiber nodes to the customer locations.

HMAC Hashed Message Authentication Code. A message authentication algorithm, based on either
SHA-1 or MD5 hash and defined in IETF RFC 2104.

HTTP Hypertext Transfer Protocol. Refer to IETF RFC 1945 and RFC 2068.
IANA Internet Assigned Numbered Authority. See www.ietf.org for details.
IC Inter-exchange Carrier.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 20

IETF Internet Engineering Task Force. A body responsible, among other things, for developing
standards used on the Internet. See www.ietf.org for details.

IKE Internet Key Exchange. A key-management mechanism used to negotiate and derive keys for
SAs in IPsec.

IKE– A notation defined to refer to the use of IKE with pre-shared keys for authentication.
IKE+ A notation defined to refer to the use of IKE with X.509 certificates for authentication.
IP Internet Protocol. An Internet network-layer protocol.
IPsec Internet Protocol Security. A collection of Internet standards for protecting IP packets with

encryption and authentication.
ISDN Integrated Services Digital Network.
ISTP Internet Signaling Transport Protocol.
ISUP ISDN User Part. A protocol within the SS7 suite of protocols that is used for call signaling

within an SS7 network.
ITU International Telecommunication Union.
ITU-T International Telecommunication Union–Telecommunication Standardization Sector.
IV Initialization Vector
IVR Interactive Voice Response system.
KDC Key Distribution Center.
LATA Local Access and Transport Area.
LD Long Distance.
LIDB Line Information Database. Contains customer information required for real-time access such

as calling card personal identification numbers (PINs) for real-time validation.
LLC Logical Link Control. The Ethernet Packet header and optional 802.1P tag which may

encapsulate an IP packet. A sublayer of the Data Link Layer.
LNP Local Number Portability. Allows a customer to retain the same number when switching from

one local service provider to another.
LSSGR LATA Switching Systems Generic Requirements.
MAC Message Authentication Code. A fixed-length data item that is sent together with a message to

ensure integrity, also known as a MIC.
MAC Media Access Control. It is a sublayer of the Data Link Layer. It normally runs directly over

the physical layer.
MC Multipoint Controller.
MCU Multipoint Conferencing Unit.
MD5 Message Digest 5. A one-way hash algorithm that maps variable length plaintext into fixed-

length (16 byte) ciphertext.
MDCP Media Device Control Protocol. A media gateway control specification submitted to IETF by

Lucent. Now called SCTP.
MDCX Modify Connection.
MDU Multi-Dwelling Unit. Multiple units within the same physical building. The term is usually

associated with high-rise buildings.
MEGACO Media Gateway Control IETF working group. See www.ietf.org for details.
MF Multi-Frequency.
MG Media Gateway. Provides the bearer circuit interfaces to the PSTN and transcodes the media

stream.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 21

MGC Media Gateway Controller. The overall controller function of the PSTN gateway. Receives,
controls and mediates call-signaling information between the IPCablecom and PSTN.

MGCP Media Gateway Control Protocol. Protocol follow-on to SGCP. Refer to IETF 2705.
MIB Management Information Base.
MIC Message Integrity Code. A fixed-length data item that is sent together with a message to

ensure integrity, also known as a Message Authentication Code (MAC).
MMC Multi-Point Mixing Controller. A conferencing device for mixing media streams of multiple

connections.
MSB Most Significant Bit.
MSO Multi-System Operator. A cable company that operates many headend locations in several

cities.
MSU Message Signal Unit.
MTA Multimedia Terminal Adapter. Contains the interface to a physical voice device, a network

interface, CODECs, and all signaling and encapsulation functions required for VoIP transport,
class features signaling, and QoS signaling.

MTP The Message Transfer Part. A set of two protocols (MTP 2, MTP 3) within the SS7 suite of
protocols that are used to implement physical, data link, and network-level transport facilities
within an SS7 network.

MWD Maximum Waiting Delay.
NANP North American Numbering Plan.
NANPNAT North American Numbering Plan Network Address Translation.
NAT Network
Layer

Network Address Translation. Layer 3 in the Open System Interconnection (OSI) architecture.
This layer provides services to establish a path between open systems.

NCS Network Call Signaling.
NPA-NXX Numbering Plan Area (more commonly known as area code) NXX (sometimes called

exchange) represents the next three numbers of a traditional phone number. The N can be any
number from 2-9 and the Xs can be any number. The combination of a phone number’s NPA-
NXX will usually indicate the physical location of the call device. The exceptions include toll-
free numbers and ported number (see LNP).

NTP Network Time Protocol. An internet standard used for synchronizing clocks of elements
distributed on an IP network.

NTSC National Television Standards Committee. Defines the analog color television broadcast
standard used today in North America.

OID Object Identification.
OSP Operator Service Provider.
OSS Operations Systems Support. The back-office software used for configuration, performance,

fault, accounting, and security management.
OSS-D OSS Default. Network Provider Provisioning Server.
PAL Phase Alternate Line. The European color television format that evolved from the American

NTSC standard.
PCES IPCablecom Electronic Surveillance.
PCM Pulse Code Modulation. A commonly employed algorithm to digitize an analog signal (such

as a human voice) into a digital bit stream using simple analog-to-digital conversion
techniques.

PDU Protocol Data Unit.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 22

PHS Payload Header Suppression. A DOCSIS technique for compressing the Ethernet, IP, and
UDP headers of RTP packets.

PKCS Public-Key Cryptography Standards. Published by RSA Data Security Inc. These Standards
describe how to use public key cryptography in a reliable, secure and interoperable way.

PKI Public-Key Infrastructure. A process for issuing public key certificates, which includes
standards, Certification Authorities, communication between authorities and protocols for
managing certification processes.

PKINIT Public-Key Cryptography for Initial Authentication. The extension to the Kerberos protocol
that provides a method for using public-key cryptography during initial authentication.

PSC Payload Service Class Table, a MIB table that maps RTP payload Type to a Service Class
Name.

PSFR Provisioned Service Flow Reference. An SFR that appears in the DOCSIS configuration file.
PSTN Public Switched Telephone Network.
QCIF Quarter Common Intermediate Format.
QoS Quality of Service. Guarantees network bandwidth and availability for applications.
RADIUS Remote Authentication Dial-In User Service. An internet protocol (IETF RFC 2865 and RFC

2866) originally designed for allowing users dial-in access to the internet through remote
servers. Its flexible design has allowed it to be extended well beyond its original intended use.

RAS Registration, Admissions and Status. RAS Channel is an unreliable channel used to convey
the RAS messages and bandwidth changes between two H.323 entities.

RFC Request for Comments. Technical policy documents approved by the IETF which are
available on the World Wide Web at http://www.ietf.cnri.reston.va.us/rfc.html.

RFI The DOCSIS Radio Frequency Interface specification.
RJ-11 Registered Jack-11. A standard 4-pin modular connector commonly used in the United States

for connecting a phone unit into a wall jack.
RKS Record Keeping Server. The device, which collects and correlates the various Event

Messages.
RSA A public-key, or asymmetric, cryptographic algorithm used to provide authentication and

encryption services. RSA stands for the three inventors of the algorithm; Rivest, Shamir,
Adleman.

RSA Key Pair A public/private key pair created for use with the RSA cryptographic algorithm.
RSVP Resource Reservation Protocol.
RTCP Real-Time Control Protocol.
RTO Retransmission Timeout.
RTP Real-time Transport Protocol. A protocol for encapsulating encoded voice and video streams.

Refer to IETF RFC 1889.
SA Security Association. A one-way relationship between sender and receiver offering security

services on the communication flow.
SAID Security Association Identifier. Uniquely identifies SAs in the DOCSIS Baseline Privacy Plus

Interface (BPI+) security protocol.
SCCP Signaling Connection Control Part. A protocol within the SS7 suite of protocols that provides

two functions in addition to those provided within MTP. The first function is the ability to
address applications within a signaling point. The second function is Global Title Translation.

SCP Service Control Point. A Signaling Point within the SS7 network, identifiable by a Destination
Point Code that provides database services to the network.

SCTP Stream Control Transmission Protocol.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 23

SDP Session Description Protocol.
SDU Service Data Unit. Information delivered as a unit between peer service access points.
SF Service Flow. A unidirectional flow of packets on the RF interface of a DOCSIS system.
SFID Service Flow ID. A 32-bit integer assigned by the CMTS to each DOCSIS Service Flow

defined within a DOCSIS RF MAC domain. SFIDs are considered to be in either the upstream
direction (USFID) or downstream direction (DSFID). Upstream Service Flow IDs and
Downstream Service Flow IDs are allocated from the same SFID number space.

SFR Service Flow Reference. A 16-bit message element used within the DOCSIS TLV parameters
of Configuration Files and Dynamic Service messages to temporarily identify a defined
Service Flow. The CMTS assigns a permanent SFID to each SFR of a message.

SG Signaling Gateway. An SG is a signaling agent that receives/sends SCN native signaling at the
edge of the IP network. In particular, the SS7 SG function translates variants ISUP and TCAP
in an SS7-Internet Gateway to a common version of ISUP and TCAP.

SGCP Simple Gateway Control Protocol. Earlier draft of MGCP.
SHA – 1 Secure Hash Algorithm 1. A one-way hash algorithm.
SID Service ID. A 14-bit number assigned by a CMTS to identify an upstream virtual circuit. Each

SID separately requests and is granted the right to use upstream bandwidth.
S-MTA Standalone MTA. A single node that contains an MTA and a non-DOCSIS MAC (e.g.,

ethernet).
SNMP Simple Network Management Protocol.
SOHO Small Office/Home Office.
SS7 Signaling System number 7. An architecture and set of protocols for performing out-of-band

call signaling with a telephone network.
SSP Service Switching Point. SSPs are points within the SS7 network that terminate SS7 signaling

links and also originate, terminate, or tandem switch calls.
STP Signal Transfer Point. A node within an SS7 network that routes signaling messages based on

their destination address. This is essentially a packet switch for SS7. It may also perform
additional routing services such as Global Title Translation.

TCAP Transaction Capabilities Application Protocol. A protocol within the SS7 stack that is used for
performing remote database transactions with a Signaling Control Point.

TCP Transmission Control Protocol.
TD Timeout for Disconnect.
TFTP Trivial File Transfer Protocol.
TFTP-D Default – Trivial File Transfer Protocol.
TGS Ticket Granting Server. A sub-system of the KDC used to grant Kerberos tickets.
TGW Telephony Gateway.
TIPHON Telecommunications and Internet Protocol Harmonization Over Network.
TLV Type-Length-Value. A tuple within a DOCSIS configuration file.
TN Telephone Number.
ToD Time-of-Day Server.
TOS Type of Service. An 8-bit field of every IP version 4 packet. In a DiffServ domain, the TOS

byte is treated as the DiffServ Code Point, or DSCP.
TSG Trunk Subgroup.
UDP User Datagram Protocol. A connectionless protocol built upon Internet Protocol (IP).
VAD Voice Activity Detection.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 24

VBR Variable Bit Rate.
VoIP Voice-over-IP.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 25

5 ARCHITECTURAL OVERVIEW OF IPCABLECOM SECURITY

5.1 IPCablecom Reference Architecture

Security requirements have been defined for every signaling and media link within the IPCablecom IP network. In
order to understand the security requirements and specifications for IPCablecom, one must first understand the
overall architecture. This section presents a brief overview of the IPCablecom architecture. For a more detailed
specification, refer to the IPCablecom Architecture Technical Report [1].

Managed IP Backbone
PSTN

Call
Management

Server

Media
Gateway
Controller

OSS
Backoffice

Media
Servers

HFC access
network

(DOCSIS 1.1)
CMTS

Embedded MTA
Cable

ModemMTA

Billing
Provisioning
Problem Resolution
DHCP Servers
TFTP Servers

Signaling
Gateway

Media
Gateway

Announcement Servers
Conference Mixing Bridges

HFC access
network

(DOCSIS 1.1)
CMTS

Embedded MTA
Cable

ModemMTA

Figure 1. IPCablecom Single Zone Architecture

5.1.1 HFC Network
In Figure 1, the MTAs and the CMTS is an HFC network, which employs DOCSIS 1.1 physical layer and MAC
layer protocols [8]. DOCSIS BPI+ [9] and QoS protocols are enabled over this link.

5.1.2 Call Management Server
In the context of voice communications applications, a central component of the system is the Call Management
Server (CMS). It is involved in both call signaling and the establishment of Dynamic Quality of Service (DQoS).
The CMS also performs queries at the PSTN Gateway for LNP (Local Number Portability) and other services
necessary for voice communications, including interfacing with the PSTN.

As described in the IPCablecom Architecture Framework [1], the CMS is divided into the following functional
components:

• Call Agent (CA) - The Call Agent maintains network intelligence and call state and controls the media gateway.
Most of the time Call Agent is synonymous for Call Management Server.

• Gate Controller (GC) - The Gate Controller is a logical QoS management component that is typically part of the
CMS. The GC coordinates all quality of service authorization and control on behalf of the application service -
e.g., voice communications.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 26

• Media Player Controller (MPC) – The MPC initiates and manages all announcement services provided by the
Media Player. The MPC accepts requests from the CMS and arranges for the MP to provide the announcement
in the appropriate stream so that the user hears the announcement.

• Media Gateway Controller (MGC) – The Media Gateway Controller maintains the gateway’s portion of call
state for communications traversing the Gateway.

A particular CMS can contain any subset of the above listed functional components.

5.1.3 Functional Categories
The IPCablecom Architecture Framework identifies the following functional categories within the architecture:

• MTA device provisioning

• Quality of Service (HFC access network and managed IP backbone)

• Billing interface security

• Security (specified herein)

• Network call signaling (NCS)

• PSTN interconnectivity

• CODEC functionality and media stream mapping

In most cases, each functional category corresponds to a particular IPCablecom specification document.

5.1.3.1 Device and Service Provisioning
During MTA provisioning, the MTA gets its configuration with the help of the DHCP and TFTP servers, as well as
the OSS.

Provisioning interfaces need to be secured and have to configure the MTA with the appropriate security parameters
(e.g., customer X.509 certificate signed by the Service Provider). This document specifies the steps in MTA
provisioning, but provides detailed specifications only for the security parameters. Refer to [4] for a full
specification on MTA provisioning and customer enrollment.

5.1.3.2 Dynamic Quality of Service
IPCablecom provides guaranteed Quality of Service (QoS) for each voice communication within a single zone with
Dynamic QoS (DQoS) [3].

DQoS is controlled by the Gate Controller function within the CMS and can guarantee Quality of Service within a
single administrative domain. The Gate Controller utilizes the COPS protocol to download QoS policy into the
CMTS. After that, the QoS reservation is established via DOCSIS 1.1 QoS messaging between the MTA and the
CMTS on both sides of the connection.

5.1.3.3 Billing System Interfaces
The CMS, CMTS and the PSTN Gateway are all required to send out billing event messages to the Record Keeping
Server (RKS). This interface is currently specified to be RADIUS. Billing information should be checked for
integrity and authenticity as well as kept private. This document defines security requirements and specifications for
the communication with RKS.

5.1.3.4 Call Signaling

The call signaling architecture defined within IPCablecom is Network Based Call Signaling (NCS). The CMS is
used to control call setup, termination and most other call signaling functions. In the NCS architecture [2], the Call
Agent function within the CMS is used in call signaling and utilizes the MGCP protocol.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 27

5.1.3.5 PSTN Interconnectivity
The PSTN interface to the voice communications capabilities of the IPCablecom network is through the Signaling
and Media Gateways (SG and MG). Both of these gateways are controlled with the MGC (Media Gateway
Controller). The MGC may be standalone or combined with a CMS. For further detail on PSTN Gateways, refer to
[5].

All communications between the MGC and the SG and MG may be over the same-shared IP network and is subject
to similar threats (e.g., privacy, masquerade, denial-of-service) that are encountered in other links in the same
network. This document defines the security requirements and specifications for the PSTN Gateway links.

When communications from an MTA to a PSTN phone are made, bearer channel traffic is passed directly between
an MTA and an MG. The protocols used in this case are RTP and RTCP, as in the MTA-to-MTA case. Both security
requirements and specifications are very similar to the MTA-to-MTA bearer requirements and are fully defined in
this document. After a voice communication enters the PSTN, the security requirements as well as specifications are
based on existing PSTN standards and are out of the scope of this document.

5.1.3.6 CODEC Functionality and Media Stream Mapping

The media stream between two MTAs or between an MTA and a PSTN Gateway utilizes the RTP protocol.
Although BPI+ provides privacy over the HFC network, the potential threats within the rest of the voice
communications network require that the RTP packets be encrypted end-to-end.1

In addition to RTP, there is an accompanying RTCP protocol, primarily used for reporting of RTCP statistics. In
addition, RTCP packets may carry CNAME – a unique identifier of the sender of RTP packets. RTCP also defines a
BYE message2 that can be used to terminate an RTP session. These two additional RTCP functions raise privacy
and denial-of-service threats. Due to these threats, RTCP security requirements are the same as the requirements for
all other end-to-end signaling and are addressed in the same manner.

In addition to MTAs and PSTN Gateways, Media Servers may also participate in the media stream flows. Media
Servers are network-based components that operate on media flows to support various voice communications
service options. Media servers perform audio bridging, play terminating announcements, provide interactive voice
response services, and so on. Both media stream and signaling interfaces to a Media Server are the same as the
interfaces to an MTA. For more information on Codec functionality, see [7].

5.1.3.7 Audio Server Services
The text in this section has been removed because it is not within the scope of IPCablecom 1.0.

5.1.3.8 Electronic Surveillance

 The text in this section has been removed because it is not within the scope of IPCablecom 1.0.

5.2 Threats

Figure 2 below contains the interfaces that were analyzed for security.

There are additional interfaces identified in IPCablecom but for which protocols are not specified. In those cases, the
corresponding security protocols are also not specified, and those interfaces are not listed in the Figure 2 below.

As well, the interfaces for which security is not required in IPCablecom are not listed.

1 In general, it is possible for an MTA-to-MTA or MTA-to-PSTN connection to cross the networks of several different Service
Providers. In the process, this path may cross a PSTN network. This is an exception to the rule, where all RTP packets are
encrypted end-to-end. The media traffic inside a PSTN network does not utilize RTP and has its own security requirements.
Thus, in this case the encryption would not be end-to-end and would terminate at the PSTN Gateway on both sides of the
intermediate PSTN network.
2 The RTCP BYE message should not be confused with the SIP+ BYE message that is also used to indicate the end of a voice
communication within the network.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 28

pk
t-s

4:
 :

R
TC

P

pk
t-s

4:
 :

RT
CP

pk
t-s

3:
 R

TP

pk
t-s

3:
 R

TP

pk
t-s

1:
 T

FT
P

pk
t-s

0
: S

NM
P

pk
t-s

8:
 C

OPS

pkt-s10: TGCP

pk
t-s

2:
 D

OC
SI

S
1.

1

pk
t-s

12
: P

KIN
IT

pkt-s6: Radius*

pkt-s7: Radius*

pkt-s5: NCS
MTA

TFTP
SERVER

OSS /
PROV
SERV

CMTS

CM

CMS

MGC

Remote
MTA

RKS

MG

MSO
KDC

TELEPHONY
KDC

pkt-s13: PKINIT

CMSMTA

MG

IPCablecom Security Interfaces

pkt-s25: R
adius*

pkt-s1 : TFTP

pkt-s26 : MTA
FQDN

SGpkt-s11: ISTP

pk
t-s

9:
 IS

TP

Figure 2. IPCablecom Secured Interfaces

The interfaces marked "RADIUS*" carry event messages, which use the RADIUS format as defined by [13].

Following is a summary of general threats and the corresponding attacks that are relevant in the context of IP voice
communications. This list of threats is not based on the knowledge of the specific protocols or security mechanisms
employed in the network. A more specific summary of threats that are based on the functionality of each network
element is listed in section 5.2.6.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 29

Some of the outlined threats cannot be addressed purely by cryptographic means – physical security and/or fraud
management should also be used. These threats may be important, but cannot be fully addressed within the scope of
IPCablecom. How vendors and MSOs implement fraud management and physical security will differ and in this
case a standard is not required for interoperability.

5.2.1 Theft of Network Services
In the context of voice communications, the main services that may be stolen are:

• Long distance service

• Local (subscription) voice communications service

• Video conferencing

• Network-based three-way calling

• Quality of Service

5.2.1.1 MTA Clones
One or more MTAs can masquerade as another MTA by duplicating its permanent identity and keys. The secret
cryptographic keys may be obtained by either breaking the physical security of the MTA or by employing
cryptanalysis.

When an MTA is broken into the perpetrator can steal voice communications service and charge it all to the original
owner. The feasibility of such an attack depends on where an MTA is located. This attack must be seriously
considered in the cases when an MTA is located in an office or apartment building, or on a street corner.

An owner might break into his or her own MTA in at least one instance – after a false account with the MSO
providing the voice communications service had been setup. The customer name, address, Social Security Number
may all be invalid or belong to someone else. The provided Credit Card Number may be stolen. In that case, the
owner of the MTA would not mind giving out the MTA cryptographic identity to others – he or she would not have
to pay for service anyway.

In addition to cloning of the permanent cryptographic keys, temporary (usually symmetric) keys may also be cloned.
Such an attack is more complex, since the temporary keys expire more often and have to be frequently redistributed.
The only reason why someone would attempt this attack is if the permanent cryptographic keys are protected much
better than the temporary ones, or if the temporary keys are particularly easy to steal or discover with cryptanalysis.

5.2.1.2 Other Clones

It is conceivable that the cryptographic identity of another network element, such as a CMTS or a CMS, may be
cloned. Such an attack is most likely to be mounted by an insider such as a corrupt or disgruntled employee.

5.2.1.3 Subscription Fraud

A customer sets up an account under false information.

5.2.1.4 Non-Payment for Voice Communications Services
A customer stops paying his or her bill, but continues to use the MTA for voice communications service. This can
happen if the network does not have an automated method to revoke the customer’s access to the network.

5.2.1.5 Protocol Attacks against an MTA
A weakness in the protocol can be manipulated to allow an MTA to authenticate to a network server with a false
identity or hijack an existing voice communication. This includes replay and man-in-the-middle attacks.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 30

5.2.1.6 Protocol Attacks against Other Network Elements
A perpetrator might employ similar protocol attacks to masquerade as a different Network Element, such as a CMTS
or a CMS. Such an attack may be used in collaboration with cooperating MTAs to steal service.

5.2.1.7 Theft of Services Provided by the MTA
Services such as the support for multiple MTA ports, 3-way calling and call waiting may be implemented entirely in
the MTA, without any required interaction with the network.

5.2.1.7.1 Attacks

MTA code to support these services may be downloaded illegally by an MTA clone, in which case the clone has to
interact with the network to get the download. In that case, this threat is no different from the network service theft
described in the previous section.

Alternatively, downloading an illegal code image using some illegal out-of-band means can also enable these
services. Such service theft is much harder to prevent (a secure software environment within the MTA may be
required). On the other hand, in order for an adversary to go through this trouble, the price for these MTA-based
services has to make the theft worthwhile.

An implication of this threat is that valuable services cannot be implemented entirely inside the MTA without a
secure software environment in addition to tamperproof protection for the cryptographic keys. (While a secure
software environment within an MTA adds significant complexity, it is an achievable task.)

5.2.1.8 MTA Moved to Another Network
A leased MTA may be reconfigured and registered with another network, contrary to the intent and property rights
of the leasing company.

5.2.2 Bearer Channel Information Threats
This class of threats is concerned with the breaking of privacy of voice communications over the IP bearer channel.
Threats against non-VoIP communications are not considered here and assumed to require additional security at the
application layer.

5.2.2.1 Attacks
Clones of MTAs and other Network Elements, as well as protocol manipulation attacks, also apply in the case of
Bearer Channel Information threats. These attacks are already described under the Service Theft threats.

MTA cloning attacks mounted by the actual owner of the MTA are less likely in this case, but not inconceivable. An
owner of an MTA may distribute clones to unsuspecting victims, so that he or she can later spy on them.

5.2.2.1.1 Off-line Cryptanalysis

Bearer channel information may be recorded and then analyzed over a period of time, until the encryption keys are
discovered through cryptanalysis. The discovered information may be of value even after a relatively long time has
passed.

5.2.3 Signaling Channel Information Threats
Signaling information, such as the caller identity and the services to which each customer subscribes may be
collected for marketing purposes. The caller identity may also be used illegally to locate a customer that wishes to
keep his or her location private.

5.2.3.1 Attacks
Clones of MTAs and other Network Elements, as well as protocol manipulation attacks, also apply in the case of the
Signaling Channel Information threats. These attacks were already described under the Service Theft threats.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 31

MTA cloning attacks mounted by the actual owner of the MTA is theoretically possible in this case. An owner of an
MTA may distribute clones to the unsuspecting victims, so that he or she can monitor their signaling messages (e.g.,
for information with marketing value). The potential benefits of such an attack seem unjustified, however.

5.2.3.1.1 Caller ID

A number of a party initiating a voice communication is revealed, even though a number is not generally available
(i.e., is "unlisted") and the owner of that number enabled ID blocking.

5.2.3.1.2 Information with Marketing Value

Dialed numbers and the type of service customers use may be gathered for marketing purposes by other
corporations.

5.2.4 Service Disruption Threats
This class of threats is aimed at disrupting the normal operation of voice communications. The motives for denial-
of-service attacks may be malicious intent against a particular individual or against the service provider. Or, perhaps
a competitor wishes to degrade the performance of another service provider and use the resulting problems in an
advertising campaign.

5.2.4.1 Attacks

5.2.4.1.1 Remote Interference

A perpetrator is able to manipulate the protocol to close down ongoing voice communications. This might be
achieved by masquerading as an MTA involved in such an ongoing communication. The same effect may be
achieved if the perpetrator impersonates another Network Element, such as a Gate Controller or an Edge Router
during either call setup or voice packet routing.

Depending on the signaling protocol security, it might be possible for the perpetrator to mount this attack from the
MTA, in the privacy of his or her own home.

Clones of MTAs and other Network Elements, as well as protocol manipulation attacks, also apply in the case of the
Service Disruption threats. These attacks are described under Service Theft threats.

MTA cloning attacks mounted by the actual owner of the MTA can theoretically be used in service disruption
against unsuspecting clone owners. However, since there are so many other ways to cause service disruption, such
an attack cannot be taken seriously in this context.

5.2.5 Repudiation
In a network where masquerading (using the above-mentioned cloning and protocol manipulation techniques) is
common or easily achievable, a customer may repudiate a particular communication (and, thus deny responsibility
for paying for it) on that basis.

In addition, unless public key-based digital signatures are employed on each message, the source of each message
cannot be absolutely proven. If a signature over a message that originated at an MTA is based on a symmetric key
that is shared between that MTA and a network server (e.g., the CMS), it is unclear if the owner of the MTA can
claim that the Service Provider somehow falsified the message.

However, even if each message were to carry a public key-based digital signature and if each MTA were to employ
stringent physical security, the customer can still claim in court that someone else initiated that communication
without his or her knowledge, just as a customer of a telecommunications carrier on the PSTN can claim, e.g., that
particular long distance calls made from the customer’s telephone were not authorized by the customer. Such
telecommunications carriers commonly address this situation by establishing contractual and/or tariffed relationships
with customers in which customers assume liability for unauthorized use of the customer’s service. These same
contractual principles are typically implemented in service contracts between information services providers such as
ISPs and their subscribers. For these reasons, the benefits of non-repudiation seem dubious at best and do not appear
to justify the performance penalty of carrying a public key-based digital signature on every message.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 32

5.2.6 Threat Summary
This section provides a summary of the above of threats and attacks and a brief assessment of their relative
importance.

5.2.6.1 Primary Threats

5.2.6.1.1 Theft of Service

Attacks are:

• Subscription Fraud. This attack is prevalent in today’s telephony systems (i.e., the PSTN) and requires little
economic investment. It can only be addressed with a Fraud Management system.

• Non-payment for services. Within the PSTN, telecommunications carriers usually do not prosecute the
offenders, but simply shut down their accounts. Because prosecution is expensive and not always successful, it
is a poor counter to this attack. Methods such as debit-based billing and device authorization (pay as you play),
increasingly common in the wireless sector of the PSTN, might be a possible solution for this attack in the
IPCablecom context. This threat can also be minimized with effective Fraud Management systems.

• MTA clones. This threat requires more technical knowledge than the previous two threats. A technically-
knowledgeable adversary or underground organization might offer cloning services for profit. This threat is
most effective when combined with subscription fraud, where an MTA registered under a fraudulent account is
cloned. This threat can be addressed with both Fraud Management and physical security inside the MTA, or a
combination of both.

• Impersonate a network server. With proper cryptographic mechanisms, authorization and procedural security
in place, this attack is unlikely, but has the potential for great damage.

• Protocol manipulation. Can occur only when security protocols are flawed or when not enough cryptographic
strength is in place.

5.2.6.1.2 Bearer Channel Information Disclosure

Attacks are:

• Simple Snooping. This would happen if voice packets were sent in the clear over some segment of the network.
Even if that segment appears to be protected, an insider may still compromise it. This is the only major attack
on privacy. The bearer channel privacy attacks listed below are possible but are all of secondary importance.

• MTA clones. Again, this threat requires more technical knowledge but can be offered as a service by an
underground organization. A most likely variation of this attack is when a publicly accessible MTA (e.g., in an
office or apartment building) is cloned.

• Protocol manipulation. A flawed protocol may somehow be exploited to discover bearer channel encryption
keys.

• Off-line cryptanalysis. Even when media packets are protected with encryption, they can be stored and
analyzed for long periods of time, until the decryption key is finally discovered. Such an attack is not likely to
be prevalent, since it is justified only for particularly valuable customer-provided information (IPCablecom
security is not required to protect data). This attack is more difficult to perform on voice packets (as opposed to
data). Still, customers are very sensitive to this threat and it can serve as the basis for a negative publicity
campaign by competitors.

5.2.6.1.3 Signaling Information Disclosure

This threat is listed as primary only due to potential for bad publicity and customer sensitivity to keeping their
numbers and location private. All of the attacks listed below are similar to those for bearer channel privacy and are
not described here:

• Simple snooping

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 33

• MTA clones

• Protocol manipulation

• Off-line cryptanalysis

• Service disruption

5.2.6.2 Secondary Threats

• Theft of MTA-based Services. Based on the voice communications services that are planned for the near
future, this threat does not appear to have potential for significant economic damage. This could possibly
change with the introduction of new value-added services in the future.

• Illegally Registering a Leased MTA with a Different Service Provider. Leased MTAs can normally be
tracked. Most likely, this threat is combined with the actual theft of a leased MTA. Thus, this threat does not
appear to have potential for widespread damage.

5.3 Security Architecture

5.3.1 Overview of Security Interfaces
Figure 3 summarizes all of the IPCablecom security interfaces, including key management.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 34

Figure 3. IPCablecom Security Interfaces with Key-Management

In Figure 3, each interface label is of the form:

 <label>: <protocol> { <security protocol> / <key management protocol> }

pk
t-s

4:
 :

R
TC

P
(C

ip
he

r +
 H

M
A

C
 /

C
M

S-
ba

se
d

K
M

)

pk
t-s

4:
 :

RT
CP

 (C
ip

he
r +

 H
M

AC
 /

CM
S-

ba
se

d
KM

)
pk

t-s
3:

 R
TP

 (C
ip

he
r +

 H
M

A
C

 /
 C

M
S-

ba
se

d
 K

M
)

pk
t-s

3:
 R

TP
 (C

ip
he

r +
 H

M
AC

 /
 C

M
S-

ba
se

d
 K

M
)

pk
t-s

1:
 T

FT
P

pk
t-s

8:
 C

OPS

pkt-s10: TGCP

pk
t-s

2:
 D

OC
SI

S
1.

1

pk
t-s

12
: P

KIN
IT

pkt-s6: Radius*

pkt-s7: Radius*

pkt-s5: NCSMTA

TFTP
SERVER

CMTS

CM

CMS

Remote
MTA

MG

MSO
KDC

TELEPHONY
KDC

pkt-s13: PKINIT

CMSMTA

MG
IPsec / IKE/Kerb

BP
I+

 /
BP

IK
M

RKS

IPsec / Kerberos + PKINIT

IPsec / IKE/Kerb

IPsec / IKE/Kerb

Issue Kerberos Tickets

Iss
ue

 K
erb

ero
s T

ick
ets

SN
M

Pv
3

Se
cu

rit
y

IPCablecom Security
Interfaces with Key Management

MGC

pkt-s25: R
adius*

IPsec / IKE/Kerb

OSS /
PROV
SERV

pk
t-s

0
: S

NM
P

H
as

h
&

En
cr

yp
tio

n
pkt-s26 : MTA

FQDN
Kerberos

Hash &Encryption

pkt-s1 : TFTP

IP
se

c /
 IK

E/
Ke

rb

pkt-s11: ISTP

pk
t-s

9:
 IS

TP

SG

IP
se

c
/ I

KE
/K

er
b

IPsec / IKE/Kerb

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 35

If the key management protocol is missing, it is not needed for that interface. IPCablecom interfaces that do not
require security are not shown on this diagram.

The following abbreviations are used in Figure 3:

IKE/Kerb IKE (with pre-shared keys or X.509 certificates) or Kerberos

IKE+ IKE with X.509 certificates

CMS-based KM Keys randomly generated and exchanged inside signaling messages

RADIUS* Event messages, which use the RADIUS format as defined by [13].

Table 1 briefly describes each of the interfaces shown in the above diagram.
Table 1. IPCablecom Security Interfaces Table

Interface Components Description

pkt-s0 MTA – PS/OSS Immediately after the DHCP sequence in the Secure Provisioning Flow,
the MTA performs Kerberos-based key management with the
Provisioning Server to establish SNMPv3 keys. The MTA bypasses
Kerberized SNMPv3 and uses SNMPv2c in the Basic and Hybrid Flows.

pkt-s1 MTA – TFTP MTA Configuration file download. When the Provisioning Server in the
Secure Provisioning Flow sends an SNMP Set command to the MTA, it
includes both the configuration name and the hash of the file. Later,
when the MTA downloads the file, it authenticates the configuration file
using the hash value. The configuration file may be optionally encrypted.

pkt-s2 CM – CMTS DOCSIS 1.1: This interface should be secured with BPI+ using BPI Key
Management. BPI+ privacy is provided on the HFC link.

pkt-s3 MTA – MTA
MTA – MG

RTP: End-to-end media packets between two MTAs, or between MTA
and MG. RTP packets are encrypted directly with the chosen cipher.
Message integrity is optionally provided by an MMH MAC. Keys are
randomly generated, and exchanged by the two endpoints inside the
signaling messages via the CMS or other application server.

pkt-s4 MTA – MTA
MTA – MG

RTCP: RTCP control protocol for RTP. Message integrity and
encryption by selected cipher. The RTCP keys are derived using the
same secret negotiated during the RTP key management. No additional
key management messages are needed or utilized.

pkt-s5 MTA – CMS NCS: Message integrity and privacy via IPsec. Key management is with
Kerberos with PKINIT (public key initial authentication) extension.

pkt–s6 RKS – CMS RADIUS: RADIUS billing events sent by the CMS to the RKS. RADIUS
authentication keys are hardcoded to 0. IPsec is used for message
integrity, as well as privacy. Key management is Ike or Kerberos.

pkt-s7 RKS – CMTS RADIUS: RADIUS events sent by the CMTS to the RKS. RADIUS
authentication keys are hardcoded to 0. IPsec is used for message
integrity, as well as privacy. Key management is Ike or Kerberos.

pkt-s8 CMS – CMTS COPS: COPS protocol between the GC and the CMTS, used to download
QoS authorization to the CMTS. IPsec is used for message integrity, as
well as privacy. Key management is IKE or Kerberos.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 36

Interface Components Description

pkt-s9 CMS – SG ISTP: CMS queries the PSTN Gateway for LNP (Local Number
Portability) and other voice communications services. IPsec is used for
message integrity, as well as privacy. Key-Management is IKE or
Kerberos.

pkt-s10 MGC – MG TGCP: IPCablecom interface to the PSTN Media Gateway. IPsec is used
for both message integrity and privacy. Key management is IKE or
Kerberos.

pkt-s11 MGC – SG ISTP: IPCablecom interface to the PSTN Signaling Gateway. IPsec is
used for both message integrity and privacy. Key management is IKE or
Kerberos.

pkt-s12 MTA – MSO
KDC

PKINIT: An AS-REQ message is sent to the KDC with public-key
cryptography used for authentication. The KDC verifies the certificate
and issues either a service ticket or a ticket granting ticket (TGT),
depending on the contents of the AS Request. The AS Reply returned by
the KDC contains a certificate chain and a digital signature that are used
by the MTA to authenticate this message. In the case that the KDC
returns a TGT, the MTA then sends a TGS Request to the KDC to which
the KDC replies with a TGS Reply containing a service ticket. The TGS
Request/Reply messages are authenticated using a symmetric session key
inside the TGT.

pkt-s13 MTA –
Telephony KDC

PKINIT: See pkt-s12 above.

pkt-s25 RKS – MGC RADIUS: RADIUS events sent by the MGC to the RKS. RADIUS
authentication keys are hardcoded to 0. IPsec is used for message
integrity, as well as privacy. Key management is IKE or Kerberos.

pkt-s26 OSS/Prov Serv –
MSO KDC
OSS/Prov Serv –
Telephony KDC

The KDC uses Kerberos to map the MTA’s MAC address to its FQDN
and optionally the MTA's IP address for the purpose of authenticating the
MTA before issuing it a ticket.

5.3.2 Security Assumptions

5.3.2.1 BPI+ CMTS Downstream Messages Are Trusted
As mentioned previously, it is assumed that CMTS downstream messages cannot be easily modified in transit and a
CMTS can be impersonated only at great expense.

Most messages secured in this specification either move over the shared IP network in addition to the DOCSIS path,
or do not go over DOCSIS at all.

In one case – the case of DOCSIS QoS messages exchanged between the CMTS and the CM – this assumption does
not apply. Although DOCSIS QoS messages (both upstream and downstream) include an integrity check, the
corresponding (BPI+) key management does not authenticate the identity of the CMTS. The CM is unable to
cryptographically know that the network element it has connected to is the true CMTS for that network. However,
even if a CMTS could be impersonated, it would allow only limited denial-of-service attacks. This vulnerability is
not considered to be worth the effort and the expense of impersonating a CMTS.

5.3.2.2 Non-Repudiation Not Supported
Non-repudiation, in this specification, means that an originator of a message cannot deny that he or she sent that
message. In this voice communications architecture, non-repudiation is not supported for most messages, with the
exception of the top key management layer. This decision was based on the performance penalty incurred with each

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 37

public key operation. The most important use for non-repudiation would have been during communications setup –
to prove that a particular party had initiated that particular communication. However, due to very strict requirements
on the setup time, it is not possible to perform public key operations for each communication.

5.3.2.3 Root Private Key Compromise Protection
The cryptographic mechanisms defined in this document are based on a Public Key Infrastructure (PKI). As is the
case with most other architectures that are based on a PKI, there is no automated recovery path from a compromise
of a Root Private Key. However, with proper safeguards, the probability of this happening is very low, to the point
that the risk of a root private key compromise occurring is outweighed by the benefits of this architecture.

The corresponding Root Public Key is stored as a read-only parameter in many components of this architecture.
Once the Root Private Key has been compromised, each manufacturer’s certificate would have to be manually
reconfigured.

Due to this limitation of a PKI, the Root Private Key must be very carefully guarded with procedural and physical
security. And, it must be sufficiently long so that its value cannot be discovered with cryptographic attacks within
the expected lifetime of the system.

5.3.2.4 Limited Prevention of Denial-of-Service Attacks
This document does not attempt to address all or even most denial-of-service attacks. The cryptographic
mechanisms defined in this specification prevent some denial-of-service attacks that are particularly easy to mount
and are hard to detect. For example, they will prevent a compromised MTA from masquerading as other MTAs in
the same upstream HFC segment and interrupting ongoing communications with illicit HANGUP messages.

This specification will also prevent more serious denial-of-service attacks, such as an MTA masquerading as a CMS
in a different network domain that causes all communications setup requests to fail.

On the other hand, denial-of-service attacks where a router is taken out of service or is bombarded with bad IP
packets are not addressed. In general, denial-of-service attacks that are based on damaging one of the network
components can only be solved with procedural and physical security, which is out of the scope of this specification.

Denial-of-service attacks where network traffic is overburdened with bad packets cannot be prevented in a large
network (although procedural and physical security helps), but can usually be detected. Detection of such an attack
and of its cause is out of scope of this specification.

For example, denial-of-service attacks where a router is taken out of order or is bombarded with bogus IP packets
cannot be prevented.

5.3.3 Susceptibility of Network Elements to Attack
This section describes the amount and the type of trust that can be assumed for each element of the voice
communications network. It also describes the specific threats that are possible if each network component is
compromised. These threats are based on the functionality specified for each component. The general categories of
threats are described in section 5.2.

Both the trust and the specific threats are described with the assumption that no cryptographic or physical security
has been employed in the system, with the exception of the BPI+ security that is assumed on the HFC DOCSIS
links. The goal of this security specification is to address threats that are relevant to this voice communications
system.

5.3.3.1 Managed IP Network
It is assumed that the same IP network may be shared between multiple, possibly competing service providers. It is
also assumed that the service provider may provide multiple services on the same IP network, e.g., Internet
connectivity. No assumptions can be made about the physical security of each link in this IP network. An intruder
can pop up at any location with the ability to monitor traffic, perform message modification and to reroute messages.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 38

5.3.3.2 MTA
The MTA is considered to be an untrusted network element. It is operating inside customer premises, considered to
be a hostile environment. It is assumed that a hostile adversary has the ability to open up the MTA and make
software and even hardware modifications to fit his or her needs. This would be done in the privacy of the
customer’s home.

The MTA communicates with the CMTS over the shared DOCSIS path and has access to downstream and upstream
messages from other MTAs within the same HFC segment.

An MTA is responsible for:

• Initiating and receiving communications to/from another MTA or the PSTN

• Negotiating QoS

A compromise of an MTA can result in:

• MTA clones that are capable of:

• Accessing basic service and any enhanced features in the name of another user’s account

• Violating privacy of the owner of the compromised MTA that doesn’t know that the keys were stolen

• Identity fraud

• An MTA running a bad code image that disrupts communications made by other MTAs or degrades network
performance.

5.3.3.3 CMTS
The CMTS communicates both over the DOCSIS path and over the shared IP network. When the CMTS sends
downstream messages over the DOCSIS path, it is assumed that a perpetrator cannot modify them or impersonate
the CMTS. BPI+ over that path provides privacy.

However, when the CMTS is communicating over the shared IP network (e.g., with the CMS or another CMTS), no
such assumptions can be made.

While the CMTS, as well as voice communications network servers are more trusted than the MTAs, they cannot be
trusted completely. There is always a possibility of an insider attack.

Insider attacks at the CMTS should be addressed by cryptographic authentication and authorization of the CMTS
operators, as well as by physical and procedural security, which are all out of the scope of the IPCablecom
specifications.

A CMTS is responsible for:

• Reporting billing-related statistics to the RKS

• QoS allocation for MTAs over the DOCSIS path

• Implementation of BPI+ (MAC layer security) and corresponding key management

A compromise of a CMTS may result in:

• Service theft by reporting invalid information to the RKS

• Unauthorized levels of QoS

• Loss of privacy, since the CMTS holds BPI+ keys. This may not happen if additional encryption is provided
above the MAC layer

• Degraded performance of some or all MTAs in that HFC segment

• Some or all of the MTAs in one HFC segment completely taken out of service

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 39

5.3.3.4 Voice Communications Network Servers are Untrusted Network Elements
Application servers used for voice communications (e.g., CMS, RKS, Provisioning, OSS, DHCP and TFTP Servers)
reside on the network and can potentially be impersonated or subjected to insider attacks. The main difference
would be in the damage that can be incurred in the case a particular server is impersonated or compromised.

Threats that are associated with each network element are discussed in the following subsections. To summarize
those threats, a compromise or impersonation of each of these servers can result in a wide-scale service theft, loss of
privacy, and in highly damaging denial-of-service attacks.

In addition to authentication of all messages to and from these servers (specified in this document), care should be
taken to minimize the likelihood of insider attacks. They should be addressed by cryptographic authentication and
authorization of the operators, as well as by stringent physical and procedural security, which are all out of scope of
the IPCablecom specifications.

5.3.3.4.1 CMS

The Call Management Server is responsible for:

• Authorizing individual voice communications by subscribers

• QoS allocation

• Initializing the billing information in the CMTS

• Distributing per communication keys for MTA-MTA signaling, bearer channel, and DQoS messages on the
MTA-CMTS and CMTS-CMTS links

• Interface to PTSN gateway

A compromised CMS can result in:

• Free voice communications service to all of the MTAs that are located in the same network domain (up to
100,000). This may be accomplished by:

• Allowing unauthorized MTAs to create communications

• Uploading invalid or wrong billing information to the CMTS

• Combination of both of the above

• Loss of privacy, since the CMS distributes bearer channel keys

• Unauthorized allocation of QoS

• Unauthorized disclosure of customer identity, location (e.g., IP address), communication patterns, and a list of
services to which the customer subscribes

5.3.3.4.2 RKS

The RKS is responsible for collecting billing events and reporting them to the billing system. A compromised RKS
may result in:

• Free or reduced-rate service due to improper reporting of statistics

• Billing to a wrong account

• Billing customers for communications that were never made, i.e., fabricating communications

• Unauthorized disclosure of customer identity, personal information, service usage patterns, and a list of services
to which the customer subscribes.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 40

5.3.3.4.3 OSS, DHCP & TFTP Servers

The OSS system is responsible for:

• MTA and service provisioning

• MTA code downloads and upgrades

• Handling service change requests and dynamic reconfiguration of MTAs

A compromise of the OSS, DHCP, or TFTP server can result in:

• MTAs running illegal code, which may:

• Intentionally introduce bugs or render the MTA completely inoperable

• Degrade voice communications performance on the IPCablecom or HFC network

• Configure the MTA with features to which the customer is not entitled

• MTAs configured with an identity and keys of another customer

• MTAs configured with service options for which the customer did not pay

• MTAs provisioned with a bad set of parameters that would make them perform badly or not perform at all

5.3.3.5 PSTN Gateways

5.3.3.5.1 Media Gateway

The MG is responsible for:

• Passing media packets between the IPCablecom network and the PSTN

• Reporting statistics to the RKS

A compromise of the MG may result in:

• Service theft by reporting invalid information to the RKS

• Loss of privacy on communications to/from the PSTN

5.3.3.5.2 Signaling Gateway

The SG is responsible for translating call signaling between the IPCablecom network and the PSTN.

A compromise of the SG may result in:

• Incorrect MTA identity reported to the PSTN

• Unauthorized services enabled within the PSTN

• Loss of PSTN connectivity

• Unauthorized disclosure of customer identity, location (e.g., IP address), usage patterns and a list of services to
which the customer subscribes

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 41

6 SECURITY MECHANISMS
Unless explicitly stated otherwise, the following requirements apply to messages described by this document:

• ASN.1 encoded messages and objects MUST conform to the Distinguished Encoding Rules [34].

• FQDNs used as components of principal names and principal identifiers MUST be rendered in lower case.

• FQDNs MUST NOT include the root domain (i.e., they MUST NOT include a trailing dot).

• All Kerberos messages in IPCablecom MUST utilize only UDP/IP.

6.1 IPsec

6.1.1 Overview
IPsec provides network-layer security that runs immediately above the IP layer in the protocol stack. It provides
security for the TCP or UDP layer and above. It consists of two protocols, IPsec ESP and IPsec AH, as specified in
[19].

IPsec ESP provides confidentiality and message integrity, IP header not included. IPsec AH provides only message
integrity, but that includes most of the IP header (with the exception of some IP header parameters that can change
with each hop). IPCablecom utilizes only the IPsec ESP protocol [20], since authentication of the IP header does not
significantly improve security within the IPCablecom architecture.

Each protocol supports two modes of use: transport mode and tunnel mode. IPCablecom only utilizes IPsec ESP
transport mode. For more detail on IPsec and these two modes, refer to [19]. Note that in [19], all implementations
of ESP are required to support the concept of Security Associations (SAs). The IETF RFC, [19], also provides a
general model for processing IP traffic relative to SAs.

Although particular IPsec implementations need not follow the details of this general model, the external behavior of
any IPsec implementation must match the external behavior of the general model. This ensures that components do
not accept traffic from unknown addresses and do not send or accept traffic without security (when security is
required). IPCablecom components that implement IPsec are expected to provide behavior that matches the general
model described in [19].

6.1.2 IPCablecom Profile for IPsec ESP (Transport Mode)

6.1.2.1 IPsec ESP Transform Identifiers
IPsec Transform Identifier (1 byte) is used by IKE to negotiate an encryption algorithm that is used by IPsec. A list
of available IPsec Transform Identifiers is specified in [21]. Within IPCablecom, the same Transform Identifiers are
used by all IPsec key management protocols: IKE, Kerberos, and application layer (embedded in IP signaling
messages).

The following table describes the IPsec Transform Identifiers (all of which use the CBC mode specified in [22])
supported by IPCablecom.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 42

Table 2. IPsec ESP Transform Identifiers

Transform ID Value
(Hex)

Key Size (in
bits)

MUST
Support

Description

ESP_3DES 0x03 192 yes 3-DES in CBC mode.
ESP_RC5 0x04 128 no RC5 in CBC mode
ESP_IDEA 0x05 128 no IDEA in CBC mode
ESP_CAST 0x06 128 no CAST in CBC mode
ESP_BLOWFISH 0x07 128 no BLOWFISH in CBC mode
ESP_NULL 0x0B 0 yes Encryption turned off
ESP_AES 0x0C 128 no AES-128 in CBC mode with 128-bit

block size

The ESP_3DES and ESP_NULL Transform IDs MUST be supported. ESP_AES is included as an optional
encryption algorithm. For all of the above transforms, the CBC Initialization Vector (IV) is carried in the clear
inside each ESP packet payload [22]. AES-128 [33] MUST be used in CBC mode with a 128-bit block size and a
randomly generated Initialization Vector (IV). AES-128 requires 10 rounds of cryptographic operations [33].

IKE allows negotiation of the encryption key size. Other IPsec Key Management protocols used by IPCablecom do
not allow key size negotiation, and so for consistency a single key size is listed for each Transform ID. If in the
future it is desired to increase the key size for one of the above algorithms, IKE will use the built-in key-size
negotiation, while other key management protocols will utilize a new Transform ID for the larger key size.

6.1.2.2 IPsec ESP Authentication Algorithms
The IPsec Authentication Algorithm (1-byte) is used by IKE to negotiate a packet-authentication algorithm that is
used by IPsec. A list of available IPsec Authentication Algorithms is specified in [21]. Within IPCablecom, the same
Authentication Algorithms are used by all IPsec key management protocols: IKE, Kerberos and application layer
(embedded in IP signaling messages).

IPCablecom supports the IPsec authentication algorithms listed in Table 3.

Table 3. IPsec Authentication Algorithms

Authentication
Algorithm

Value
(Hex)

Key Size (in
bits)

MUST Support Description

HMAC-MD5-96 0x01 128 yes (also required by [21]) First 12 bytes of the
HMAC-MD5 as
described in [35]

HMAC-SHA-1-96 0x02 160 yes First 12 bytes of the
HMAC-SHA1 as
described in [23]

The HMAC-MD5-96 and HMAC-SHA-1-96 authentication algorithms MUST be supported.

6.1.2.3 Replay Protection
In general, IPsec provides an optional replay-protection service (anti-replay service). An IPsec sequence number
outside of the current anti-replay window is flagged as a replay and the packet is rejected. When the anti-replay
service is turned on, an IPsec sequence number cannot overflow and roll over to 0. Before that happens, a new
Security Association must be created as specified in [20].

Within IPCablecom Security Specification, the IPsec anti-replay service MUST be turned on at all times. This is
regardless of which key-management mechanism is used with the particular IPsec interface.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 43

6.1.2.4 Key Management Requirements
Within IPCablecom, IPsec is used on a number of different interfaces with different security and performance
requirements. Because of this, several different key management protocols have been chosen for different
IPCablecom interfaces. On some interfaces it is IKE (see section 6.2), on other interfaces it is Kerberos/PKINIT (see
section 6.4).

When IKE is not used for key management, an alternative key management protocol needs an interface to the IPsec
layer in order to create/update/delete IPsec Security Associations (SAs). IPsec Security Associations MUST be
automatically established or re-established as required. This implies that the IPsec layer also needs a way to signal a
key management application when a new Security Association needs to be set up (e.g., the old SA is about to expire
or there is no SA on a particular interface).

In addition, some network elements are required to run multiple key management protocols. In particular, the
Application Server (such as a CMS) and the MTA must support multiple key management protocols. The MTA
MUST support Kerberos/PKINIT on the MTA-CMS signaling interface. IKE MUST be supported on the CMS-
CMTS and CMS-RKS interfaces.

The PF_KEY interface (see [28]) SHOULD be used for IPsec key management within IPCablecom and would
satisfy the above listed requirements. For example, PF_KEY permits multiple key management applications to
register for rekeying events. When the IPsec layer detects a missing Security Association, it signals the event to all
registered key-management applications. Based on the Identity Extension associated with that Security Association,
each key-management application decides if it should handle the event.

6.2 Internet Key Exchange (IKE)

6.2.1 Overview
IPCablecom utilizes IKE as one of the key management protocols for IPsec [24]. It is utilized on interfaces where:

• There are not a very large number of connections

• The endpoints on each connection know about each other’s identity in advance

Within IPCablecom, IKE key management is completely asynchronous to call signaling messages and does not
contribute to any delays during communications setup. The only exception would be some unexpected error, where
Security Association is unexpectedly lost by one of the endpoints.

IKE is a peer-to-peer key management protocol. It consists of 2 phases. In the first phase, a shared secret is
negotiated via a Diffie-Hellman key exchange. It is then used to authenticate the second IKE phase. The second
phase negotiates another secret, used to derive keys for the IPsec ESP protocol.

6.2.2 IPCablecom Profile for IKE

6.2.2.1 First IKE Phase

There are several modes defined for authentication during the first IKE phase.

6.2.2.1.1 IKE Authentication with Signatures

In this mode, both peers MUST be authenticated with X.509 certificates and digital signatures. IPCablecom utilizes
this IKE authentication mode on some IPsec interfaces. Whenever this mode is utilized, both sides MUST exchange
X.509 certificates (although this is optional in [24]).

6.2.2.1.2 IKE Authentication with Public-Key Encryption

IPCablecom MUST NOT utilize this IKE authentication with public key encryption. In order to perform this mode
of IKE authentication, the initiator must already have the responder's public key, which is not supported by
IPCablecom.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 44

6.2.2.1.3 IKE Authentication with Pre-Shared Keys

A key derived by some out-of-band (e.g., manual) mechanism is used to authenticate the exchange. IPCablecom
utilizes this IKE authentication mode on some IPsec interfaces. IPCablecom does not specify the out-of-band
method for deriving pre-shared keys.

When using pre-shared keys, the strength of the system is dependent upon the strength of the shared secret. The goal
is to keep the shared secret from being the weak link in the chain of security. This implies that the shared secret
needs to contain as much entropy (randomness) as the cipher being used. In other words, the shared secret should
have at least 128-160 bits of entropy. This means if the shared secret is just a string of random 8-bit bytes, then of
the key can be 16-20 bytes. If the shared secret is derived from a passphrase that is a string of random alpha-
numerics (a-zA-Z0-9/+), then it should be at least 22-27 characters. This is because there are only 64 characters (6
bits) instead of 256 characters (8 bits) per 8-bit byte, which implies an expansion of 4/3 the length for the same
amount of entropy.

Both random 8-bit bytes and random 6-bit bytes assume truly random numbers. If there is any structure in the
password/passphrase, like deriving from English, then even longer passphrases are necessary. A passphrase
composed of English would need on the order of 60-100 characters, depending on mixing of case. Using English
passphrases (or any language, for that matter) creates the problem that, if an attacker knows the language of the
passphrase then they have less space to search. It is less random. This implies fewer bits of entropy per character, so
a longer passphrase is required to maintain the same level of entropy.

6.2.2.2 Second IKE Phase
In the second IKE phase, an IPsec ESP SA is established, including the IPsec ESP keys and ciphersuites. It is
possible to establish multiple Security Associations with a single second-phase IKE exchange.

First, a shared second phase secret is established, and then all the IPsec keying material is derived from it using the
one-way function specified in [24].

The second-phase secret is built from encrypted nonces that are exchanged by the two parties. Another Diffie-
Hellman exchange may be used in addition to the encrypted nonces. Within IPCablecom, IKE MUST NOT perform
a Diffie-Hellman exchange in the second IKE phase in order to avoid the associated performance penalties.

The second IKE phase is authenticated using a shared secret that was established in the first phase. Supported
authentication algorithms are the same as those specified for IPsec in section 6.1.2.2.

6.2.2.3 Encryption Algorithms for IKE Exchanges

Both phase 1 and phase 2 IKE exchanges include some symmetrically-encrypted messages. The encryption
algorithms supported as part of the IPCablecom Profile for IKE MUST be the same algorithms identified in the
IPCablecom profile for IPsec ESP in Table 2 of section 6.1.2.1.

6.2.2.4 Diffie-Hellman Groups
IKE defines specific sets of Diffie-Hellman parameters (i.e., prime and generator) that may be used for the phase 1
IKE exchanges. These are called groups in [24]. The use of Diffie-Hellman groups within IPCablecom IKE is
identical to that specified in [24]: the first group MUST be supported and the remaining groups SHOULD be
supported. Note that this is different from the requirements pertaining to the IPCablecom use of groups in PKINIT
described in section 6.4.2.1.1. Appendix VI provides details of the first and second Oakley groups.

6.3 SNMPv3

Any mention of SNMP in this specification without a specific reference to the SNMP protocol version must be
interpreted as SNMPv3.

IPCablecom supports use of SNMPv2c coexistence for network management operations for devices provisioned
under the Basic Flow or the Hybrid Flow. It also supports the SNMPv3/v2c coexistence for network management
operations when the device is provisioned under the Secure Flow. Refer to the provisioning specification [4] for the
use of SNMP coexistence in IPCablecom.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 45

For any interface within the IPCablecom architecture utilizing SNMPv3, SNMPv3 authentication MUST be turned
on at all times and SNMPv3 privacy MAY also be utilized.

In order to establish SNMPv3 keys, all IPCablecom SNMP interfaces SHOULD utilize Kerberized SNMPv3 key
management (as specified in section 6.5.4). In addition, SNMPv3 key management techniques specified in [27]
MAY also be used.

6.3.1 SNMPv3 Transform Identifiers
The SNMPv3 Transform Identifier (1 byte) is used by Kerberized key management to negotiate an encryption
algorithm for use by SNMPv3.

For IPCablecom, the following SNMPv3 Transform Identifiers are supported:

Table 4. SNMPv3 Transform Identifiers

Transform ID Value
(Hex)

Key Size
(in bits)

MUST be
Supported

Description

SNMPv3_DES 0x21 128 yes DES in CBC mode. The first 64 bits are
used as the DES Key and the remaining 64
are used as the pre-IV as described in [27].

SNMPv3_NULL 0x20 0 yes Encryption turned off

The SNMPv3_DES and the SNMPv3_NULL Transform IDs MUST be supported. The DES encryption transform
for SNMPv3 is specified in [27]. Note that DES encryption does not provide strong privacy but is currently the only
encryption algorithm specified by the SNMPv3 standard.

6.3.2 SNMPv3 Authentication Algorithms
SNMPv3 Authentication Algorithm (1 byte) is used by Kerberized key management to negotiate an SNMPv3
message authentication algorithm.

For IPCablecom, the following SNMPv3 Authentication Algorithms are supported (both of which are specified in
[27]):

Table 5. SNMPv3 Authentication Algorithms

Authentication Algorithm Value
(Hex)

Key Size
(in bits)

MUST be supported Description

SNMPv3_HMAC-MD5 0x21 128 yes (also required by [27]) MD5 HMAC

SNMPv3_HMAC-SHA-1 0x22 160 no (SHOULD be supported) SHA-1 HMAC

The SNMPv3_HMAC-MD5 Authentication Algorithm MUST be supported. The SNMPv3_HMAC-SHA-1
Authentication Algorithm SHOULD be supported.

6.4 Kerberos / PKINIT

6.4.1 Overview
IPCablecom utilizes the concept of Kerberized IPsec for signaling between an Application Server, such as the CMS,
and the MTA. This refers to the ability to create IPsec Security Associations using keys derived from the subkeys
exchanged using the Kerberos AP Request/AP Reply messages. On this interface, Kerberos (Appendix II) is utilized
with the PKINIT public key extension (also see Appendix III).

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 46

Kerberized IPsec consists of three distinct phases:

1. A client SHOULD obtain a TGT (Ticket Granting Ticket) from the KDC (Key Distribution Center). Once the
client obtains the TGT, it MUST use the TGT in the subsequent phase to authenticate to the KDC and obtain a
ticket for the specific Application Server, e.g., a CMS.

In Kerberos, tickets are symmetric authentication tokens encrypted with a particular server’s key. (For a TGT,
the server is the KDC.) Tickets are used to authenticate a client to a server. A PKI equivalent of a ticket would
be an X.509 certificate. In addition to authentication, a ticket is used to establish a session key between a client
and a server, where the session key is contained in the ticket.

The logical function within the KDC that is responsible for issuing TGTs is referred to as an Authentication
Server or AS.

2. A client obtains a ticket from the KDC for a specific Application Server. In this phase, a client can authenticate
with a TGT obtained in the previous phase. A client can also authenticate to the KDC directly using a digital
certificate or a password-derived key, bypassing phase 1.

The logical function within the KDC that is responsible for issuing Application Server tickets based on a TGT is
referred to as the Ticket Granting Server – TGS. When the TGT is bypassed, it is the Authentication Server that
issues the Application Server tickets.

3. A client utilizes the ticket obtained in the previous phase to establish a pair of Security Parameters (one to send
and one to receive) with the server. This is the only key management phase that is not already specified in an
IETF standard. The previous two phases are part of standard Kerberos, while this phase defines new messages
that tie together Kerberos key management and IPsec.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 47

Figure 4 illustrates the three phases of Kerberos-based key management for IPsec:

(request a TGT)
AS Request

(return application server ticket) with:
 TGS Reply
or
 AS Reply

client
application

server

(return TGT)
AS Reply

KDC
Ph

as
e

1

 (request an application server ticket) with:
 TGS Request
or
 AS Request (if phase 1 is skipped)

Ph
as

e
2

AP Request

AP Reply

Ph
as

e
3

Figure 4. Kerberos-Based Key Management for IPsec

During the AS Request / AS Reply exchange (that can occur in either phase 1 or phase 2), the client and the KDC
perform mutual authentication. In standard Kerberos, a client key that is shared with the KDC is used for this
authentication (see section 6.4.4). The same AS Request / AS Reply exchange may also be authenticated with digital
signatures and certificates when the PKINIT public key extension is used (see section 6.4.2). Both the TGT and the
Application Server tickets used within IPCablecom have a relatively long lifetime (days or weeks). This is
acceptable as 3-DES, a reasonably strong symmetric algorithm, is required by IPCablecom.

IPCablecom utilizes the concept of a TGT (Ticket Granting Ticket), used to authenticate subsequent requests for
Application Server tickets. The use of a TGT has two main advantages:

• It limits the exposure of the relatively long-term client key (that is in some cases reused as the service key). This
consideration does not apply to clients that use PKINIT.

• It reduces the number of public key operations that are required for PKINIT clients.

The Application Server ticket contains a symmetric session key, which MUST be used in phase 3 to establish a set
of keys for the IPsec ESP protocol. The keys used by IPsec MUST expire after a configurable time-out period (e.g.,
10 minutes). This section provides specifications for how to automatically establish a new IPsec SA right before the
expiration of the old one and how to establish IPsec SAs on-demand, when a signaling message needs to be sent.

Normally, the same Application Server ticket SHOULD be used to automatically establish a new IPsec SA.
However, there are instances where it is desirable to drop IPsec sessions after a Security Association time out and
establish them on-demand later. This allows for improved system scalability, since an application server (e.g., CMS)

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 48

does not need to maintain a SA for every client (e.g., MTA) that it controls. It is also possible that a group of
application servers (e.g., CMS cluster) may control the same subset of clients (e.g., MTAs) for load balancing. In
this case, the MTA is not required to maintain a SA with each CMS in that group.

IPCablecom also utilizes the Kerberos protocol to establish SNMPv3 keys between the MTAs and the Provisioning
Server. Kerberized SNMPv3 key management is very similar to the Kerberized IPsec key management and consists
of the same phases that were explained above for Kerberized IPsec. Each MTA again utilizes the PKINIT extension
to Kerberos to authenticate itself to the KDC with X.509 certificates.

Once an MTA obtains its service ticket for the Provisioning Server, it utilizes the same protocol that is used for
Kerberized IPsec to authenticate itself to the Provisioning Server and to generate SNMPv3 keys. The key
management protocol is specified to allow application-specific data that has different profiles for SNMPv3 and
IPsec. The only exception is the Rekey exchange that is specified for IPsec in order to optimize the MTA hand-off
between the members of a CMS cluster. The Rekey exchange is not utilized for SNMPv3 key management.

A recipient of any Kerberos message that doesn't fully comply with the IPCablecom requirements MUST reject the
message.

6.4.1.1 Kerberos Ticket Storage
Kerberos clients that store tickets in persistent storage will be able to re-use the same Kerberos ticket after a reboot.
In the event that PKINIT is used, this avoids the need to perform public key operations.

A Kerberos client MUST NOT obtain a new TGT upon reboot if it possesses a valid service ticket.

An MTA MUST store the Provisioning Server service ticket in persistent storage. An MTA MUST be capable of
storing a minimum of pktcMtaDevEndPntCount+1 CMS service tickets in persistent storage, where
pktcMtaDevEndPntCount is the MIB object specifying the number of physical endpoints on the MTA. An MTA
MUST store all CMS service tickets that correspond to active endpoints. This means that an MTA that reaches the
maximum number of CMS service tickets that can be stored in persistent storage will not over-write CMS service
tickets that correspond to active endpoints.

Kerberos clients other than MTAs SHOULD retain service tickets in persistent storage.

Note that Kerberos clients will need to store additional information in order to use and validate the ticket, such as the
session key information, the client IP address, and the ticket validity period. Refer to section 7.1 for additional
information on reusing stored tickets.

6.4.2 PKINIT Exchange
The diagram below illustrates how a client may use PKINIT to either obtain a TGT (phase 1) or a Kerberos ticket
for an Application Server (phase 2).

The PKINIT Request is carried as a Kerberos pre-authenticator field inside an AS Request and the PKINIT Reply is
a pre-authenticator inside the AS Reply. The syntax of the Kerberos AS Request / Reply messages and how pre-
authenticators plug in is specified in Appendix II.

In this section, the PKINIT client is referred to as an MTA, as it is currently the only IPCablecom element that
authenticates itself to the KDC with the PKINIT protocol. If in the future other IPCablecom elements will also
utilize the PKINIT protocol, the same specifications will apply. IPCablecom use of the AS Request / AS Reply
exchange without PKINIT is covered in section 6.4.3.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 49

Figure 5. PKINIT Exchange

The above diagram lists several important parameters in the PKINIT Request and Reply messages. These
parameters are:

PKINIT Request

• MTA (Kerberos principal) name – found in the KDC-REQ-BODY Kerberos structure (see Appendix II). For
the format used in IPCablecom, see section 6.4.7.

• KDC or Application Server (Kerberos principal) name – found in the KDC-REQ-BODY Kerberos structure
(see Appendix II). For the format used in IPCablecom, see section 6.4.6.

• Time – found in the PKAuthenticator structure, specified by PKINIT (Appendix III).

• Nonce - found in the PKAuthenticator structure, specified by PKINIT (Appendix III). There is also a second
nonce in the KDC-REQ-BODY Kerberos structure.

• Diffie-Hellman parameters, signature and MTA certificate – these are all specified by PKINIT (Appendix III)
and their use in IPCablecom is specified in section 6.4.2.1.1. Appendix VI provides details of the first and
second Oakley groups.

PKINIT Reply

• TGT or Application Server Ticket – found in the KDC-REP Kerberos structure (see Appendix II).

• KDC Certificate, Diffie-Hellman parameters, signature – these are all specified by PKINIT (see Appendix III)
and their use in IPCablecom is specified in section 6.4.2.1.2. Appendix VI provides details of the first and
second Oakley groups.

• Nonce – found in the KdcDHKeyInfo structure, specified by PKINIT (Appendix III). This nonce must be the
same as the one found in the PKAuthenticator structure of the PKINIT Request. There is another nonce in

MTA KDC
Service Key{ }

Ticket,
Session Key{ }

PKINIT Req:
MTA & KDC or Application Server name, time, nonce,
Diffie-Hellman parameters, signature,
MTA certificate

PKINIT Reply:
TGT or service ticket,
KDC certificate,
Diffie-Hellman parameters + nonce + signature,
Session key + key validity period encrypted with

DH key

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 50

EncKDCRepPart Kerberos structure (see Appendix II). This nonce must be the same as the one found in the
KDC-REQ-BODY of the PKINIT Request.

• Session key, key validity period – found in the EncKDCRepPart Kerberos structure (see Appendix II).

In this diagram, the PKINIT exchange is performed at long intervals, in order to obtain an (intermediate) symmetric
session key. This session key is shared between the MTA and the server via the server’s ticket, where the application
server may be the KDC (in which case the ticket is the TGT).

6.4.2.1 PKINIT Profile for IPCablecom
A particular MTA implementation MUST utilize the PKINIT exchange to either obtain Application Server tickets
directly, or obtain a TGT first and then use the TGT to obtain Application Server tickets. An MTA implementation
MAY also support both uses of PKINIT, where the decision to get a TGT first or not is local to the MTA and is
dependent on a particular MTA implementation. On the other hand, the KDC MUST be capable of processing
PKINIT requests for both a TGT and for Application Server tickets.

The PKINIT exchange occurs independent of the signaling protocol, based on the current Ticket Expiration Time
(TicketEXP) and on the PKINIT Grace Period (PKINITGP). If the PKINIT client is an MTA and the ticket it currently
possesses corresponds to the Provisioning Server in the MIB, a KDC for a REALM that currently exists in the
REALM table, or a CMS that currently exists in the CMS table, the MTA MUST initiate the PKINIT exchange at
the time: TicketEXP - PKINITGP.

If the PKINIT client is an MTA and the ticket it currently possesses does not correspond to the Provisioning Server
in the MIB, a KDC for a REALM that currently exists in the REALM table, or a CMS that currently exists in the
CMS table, the MTA MUST NOT initiate a PKINIT exchange. On the interfaces where PKINITGP is not defined,
the MTA SHOULD perform PKINIT exchanges on-demand.

In the case where PKINIT is used to obtain an Application Server ticket directly, the use of the grace period
accounts for a possible clock skew between the MTA and the CMS or other application server. If the MTA is late
with the PKINIT exchange, it still has until TicketEXP before the Application Server starts rejecting the ticket.
Similarly, if PKINIT is used to obtain a TGT the grace period accounts for a possible clock skew between the MTA
and the KDC.

The PKINIT exchange stops after the MTA obtains a new ticket, and therefore does not affect existing security
parameters between the MTA and the CMS or other application server. Synchronizing the PKINIT exchange with
the AP Request/Reply exchange is not required as long as the AS Request/Reply exchange results in a valid, non-
expired Kerberos ticket.

The PKINIT Request/Reply messages contain public key certificates, which make them longer than a normal size of
a UDP packet. In this case, large UDP packets MUST be sent using IP fragmentation.

A KDC server should be implemented on a separate host, independent of the Application Server. This would mean,
that frequent PKINIT operations from some MTAs will not affect the performance of any of the application servers
or the performance of those MTAs that do not require frequent PKINIT exchanges.

Kerberos Tickets MUST NOT be issued for a period of time that is longer than 7 days. The MTA clock MUST NOT
drift more than 2.5 minutes within that period (7 days). The PKINIT Grace Period PKINITGP MUST be at least 15
minutes.

6.4.2.1.1 PKINIT Request

The PKINIT Request message (PA-PK-AS-REQ) in Appendix III is defined as:
PA-PK-AS-REQ ::= SEQUENCE {
 signedAuthPack [0] ContentInfo,
 trustedCertifiers [1] SEQUENCE OF TrustedCas OPTIONAL,
 kdcCert [2] IssuerAndSerialNumber OPTIONAL,
 encryptionCert [3] IssuerAndSerialNumber OPTIONAL
}

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 51

The following fields MUST be present in PA-PK-AS-REQ for IPCablecom (and all other fields MUST NOT be
present):

• signedAuthPack – a signed authenticator field, needed to authenticate the client. It is defined in Cryptographic
Message Syntax, identified by the SignedData OID:{iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
pkcs7(7) 2}. SignedData is defined as:

SignedData ::= SEQUENCE {
 version CMSVersion,
 digestAlgorithms DigestAlgorithmIdentifiers,
 encapContentInfo EncapsulatedContentInfo,
 certificates [0] IMPLICIT CertificateSet OPTIONAL,
 crls [1] IMPLICIT CertificateRevocationLists
 OPTIONAL,
 signerInfos SignerInfos
}

• digestAlgorithms - for now MUST contain an algorithm identifier for SHA-1. Other digest algorithms

may optionally be supported in the future.

• encapContentInfo – is of type EncapsulatedContentInfo that is defined by Cryptographic Message
Syntax as:
EncapsulatedContentInfo ::= SEQUENCE {
 eContentType ContentType,
 eContent [0] EXPLICIT OCTET STRING OPTIONAL
}

The pachecksum field MUST use the Kerberos checksum type rsa-md5, a plain MD5 checksum over the KDC-
REQ-BODY.

The nonce field MUST be non-zero, indicating that the client does not support the caching of Diffie-Hellman values
and their expiration.

• certificates - required by IPCablecom. This field MUST contain an MTA Device Certificate and an MTA
Manufacturer Certificate. This field MUST NOT contain any other certificates. All IPCablecom certificates are
X.509 certificates for RSA Public keys as specified in section 8.

• crls – MUST NOT be filled in by the MTA.

• signerInfos – MUST be a set with exactly one member that holds the MTA signature. This signature is a part of
a SignerInfo data structure defined within the Cryptographic Message Syntax. All optional fields in this data
structure MUST NOT be used in IPCablecom. The digestAlgorithm MUST be set to SHA-1:

{iso(1) identified-organization(3) oiw(14) secsig(3) algorithm(2) 26}

and the signatureAlgorithm MUST be set to rsaEncryption:
{iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 1}

PKINIT allows an Ephemeral-Ephemeral Diffie-Hellman exchange as part of the PKINIT Request/Reply sequence.
(Ephemeral-Ephemeral means that both parties during each exchange randomly generate the Diffie-Hellman private
exponents.) The Kerberos session key is returned to the MTA in the PKINIT Reply, encrypted with a secret that is
derived from the Diffie-Hellman exchange. Within IPCablecom, the Ephemeral-Ephemeral Diffie-Hellman MUST
be supported.

The IKE specification in [24] defines Diffie-Hellman parameters as Oakley groups. Within the IPCablecom PKINIT
profile the second Oakley group MUST be supported and the first Oakley group MAY also be supported. Appendix
VI provides details of the first and second Oakley groups.

When generating Diffie-Hellman private keys, a device MUST generate a key of length at least 144 bits when the
first Oakley group is used and MUST generate a key of length at least 164 bits when the second Oakley group is
used.

For further details of PKINIT, refer to Appendix III.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 52

Additionally, PKINIT supports a Static-Ephemeral Diffie-Hellman exchange, where the client is required to possess
a Diffie-Hellman certificate in addition to an RSA certificate. This mode MUST NOT be used within IPCablecom.

PKINIT also allows a single client RSA key to be used both for digital signatures and for encryption - wrapping the
Kerberos session key in the PKINIT Reply. This mode MUST NOT be used within IPCablecom.

PKINIT has an additional option for a client to use two separate RSA keys – one for digital signatures and one for
encryption. This mode MUST NOT be used within IPCablecom.

Upon receipt of a PA-PK-AS-REQ, the KDC MUST:

1. Check the validity of the certificate chain (MTA Device Certificate, MTA Manufacturer Certificate, MTA Root
Certificate).

2. Check the validity of the signature in the (single) SignerInfo field.

3. Check the validity of the checksum in the PKAuthenticator.

6.4.2.1.2 PKINIT Reply

The PKINIT Reply message (PA-PK-AS-REP) in Appendix III is defined as follows:
PA-PK-AS-REP ::= CHOICE {
 dhSignedData [0] ContentInfo,
 encKeyPack [1] ContentInfo
}

IPCablecom MUST use only the dhSignedData choice, which is needed for a Diffie-Hellman exchange.

The value of the Kerberos session key is not present in PA-PK-AS-REP. It is found in the encrypted portion of the
AS Reply message that is specified in Appendix II. The AS Reply is encrypted with 3-DES CBC, with a Kerberos
etype value of des3-cbc-md5 (see section 6.4.2.2). Other encryption types may be supported in the future.

The client MUST use PA-PK-AS-REP to determine the encryption key used on the AS Reply. This PKINIT Reply
contains the KDC’s Diffie-Hellman public value that is used to generate a shared secret (part of the key agreement).
This shared secret is used to encrypt/decrypt the private part of the AS Reply.

dhSignedData is identified by the SignedData oid: {iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs7(7)
2}. Within SignedData (specified in section 6.4.2.1.1):

• digestAlgorithms - for now MUST contain an algorithm identifier for SHA-1. Other digest algorithms may
optionally be supported in the future.

• encapContentInfo – is of type pkdhkeydata, where eContentType contains the following OID value: {iso(1)
org(3) dod(6) internet(1) security(5) kerberosv5(2) pkinit(3) pkdhkeydata(2)}

eContent is of type KdcDHKeyInfo (encoded inside an OCTET STRING):

KdcDHKeyInfo ::= SEQUENCE {
 -- used only when utilizing Diffie-Hellman
 subjectPublicKey [0] BIT STRING,
 -- Equals public exponent (g^a mod p)
 -- INTEGER encoded as payload of
 -- BIT STRING
 nonce [1] INTEGER,
 -- Binds response to the request
 -- Exception: Set to zero when KDC
 -- is using a cached DH value
 dhKeyExpiration [2] KerberosTime OPTIONAL
 -- Expiration time for KDC's cached
 -- DH value
}

The nonce MUST be the same nonce that was passed in by the client in the PKINIT Request.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 53

The subjectPublicKey MUST be the Diffie-Hellman public value generated by the KDC. The Diffie-Hellman-
derived key is used to directly encrypt part of the AS Reply. The requirements on the length of the Diffie-Hellman
private exponent are as defined in section 6.4.2.1.1.

The dhKeyExpiration MUST not be present as caching of Diffie-Hellman values is not permitted.

• certificates – required by IPCablecom. This field MUST contain a KDC certificate. If a Local System CA
issued the KDC certificate, then the corresponding Local System CA Certificate MUST also be present. The
Service Provider CA Certificate MUST also be present in this field. This field MAY contain the Service
Provider Root CA certificate (refer to section 8.2.1 for validating the Service Provider Root CA certificate if it
is included in the PKINIT Reply).

This field MUST NOT contain any other certificates. If the MTA is configured with a specific service provider
name, it MUST verify that the Service Provider name is identical to the value of the OrganizationName attribute
in the subjectName of the Service Provider certificate. If the Local System Certificate is present, then the MTA
MUST verify that the Service Provider name is identical to the value of the OrganizationName attribute in the
subjectName of the Local System Certificate. In addition to standard certificate verification rules specified in
RFC 2459, an MTA MUST verify that the KDC certificate includes a subjectAltName extension in the format
specified in section 8.2.3.4.1. The MTA MUST verify that the extension contains a valid KDC principal name
and that the KDC realm in this extension is identical to the server realm name in the encrypted portion of the
AS Reply message (EncKDCRepPart).

• crls – this optional field MAY be filled in by the KDC.

• signerInfos – MUST be a set with exactly one member that holds the KDC signature. This signature is a part of
a SignerInfo data structure defined within the Cryptographic Message Syntax. All optional fields in this data
structure MUST NOT be used in IPCablecom. The digestAlgorithm MUST be set to SHA-1:

{iso(1) identified-organization(3) oiw(14) secsig(3) algorithm(2) 26}
the signatureAlgorithm MUST be set to rsaEncryption:
{iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 1}

Upon receipt of a PA-PK-AS-REP, the client MUST:

1. Check the value of the nonce in the eContent field.

2. Check the validity of the KDC certificate.

3. Check the validity of the signature in the SignerInfo field.

6.4.2.1.2.1 PKINIT Error Messages

In the case that a PKINIT Request is rejected, instead of a PKINIT Reply the KDC MUST return a Kerberos error
message of type KRB_ERROR, as defined in Appendix III. Any error code that is defined in Appendix III for
PKINIT MAY be returned.

The KRB_ERROR MUST use typed-data of REQ-NONCE to bind the error message to the nonce from the KDC-
REQ-BODY portion of the AS-REQ message. This error message MUST NOT include the optional e-cksum
member that would contain a keyed checksum of the error reply. The use of this field is not possible during the
PKINIT exchange, since the client and the KDC do not share a symmetric key.

When a client receives an error message from the KDC, in some cases this specification calls for the client to take
some recovery steps and then send a new AS Request or TGS Request. When a client is responding to an error
message, it is not a retry and MUST NOT be considered to be part of the client’s back-off and retry procedure
specified in section 6.4.8. The client MUST reset its timers accordingly, to reflect that the new request in response to
an error message is not a retry.

Although this specification calls for a KDC to return some specific error codes under certain error conditions, in the
case when a KDC is repeatedly getting the same error from the same client IP address, it MAY at some point choose
to stop sending back any further replies (errors or otherwise) to this client.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 54

6.4.2.1.2.1.1 Clock Skew Error

When the KDC clock and the client clock are off by more than the limit for a clock skew, an error code
KRB_AP_ERR_SKEW MUST be returned. The value for the maximum clock skew allowed by the KDC MUST
NOT exceed 5 minutes.

The optional client’s time in the KRB_ERROR MUST be filled out, and the client MUST compute the difference (in
seconds) between the two clocks based upon the client and server time contained in the KRB_ERROR message. The
client SHOULD store this clock difference in non-volatile memory and MUST use it to adjust Kerberos timestamps
in subsequent KDC request messages (AS Request and TGS Request) by adding the clock skew to its local clock
value each time. The client MUST maintain a separate clock skew value for each realm. The clock skew values are
intended for uses only within the Kerberos protocol and SHOULD NOT otherwise affect the value of the local clock
(since a clock skew is likely to vary from realm to realm).

In the case that a KDC request fails due to a clock skew error, a client MUST immediately retry after adjusting the
Kerberos timestamp inside the KDC Request message.

In addition, the MTA MUST validate the time offset returned in the clock skew error, to make sure that it does not
exceed a maximum allowable amount. This maximum time offset MUST NOT exceed 1 hour. This MTA check
against a maximum time offset protects against an attack in which a rogue KDC attempts to fool an MTA into
accepting an expired KDC certificate.

6.4.2.1.3 Pre-Authenticator for Provisioning Server Location

An AS Request sent by the MTA MUST include this PROV-SRV-LOCATION pre-authenticator that the KDC can
use to locate the Provisioning Server.

The pre-authenticator type MUST be –1 (according to Appendix II, the negative type is used for application-specific
pre-authenticators). Its ASN.1 encoding is specified as:

PROV-SRV-LOCATION ::= GeneralString
 -- Provisioning Server’s FQDN

6.4.2.2 Profile for the Kerberos AS Request / AS Reply Messages
As mentioned earlier, the PKINIT Request and Reply are pre-authenticator fields embedded into the AS Request /
AS Reply messages. The IPCablecom-specific PROV-SRV-LOCATION pre-authenticator MUST be used in
combination with PKINIT. All other pre-authenticators MUST NOT be used in combination with PKINIT.

The optional fields from, enc-authorization-data, additional-tickets and rtime in the KDC-REQ-BODY MUST NOT
be present in the AS Request. All other optional fields in the AS Request MAY be present for IPCablecom. The
client MUST NOT set any of the KDCOptions in the AS-REQUEST, except that the DISABLE-TRANSITED-
CHECK option MAY be set.

The MTA MUST include its IP address in the optional addresses field of the KDC-REQ-BODY. The KDC MUST
verify that the addresses field in the KDC-REQ-BODY contains exactly one IP address and that it is identical to the
IP address in the IP header of the AS Request. After the KDC validates the addresses field, it MUST include it in the
caddr fields of the issued ticket and the AS Reply. The KDC MUST reject an AS Request that does not include the
MTA’s IP address. In this case the KDC MUST return a KDC_ERR_POLICY error code.

If a KDC receives an AS-REQ message in which any of the KDCOptions are set, except for the DISABLE-
TRANSITED-CHECK option, the KDC MUST return an error with the error code KDC_ERR_POLICY.

In the AS Reply, key-expiration, starttime and renew-till optional fields MUST NOT be present. The session key
contained in the AS-REPLY (which MUST be identical to the session key in the ticket) MUST be etype des3-cbc-
md5.

The encrypted part of the AS Reply is of the type EncryptedData. The ASN.1 definition of EncryptedData that is
used inside multiple Kerberos objects is missing from the Kerberos revisions IETF draft in Appendix II. In all cases,
EncryptedData MUST be DER-encoded with EXPLICIT tags following ASN.1 structure:

EncryptedData ::= SEQUENCE {
 etype [0] INTEGER, -- EncryptionType

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 55

kvno [1] INTEGER OPTIONAL, -- service key
 -- version number
cipher [2] OCTET STRING -- ciphertext
}

When EncryptedData contains ciphertext that is encrypted with a service key, the ‘kvno’ element MUST be present
and MUST identify the version of the service key that was used to encrypt the data. When EncryptedData contains
ciphertext that is encrypted with a Kerberos session key or with a reply key derived from a PKINIT pre-
authenticator, the ‘kvno’ element MUST NOT be present. This is the case for the encrypted portion of the AS Reply.

The encryption type for an encrypted portion of the AS Reply MUST be set to des3-cbc-md5. In order to generate
the value of the ‘cipher’ element of the EncryptedData, the following data MUST be concatenated and processed in
the following sequence before being encrypted with 3-DES CBC, IV=0:

• 8-byte random byte sequence, called a confounder

• An MD5 checksum, which is the MD5 hash of the concatenation of the three quantities (the confounder +
sixteen NULL octets + the text to be encrypted [not including any padding])

• AS Reply part that is to be encrypted

• Random padding up to a multiple of 8

Upon receipt of an AS-REPLY, the client MUST check the validity of the checksum in the encrypted portion of the
AS-REPLY.

6.4.2.3 Profile for Kerberos Tickets
In Kerberos Tickets, authorization-data, starttime, and renew-till optional fields MUST NOT be present. The
optional caddr field MUST be present when requested in an AS-REQUEST or when present in a TGT of a TGS
Request (see Appendix II).

The only ticket flags that are supported within IPCablecom are the INITIAL, PRE-AUTHENT and TRANSITED-
POLICY-CHECKED flags. If the KDC receives any request that would otherwise cause it to set any other flag, it
MUST return an error with the error code KDC_ERR_POLICY. The KDC MUST NOT generate tickets with any
other flags set. The session key contained in the ticket (which MUST be identical to the session key in the AS-
REPLY) MUST be etype des3-cbc-md5. Since the transited encoding information normally required by PKINIT
(see Appendix II, 3.3.3.2) is not used in IPCablecom, a KDC MAY choose to leave as a null string the ‘contents’
field of the TransitedEncoding portion of a ticket issued in response to a PKINIT request.

The encrypted part of the Kerberos ticket MUST be encrypted with the encryption type set to des3-cbc-md5, using
the same procedure as described in section 6.4.2.2.

Upon receipt of a ticket for a service, the server MUST:

1. Check the validity of the checksum in the encrypted portion of the ticket

2. Check that the ticket has not expired

Currently, all the service keys are pre-shared using an out-of-band mechanism between the KDC and the device
providing the service. In the future, IPCablecom may support a method that does not require these keys to be pre-
shared.

6.4.3 Symmetric Key AS Request / AS Reply Exchange
In IPCablecom, a Kerberos client MAY use standard symmetric-key authentication (with a client key) during the AS
Request / AS Reply exchange. Also, in IPCablecom, a client not utilizing PKINIT is, at the same time, an
Application Server for which other clients might obtain tickets. This means that an IPCablecom entity may utilize
the same symmetric key for both client authentication and for decrypting its service tickets.

The Kerberos AS Request / AS Reply exchange, in general, is allowed to occur with no client authentication. The
client, in those cases, would authenticate itself later by proving that it is able to decrypt the AS Reply with its
symmetric key and make use of the session key.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 56

Such use of Kerberos is not acceptable within IPCablecom. This approach would allow a rogue client to
continuously generate AS Requests on behalf of other clients and receive the corresponding AS Replies. Although
this rogue client would be unable to decrypt each AS Reply, it will know some of the fields that it should contain.
This, and the availability of the matching encrypted AS Replies, would aid an attacker in the discovery of another
client’s key with cryptanalysis.

Therefore, IPCablecom requires that whenever an AS Request is not using a PKINIT preauthenticator, it MUST
instead use a different preauthenticator, of type PA-ENC-TS-ENC. This preauthenticator is specified as:

PA-ENC-TS-ENC ::= SEQUENCE {
 patimestamp [0] KerberosTime,
 -- client’s time
 pausec [1] INTEGER OPTIONAL,
 pachecksum [2] CheckSum OPTIONAL
 -- keyed checksum of
 -- KDC-REQ-BODY
}

The PA-ENC-TS-ENC preauthenticator MUST be encrypted with the client key using the encryption type des3-cbc-
md5, as described in section 6.4.2.2. All optional fields inside PA-ENC-TS-ENC MUST be present for IPCablecom.
The pachecksum field MUST be a keyed checksum of type rsa-md5-des3. The checksum MUST be keyed with the
client key. The checksum MUST be validated by the KDC.

The encrypted timestamp is used by the KDC to authenticate the client. At the same time, the timestamp inside this
preauthenticator is used to prevent replays. The KDC checks for replays upon the receipt of this preauthenticator;
this is similar to the checking performed by an Application Server upon receipt of an AP Request message.

If the timestamp in the PA-ENC-TS-ENC preauthenticator differs from the current KDC time by more than the
acceptable clock skew then KDC MUST reply with a clock skew error message. The MTA MUST respond to this
error message as specified in section 6.4.2.1.2.1.1

If the realm, target server name (e.g., the name of the KDC), along with the client name, time and microsecond
fields from the PA-ENC-TS-ENC preauthenticator match any recently-seen such tuples, the
KRB_AP_ERR_REPEAT error MUST be returned. The KDC MUST remember any such preauthenticator
presented within acceptable clock skew period, so that a replay attempt is guaranteed to fail.

If the Application Server loses track of any authenticator presented within the acceptable clock skew period, it
MUST reject all requests until the acceptable clock skew interval has passed.

Symmetric-key AS Request / AS Reply exchange is illustrated in the following figure:

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 57

client KDC
Service Key{ }

Ticket,
Session Key{ }

AS Request:
Client name,
KDC name or other server name,
nonce,
PA-ENC-TS-ENC preauthenticator:

client time encrypted
with the client key

AS Reply:
TGT or other server ticket,
nonce + session key + key validity period

encrypted with the client key

Figure 6. Symmetric-Key AS Request / AS Reply Exchange

6.4.3.1 Profile for the Symmetric Key AS Request / AS Reply Exchanges
The content of the AS Request / AS Reply messages is the same as in the case of the PKINIT preauthentication (see
section 6.4.2.1) with the exception of the type of the preauthenticator that is used.

In general, clients using a symmetric-key form of the AS Request / AS Reply exchange are not required to always
possess a valid TGT or a valid Application Server ticket. A client MAY obtain both a TGT and Application Server
tickets on-demand, as they are needed for the key management with the Application Server.

However, there may be cases where a client is required to quickly switch between servers for load balancing and the
additional symmetric-key exchanges with the KDC are undesirable. In those cases, a client MAY be optimized to
obtain tickets in advance, so that the key management would take only a single roundtrip (AP Request / AP Reply
exchange.)

In the case that the KDC rejects the AS Request, it returns a KRB_ERROR message instead of the AS Reply, as
specified in Appendix II. The KRB_ERROR MUST use typed-data of REQ-NONCE to bind the error message to
the nonce from the AS-REQ message. This error message MUST include the optional e-cksum member that would
contain an rsa-md5-des3 keyed checksum of the error reply, unless pre-authentication failed to prove knowledge of
the shared symmetric key in which case the e-cksum MUST NOT be used.

The rsa-md5-des3 checksum MUST be computed as follows:

1. Prepend the message with an 8-byte random byte sequence, called a confounder.

2. Take an MD5 hash of the result of step 1.

3. Prepend the hash with the same 8-byte confounder.

4. Take the 3DES session key from the ticket and XOR each byte with F0.

5. Use 3DES in CBC mode to encrypt the result of step 3, using the key in step 4 and with IV(initialization
vector)=0.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 58

Once a client receives an AS Reply, it SHOULD save both the obtained ticket and the session key information
(found in the enc-part member of the reply) in non-volatile memory. Thus, the client will be able to re-use the same
Kerberos ticket after a reboot, avoiding the need to perform the AS Request again.

Kerberos Tickets MUST NOT be issued for a period of time that is longer than 7 days (same as for PKINIT
exchanges).

Upon receipt of a KRB_ERROR that contains an e-cksum field, the recipient MUST verify the validity of the
checksum.

6.4.4 Kerberos TGS Request / TGS Reply Exchange
In the cases where a client obtained a TGT, that TGT is then used in the TGS Request / TGS Reply exchange to
obtain a specific Application Server ticket. This is part of the Kerberos standard, as it is specified in Appendix II.

A TGS Request includes a KRB_AP_REQ data structure (the same structure used in an AP Request: see section
6.4.4.1). This data structure contains the TGT as well as an authenticator that is used by the client to prove the
possession of the corresponding session key. The TGS Reply has the same format as an AS Reply, except that it is
encrypted using a different key – the session key from the TGT.

Figure 7 illustrates the TGS Request / TGS Reply exchange:

client KDC

Target Server Ticket,
Target Server Session Key{ }

TGT,
TGT Session Key{ } TGS Service Key,

Target Service Key{ }

TGS Reply:
target server ticket,
nonce + target server session key +

key validity period encrypted
with the TGT session key

target server name and realm,
nonce,
KRB_AP_REQ preauthenticator:

TGT
client name + time + hash

encrypted with the
TGT session key

TGS Request:

Figure 7. Kerberos TGS Request / TGS Reply Exchange

Figure 7 lists several important parameters in the TGS Request and Reply messages. These parameters are:

• TGS Request

• Target server (principal) name and realm, nonce – found in the KDC-REQ-BODY Kerberos structure (see
Appendix II).

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 59

• TGS pre-authenticator - found in the KDC-REQ Kerberos structure, inside the padata field (see Appendix
II). The pre-authenticator type in this case is PA-TGS-REQ.

• KRB_AP_REQ – the value of the preauthenticator of type PA-TGS-REQ.

• TGT – inside the KRB_AP_REQ.

• Client name, time – inside the Kerberos Authenticator structure, which is embedded in an encrypted form
in the KRB_AP_REQ.

• TGS Reply

• Target server ticket – found in the KDC-REP Kerberos structure (see Appendix II).

• Target server session key, nonce, key validity period – found in the EncKDCRepPart Kerberos structure
(see Appendix II).

In general, the TGS Request / Reply exchange may be performed on-demand whenever an Application Server ticket
is needed to establish security parameters. If the client is an MTA and a ticket it currently possesses corresponds to
the Provisioning Server in the MIB or a CMS that currently exists in the CMS table, it MUST initiate the TGS
Request / Reply exchange at the time: TicketEXP – TGSGP. Here, TicketEXP is the expiration time of the current
Application Server ticket and TGSGP is the TGS Grace Period. If the client is an MTA and the ticket it currently
possesses does not correspond to the Provisioning Server in the MIB or a CMS that currently exists in the CMS
table, the MTA MUST NOT initiate a PKINIT exchange.

The validity of the Application Server tickets MUST NOT extend beyond the expiration time of the TGT that was
used to obtain the server ticket.

6.4.4.1 TGS Request Profile
The optional padata element in the KDC-REQ data structure MUST consist of exactly one element – a
preauthenticator of type PA-TGS-REQ. The value of this preauthenticator is the KRB_AP_REQ data structure.
Within KRB_AP_REQ:

1. Options in the ap-options field MUST NOT be present.

2. The ticket is the TGT.

3. The encrypted authenticator MUST contain the checksum field – an MD5 checksum of the ASN.1 encoding of
the KDC-REQ-BODY data structure. It MUST NOT contain any other optional fields.

4. The authenticator MUST be encrypted using 3-DES CBC with the following Kerberos etype value des3-cbc-
md5 as specified in section 6.4.2.2.

The optional fields from, enc-authorization-data, additional-tickets and rtime in the KDC-REQ-BODY MUST NOT
be present in the TGS Request. The optional field cname SHOULD NOT be present. All other optional fields in the
TGS Request MAY be present for IPCablecom. The KDC MUST reject a TGT that has any ticket flags set, apart
from the flags INITIAL, PRE-AUTHENT or TRANSITED-POLICY-CHECKED. If the KDC receives any request
that would otherwise cause it to set any flag in the service ticket, apart from the PRE-AUTHENT and TRANSIT-
POLICY-CHECKED flags, it MUST return an error with the error code KDC_ERR_POLICY. The KDC MUST
NOT generate TGT-based service tickets with any other flags set.

If the TGT contains a caddr field, the KDC MUST verify that it is a single IP address and that it is identical to the IP
address in the IP header of the TGS Request. The KDC MUST reject TGS Requests from an MTA with a TGT that
does not include the MTA's IP address, returning a KDC_ERR_POLICY error code (refer to section 6.4.4.3).

Upon receipt of a TGS Request, the KDC MUST:

1. Check the validity of the TGT;

2. Check the validity of the checksum in the authenticator.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 60

6.4.4.2 TGS Reply Profile
In the TGS Reply, key-expiration, starttime and renew-till optional fields MUST NOT be present. The encrypted
part of the TGS Reply MUST be encrypted with the encryption type set to des3-cbc-md5, using the same procedure
as described in section 6.4.2.2.

Upon receipt of a TGS Reply, the client MUST:

1. Use the value of the nonce to bind the reply to the corresponding TGS Request;

2. Check the validity of the checksum in the encrypted portion of the TGS Reply.

6.4.4.3 Error Reply
If the KDC is able to successfully parse the TGS Request and the TGT that is inside of it, but the TGS Request is
rejected, it MUST return a Kerberos error message of type KRB_ERROR, as defined in Appendix II. The error
message MUST include the optional e-cksum member, which is the keyed hash over the KRB_ERROR message.
The checksum type MUST be rsa-md5-des3, calculated using the procedure described in section 6.4.3.1.

The KRB_ERROR MUST also include typed-data of REQ-NONCE to bind the error message to the nonce from the
TGS-REQ message.

Upon receipt of a KRB_ERROR, the client MUST check the validity of the checksum.

6.4.5 Kerberos Server Locations and Naming Conventions

6.4.5.1 Kerberos Realms

A realm name MAY use the same syntax as a domain name, however Kerberos Realms MUST be in all capitals. For
a full specification of Kerberos realms, refer to Appendix II.

6.4.5.2 KDC

Kerberos principal identifier for the local KDC when it is in a role of issuing tickets is always:
krbtgt/<realm>@<realm>, where <realm> is the Kerberos realm corresponding to the particular IPCablecom zone.
This is the service name listed inside a TGT.

A Kerberos client MUST query KDC FQDNs for a particular realm name using DNS SRV records, as specified in
[42] and as shown below:

<Service Name>.<Protocol>.<Name> TTL Class SRV Priority Weight Port Target

Where:

• The Service Name for Kerberos in IPCablecom MUST be "_kerberos".

• The Protocol for Kerberos in IPCablecom MUST be "_udp".

• The Name MUST be the Kerberos realm name that this record corresponds to.

• TTL, Class, SRV, Priority, Weight, Port, and Target have the standard meaning as defined in [42].

For example, assume the presence of a realm, IPCABLECOM.COM, with two KDCs: kdc1.ipcablecom.com and
kdc2.ipcablecom.com. These KDCs have different priorities. The DNS SRV records in this case would be:

_kerberos._udp.IPCABLECOM.COM. 86400 IN SRV 0 0 88 kdc1.ipcablecom.com.

_kerberos._udp.IPCABLECOM.COM. 86400 IN SRV 1 0 88 kdc2.ipcablecom.com.

To obtain records pertaining to the realm IPCABLECOM.COM, the MTA would send a DNS SRV request for:

_kerberos._udp.IPCABLECOM.COM

The client, upon receiving a response for a DNS SRV request, MUST consider the priority/weight as described in
the algorithm in [42] and contact the servers in that order. A client MUST contact the next server based on

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 61

priority/weight and so on, till all possible server FQDNs and the corresponding IPs are exhausted, if it fails to get a
suitable response from the first server listed (refer to 6.4.8 for timeout procedures).

For example, after the above DNS SRV records are retrieved, the client will try kdc1.ipcablecom.com first, based on
its priority. (Priority for kdc1.ipcablecom.com is 0, while priority for kdc2.ipcablecom.com is 1: a lower priority
number means a higher priority.)

When an IPCablecom KDC is requesting information from a Provisioning Server (e.g., the mapping of an MTA
MAC address to its corresponding FQDN) it MUST use a principal name of type NT- PRINCIPAL (1) with a single
component "kdcquery" (without quotes).

In a ASCII representation, the principal identifier is as follows:

kdcquery@<realm>

where <realm> is the Kerberos realm of the KDC.

6.4.5.3 CMS

A CMS Kerberos principal identifier MUST be constructed from the CMS FQDN as follows:

cms/<FQDN>@<realm>

where <FQDN> is the CMS’s FQDN (in lower case) and <realm> is its Kerberos realm.

For example, a CMS with an FQDN ‘iptel-cms1.company1.com’ and with a realm name ‘COMPANY1.COM’
would have the principal identifier:

cms/iptel-cms1.company1.com@COMPANY1.COM

The Kerberos PrincipalName data structure (inside the Kerberos messages) is defined as follows:
PrincipalName ::= SEQUENCE {
 name-type [0] INTEGER,
 name-string [1] SEQUENCE OF GeneralString
}

Within this data structure, name-type MUST be NT-SRV-HST (which has the value of 3 according to the Kerberos
specification). The name-string element of the data structure MUST have exactly two components, where the first
component has the string value "cms" (without the quotes) and the second component is the CMS’s FQDN in lower
case.

For the full syntax of Kerberos principal names, refer to Appendix II.

For the purpose of setting up an IPsec connection between the CMS and RKS, the first component of the CMS
principal name MUST be of the form "cms:<ElementID", where the <ElementID> is described in section 6.4.5.5.

In the case of a combined network element that integrates the functions of multiple logical elements within the
IPCablecom reference architecture (e.g., a single network element that provides both CMS and MGC functionality),
the principal name may include all server functions as specified in section 6.4.5.5.

6.4.5.4 Provisioning Server
When an IPCablecom MTA Provisioning Server is acting in the role of an SNMP manager, it MUST use a principal
name of type NT-SRV-HST (3) with the following two components:

• "mtaprovsrvr" (without quotes)

• the FQDN of the Provisioning Server (in lower case)

In ASCII representation, the Provisioning Server’s principal identifier MUST be as follows:

• mtaprovsrvr/<Prov Server FQDN>@<realm>

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 62

where <realm> is the Kerberos realm of the Provisioning Server.

When an IPCablecom Provisioning Server is providing a service (to the KDC) that maps each MTA MAC address
to its corresponding FQDN, it MUST use a principal name of type NT-SRV-HST (3) with the following two
components:

• "mtafqdnmap" (without quotes)

• the FQDN of the Provisioning Server (in lower case)

In ASCII representation, the principal identifier MUST be as follows:

• mtafqdnmap/<Prov Server FQDN>@<realm>

where <realm> is the Kerberos realm of the Provisioning Server.

6.4.5.5 Names of Other Kerberized Services
All Kerberized services within IPCablecom, except for the KDC krbtgt service (see 6.4.5.2), MUST be assigned a
service principal name of type KRB_NT_SRV_HST (Value=3), which has the following form according to the
Kerberos specification:

<service name>/<FQDN>

This means that the first component of the service principal name is the service name in lower case, and the last is
either an FQDN in lower-case or an IP address of the corresponding host. If a specific host has an assigned FQDN,
its principal name includes an FQDN and not an IP address. When a KDC receives a ticket request for a service on
this host with an IP address instead of an FQDN as the second component of the service principal name, the KDC
MUST reject such a request.

When a KDC database contains a service with a principal name that has an IP address as the second component, all
ticket requests for this service MUST use the same service principal name with the same IP address as the second
component. When a KDC receives a ticket request for this service with an FQDN as the second component of the
service principal name, the KDC MUST reject such a request. (This scenario could happen if a service principal is
defined in the KDC database at the time when the corresponding host does not have an FQDN, and then later an
FQDN for this host is defined as well.)

When an IP address is used, it MUST be formatted as follows:

[A.B.C.D]

where A, B, C and D are components of an IPv4 address expressed as decimal numbers. The components of an IP
address MUST be separated by a period ‘.’ and the IP address MUST be surrounded by square brackets.

The following is an example of a principal name based on an IP address:

df/[192.35.65.4]

Figure 3 shows a number of interfaces for which the necessary security is provided by IPsec. In addition to
supplying the required key management using IKE with pre-shared keys, some vendors may choose to implement,
and operators to deploy, a Kerberized key management scheme for these interfaces.

This specification requires that the RKS verifies billing event messages by ensuring that the Element ID contained in
the message matches correctly the IP address at the far end of the IPsec Security Associations. In order to ensure that
the RKS is able to maintain this mapping when Kerberized key management is used to generate the Security
Associations, devices that communicate with the RKS include their Element ID in their principal name. This
information is then passed to the RKS in the cname field of the ticket that the KDC issues; this ticket is passed to the
RKS in the AP-REQ that is used to initiate the IPsec Security Associations.

The first component of the principal name for the various IPCablecom devices MUST be as follows:

1. CMTS: cmts[:<ElementID>]

2. MG: mg[:<ElementID>]

3. MGC: mgc[:<ElementID>]

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 63

4. RKS: rks[:<ElementID>]

5. SG: sg[:<ElementID>]

where:

• <ElementID> is the identifier that appears in billing event messages and it MUST be included in a principal
name of every server that is capable of generating event messages.

Element ID is defined as an 5-octet right-justified, space-padded ASCII-encoded numerical string [6]. When
converting the Element ID for use in a principal name, any spaces MUST be converted to ASCII zeroes (0x48).

For example, a CMTS that has the Element ID " 311" will have a principal name whose first component is
"cmts:00311". Similarly, a DF with no Element ID will have a principal name whose first component is "df".

Components that contain combined elements (such as a CMS with an integrated MGC) MUST indicate this in the
principal name by including all component names, joined with the character "&", in the first component of the
principal name. The following is an example of a principal name for a combined CMS and MGC with a single IP
address:

cms:00210&mgc:00211/[192.35.65.4]

If the combined component uses a single ElementID, the principal name would be:

cms:00210&mgc:00210/[192.35.65.4]

6.4.6 MTA Principal Names
An MTA principal name MUST be of type NT-SRV-HST with exactly two components, where the first component
MUST be the string "mta" (not including the quotes) and the second component MUST be the FQDN of the MTA:

mta/<MTA FQDN>

where <MTA FQDN> is the FQDN of the MTA in lower case.

For example, if an MTA FQDN is "mta12345.mso1.com" and its realm is "MSO1.COM", the principal identifier
would be:

mta/mta12345.mso1.com@MSO1.COM

6.4.7 Mapping of MTA MAC Address to MTA FQDN
The MTA authenticates itself with the MTA Device Certificate in the AS Request, where the certificate contains the
MTA MAC address but not its FQDN. In order to authenticate the MTA principal name (containing the FQDN), the
KDC MUST map the MTA MAC address (from the MTA Device certificate) to the MTA FQDN, in order to verify
the principal name in the AS Request.

The protocol for retrieving the MTA FQDNs is Kerberos-based. The Provisioning Server MUST listen for the
request on UDP port 2246 and MUST return the response to the UDP port from which the request was transmitted
on the client:

1. MTA FQDN Request – sent from the KDC to the Provisioning Server, containing the MTA MAC address and
the hash of the MTA public key. This message consists of the Kerberos KRB_AP_REQ concatenated with
KRB_SAFE.

2. MTA FQDN Reply – a reply to the KDC by the Provisioning Server, containing the MTA FQDN. This message
consists of the Kerberos KRB_AP_REP concatenated with KRB_SAFE.

3. MTA FQDN Error Reply – an error reply in response to the MTA FQDN Request. This message is the
Kerberos KRB_ERROR.

The format of each of these messages is specified in the subsections below.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 64

6.4.7.1 MTA FQDN Request
The KDC MUST first verify the digital signature and certificate chain in the PKINIT Request, before sending out an
MTA FQDN Request message to determine the MTA MAC address to FQDN mapping.

In the case where the PKINIT Request and certificate signatures are all valid but the manufacturer certificate is
revoked, the KDC MAY still proceed with the MTA FQDN Request. In this case, the KDC MUST provide the
revocation time in the MTA FQDN Request.

The MTA FQDN Request MUST be formatted as follows:

Table 6. MTA FQDN Request Format

Field Name Length Description

KRB_AP_REQ Variable DER-encoded, the length is in the ASN.1 header.
KRB_SAFE Variable DER-encoded.

In the KRB_AP_REQ, only the following option is supported:

• MUTUAL-REQUIRED – mutual authentication required. This option MUST always be set.

• All other options are not supported.

The encrypted authenticator in the KRB_AP_REQ MUST contain the following field, which is optional in
Kerberos:

• seq-number - random value generated by the KDC.

All other optional fields within the encrypted authenticator are not supported within IPCablecom. In section 6.5.2.2,
there is a requirement that the recipient of a KRB_AP_REQ accepts certain negative values of seq-number; that
requirement does not apply when processing the KRB_AP_REQ embedded in a received MTA FQDN message. The
authenticator itself MUST be encrypted using 3-DES CBC with the Kerberos etype value des3-cbc-md5 with the
session key from the ticket that is contained in this KRB_AP_REQ object. The encryption method for des3-cbc-md5
is specified in section 6.4.2.2.

KRB_SAFE MUST contain the following field, which is optional in Kerberos:

• seq-number - same value as in the KRB_AP_REQ, to tie KRB_SAFE to KRB_AP_REQ and avoid replay
attacks.

All other optional fields within KRB_SAFE are not supported within IPCablecom. The keyed checksum within
KRB_SAFE MUST be of type rsa-md5-des3 and MUST be computed with the session key in the accompanying
KRB_AP_REQ. The method for computing an rsa-md5-des3 keyed checksum is specified in section 6.4.3.1.

The data that is wrapped inside KRB_SAFE MUST be formatted as shown in Table 7:

Table 7. KRB_SAFE Format

Field Name Length Description

Message Type 1 byte 1 = MTA FQDN Request
Enterprise Number 4 bytes Network byte order, MSB first.

1 = IPCablecom
Protocol Version 1 byte 2 for this version
MTA MAC Address 6 bytes MTA MAC Address
MTA Pub Key Hash 20 bytes SHA-1 hash of DER-encoded SubjectPublicKeyInfo.
Manufacturer Cert
Revocation Time

4 bytes 0 = MTA Manufacturer cert not revoked
Otherwise, this is UTC time, number of seconds since midnight
of Jan 1, 1970, in network byte order.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 65

Once the KDC has sent an MTA FQDN Request, it MUST save the nonce value that was contained in the seq-
number field in order to validate a matching MTA FQDN Reply.

If the KDC times out before getting a reply it MUST give up and simply drop the PKINIT request with no error
code returned. The KDC MUST NOT retry in this case, since it would still have to handle retries of PKINIT
Request from the MTA. At the same time, after a time out the KDC SHOULD increase its time out value on the next
request to the same Provisioning Server using an exponential back-off algorithm.

The Provisioning Server receiving this message MUST validate the KRB_AP_REQ and verify that it is not a replay
using the procedure specified in the Kerberos standard Appendix II, also described in section 6.5.2. After the
KRB_AP_REQ has been validated, the Provisioning Server MUST also verify the KRB_SAFE component: that the
checksum keyed with the session key is valid and that the seq-number field matches the KRB_AP_REQ.

If the Manufacturer Cert Revocation Time field is 0 and the Provisioning Server supports the storage of MTA public
key hashes, then it MUST update the MTA public key hash in its database. If the public key hash has changed or is
saved for the first time, the Provisioning Server MUST also record the time this update (to the MTA public key
hash) is performed.

If the Manufacturer Cert Revocation Time field is non-zero, the Provisioning Server MUST validate that the public
key hash hasn’t changed from the previous update and that the revocation time is after the last update to the MTA
public key hash. If not – the error code KRB_MTAMAP_ERR_PUBKEY_NOT_TRUSTED MUST be returned. If
the Provisioning Server does not support storage of MTA public key hashes and the Manufacturer Cert Revocation
Time field is non-zero, the same error code MUST be returned.

6.4.7.2 MTA FQDN Reply

The MTA FQDN Reply MUST be formatted as shown in Table 8:
Table 8. MTA FQDN Format

Field Name Length Description

KRB_AP_REP Variable DER-encoded, the length is in the ASN.1 header.
KRB_SAFE Variable DER-encoded

The encrypted part of the KRB_AP_REP MUST contain the following field, which is optional in Kerberos:

• seq-number - echoes the value in the KRB_AP_REQ

All other optional fields within the encrypted part of the KRB_AP_REP are not supported within IPCablecom. It
MUST be encrypted using 3-DES CBC with the Kerberos etype value des3-cbc-md5 and MUST be computed with
the session key from the preceding KRB_AP_REQ. The encryption method for des3-cbc-md5 is specified in section
6.4.2.2.

KRB_SAFE MUST contain the following field, which is optional in Kerberos:

• seq-number - same value as in the KRB_AP_REP, to tie KRB_SAFE to KRB_AP_REP and avoid replay
attacks.

All other optional fields within KRB_SAFE are not supported within IPCablecom. The keyed checksum within
KRB_SAFE MUST be of type rsa-md5-des3 and MUST be computed with the session key from the preceding
KRB_AP_REQ. The method for computing an rsa-md5-des3 keyed checksum is specified in section 6.4.3.1.

• The data that is wrapped inside KRB_SAFE MUST be formatted as shown in Table 9:

Table 9. KRB_SAFE Data Format

Field Name Length Description

Message Type 1 byte 2 = MTA FQDN Reply

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 66

Enterprise Number 4 bytes Network byte order, MSB first.
1 = IPCablecom

Protocol Version 1 byte 2 for this version
MTA FQDN variable MTA FQDN
MTA IP Address 4 bytes MTA-IP Address (MSB first)

After the KDC receives this reply message, it MUST validate the integrity of both the KRB_AP_REP and
KRB_SAFE objects (see Appendix II) and MUST also verify that the value of the seq-number field is the same for
both. If this integrity check fails, the KDC MUST immediately discard the reply and proceed as if the message had
never been received (e.g., if the KDC was waiting for a valid MTA FQDN Reply it should continue to do so).

The Provisioning Server MAY set the MTA IP Address field of the MTA FQDN Reply to zero. If the KDC receives
an MTA FQDN REPLY with a non-zero MTA IP Address field, it MUST compare it to the IP address contained in
the AS Request. If this check fails, then the KDC MUST NOT respond to the AS Request.

6.4.7.3 MTA FQDN Error
If the Provisioning Server is able to successfully parse the KRB_AP_REQ and the ticket that is inside of it, but the
MTA FQDN Request is rejected, it MUST return an error message.

All errors MUST be returned as a KRB_ERROR message, as specified in Appendix II. It MUST include typed-data
of REQ-SEQ to bind the error message to the sequence number from the authenticator in the KRB_AP_REQ. Also,
the error message MUST include the optional e-cksum member, which is the keyed hash over the KRB_ERROR
message. The checksum type MUST be rsa-md5-des3 and MUST be computed with the session key from the
preceding KRB_AP_REQ, as specified in section 6.4.3.1. In the case that the client time field inside KRB_AP_REQ
differs from the Provisioning Server’s clock by more than the maximum allowable clock skew, a clock skew error
MUST be handled as specified in section 6.5.2.3.2.

If the error is application-specific (not a Kerberos-related error), then KRB_ERROR MUST include typed-data of
type TD-APP-DEFINED-ERROR (value 106). The value of this typed-data is specified in Appendix II as follows:

AppSpecificTypedData ::= SEQUENCE {
 oid [0] OPTIONAL OBJECT IDENTIFIER,
 -- identifies the application
 data-value [1] OCTET STRING
 -- application specific data
}

Inside AppSpecificTypedData the oid field MUST be set to:
enterprises (1.3.6.1.4.1) cableLabs (4491) clabProjects (2) clabProjPacketCable
(2) pktcSecurity (4) errorCodes (1) FQDN (3)

The data-value field MUST correspond to the following typed-data value:
PktcKrbMtaMappingError ::= SEQUENCE {
 e-code [0] INTEGER,
 e-text [1] GeneralString OPTIONAL,
 e-data [2] OCTET STRING OPTIONAL
}

The e-code field MUST correspond to one of the following error code values:

KRB_MTAMAP_ERR_NOT_FOUND 1 MTA MAC Address not found
KRB_MTAMAP_ERR_PUBKEY_NOT_TRUSTED 2 MTA public key is not trusted
KRB_MTAMAP_VERSION_UNSUP 3 Unsupported Version Number
KRB_MTAMAP_MSGTYPE_UNKNOWN 4 Unrecognized Message Type

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 67

KRB_MTAMAP_ENTERPRISE_UNKNOWN 5 Unrecognized Enterprise Number
KRB_MTAMAP_NOT_YET_VALID 6 MTA not yet valid
KRB_MTAMAP_ERR_GENERIC 7 Generic MTA name mapping error

The optional e-text field can be used for informational purposes (i.e., logging, network troubleshooting) and the
optional e-data field is reserved for future use to transport any application data associated with a specific error.

Upon receipt of a KRB_ERROR from the Provisioning Server, the KDC MUST check the validity of the checksum.
If the KRB_ERROR passes the validity check, the KDC MUST send a corresponding KRB_ERROR to the MTA
(as specified in 6.4.2.1.2), in response to the PKINIT Request. The application specific MAC-FQDN error codes
MUST be mapped to Kerberos error codes in the error reply to the MTA according to Table 10.

Table 10. Mapping of KRB_MTAMAP_ERR to KRB_ERR

KRB_MTAMAP_ERR_NOT_FOUND KDC_ERR_C_PRINCIPAL_UNKNOWN
KRB_MTAMAP_ERR_PUBKEY_NOT_TRUSTED KDC_ERR_CLIENT_REVOKED
KRB_MTAMAP_VERSION_UNSUP KRB_ERR_GENERIC
KRB_MTAMAP_MSGTYPE_UNKNOWN KRB_ERR_GENERIC
KRB_MTAMAP_ENTERPRISE_UNKNOWN KRB_ERR_GENERIC
KRB_MTAMAP_NOT_YET_VALID KDC_ERR_CLIENT_NOTYET
KRB_MTAMAP_ERR_GENERIC KRB_ERR_GENERIC

6.4.8 Server Key Management Time Out Procedure
The Kerberos client MUST implement a retransmission strategy using exponential back-off with configurable initial
and maximum retransmission timer values for any KDC or application server requests that have not been
acknowledged by the server. The Kerberos client MUST update the client timestamp field with the current time-of-
day reading for each such retry. During an exponential back-off, when a previous time out value was Ti, then the
next time out value, value Ti+1, MUST satisfy the following criteria:

1.5 * Ti <= Ti+1 <= 2.5 * Ti

After successfully processing an AS Request or TGS Request and generating a corresponding reply, the KDC
MUST save:

• The AS Request or TGS Request (e.g., the full AS Request / TGS Request or a hash of the AS Request / TGS
Request)

• The full KDC reply

The KDC MUST maintain this information for all requests with the client time field that is within the time window
(T - ∆TMAX, T + ∆TMAX), where T is the current time and ∆TMAX is the maximum clock skew that is allowed by
KDC policy.

The KDC MAY also save:

• The client principal identifier

• The information that uniquely identifies the client pre-authentication field in the AS Request (PKINIT or
encrypted timestamp in the case of non public key AS Request) or TGS Request (PA-TGS-REQ)

The KDC MAY maintain this information for all requests with the client time field that is within the time window
(T - ∆TMAX, T + ∆TMAX), where T is the current time and ∆TMAX is the maximum clock skew that is allowed by
KDC policy. If the AS Request or TGS Request is identical to the one previously received, the KDC MUST respond
with the same reply message. If only the principal name and pre-authenticator (PKINIT, encrypted timestamp or
PA-TGS-REQ) match, then the KDC MUST perform one of the following:

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 68

• If the received AS Request or TGS Request passes all other error checks, the KDC may reply with a cached
reply message

• Reject this message as a replay

The MTA may have learned several IP addresses for a KDC or application server (refer to section 6.4.5.2 for more
information on obtaining IP addresses from Realm Names and forming a local list of IP addresses based on
prioritization). If the number of retransmissions for a KDC IP address has reached its maximum configured value
and there are more IP addresses for the same KDC that have not been tried, then the MTA MUST direct the
retransmissions to the remaining alternate addresses in its local list. Each time that the MTA switches to a new KDC
IP address for retransmissions, it MUST start a new exponential back-off procedure. If there are no more KDC IP
addresses to try, then the MTA SHOULD actively query the name server in order to detect the possible change of
KDC network interfaces, regardless of the Time To Live (TTL) associated with the DNS record to see if any other
IP addresses have become available. If there are new IP Addresses discovered, the MTA MUST go through the
retransmission strategy again for the newly discovered IP Addresses.

For Kerberized key management with application servers, when an application layer is informed that key
management with a particular IP address failed, it is normally up to the application layer to select the next IP
address. The switch over algorithm between multiple IP addresses mapped to the same FQDN is specified by each
corresponding application protocol. For example, in the case of the Kerberized key management between the MTA
and the CMS, refer to the NCS specification [2]. There are also cases when key management is performed
independent of the application layer, e.g., to pre-establish security associations during MTA initialization. In those
cases, it is up to a specific MTA implementation to decide if to fail over and how to fail over to another application
server IP address.

An application server may not respond to application messages (e.g., NCS messages) from the MTA. This may
occur if the MTA has valid security parameters with the application server, but the security parameters on the server
have been lost or corrupted (e.g., the CMS rebooted and lost all IPsec Security Associations).

In the case of NCS signaling, an MTA MUST no longer use any previously established IPsec SAs with a particular
CMS each time the NCS backoff and retry algorithm places an MTA endpoint controlled by that CMS into a
DISCONNECTED state. After an MTA endpoint has moved to a DISCONNECT state, it will start sending
RSIP/disconnect NCS messages which will need to be protected by newly established IPsec SAs.

6.4.9 Service Key Versioning
The service key that is shared between a KDC and an application server, to encrypt/decrypt service tickets, is a
versioned key (refer to Appendix II). This key may be changed either due to a routine key refresh, or because it was
compromised. When the Service key is changed, the application server MUST retain the older key for a period of
time that is at least as long as the ticket lifetime used when issuing service tickets (i.e., up to 7 days). In the case of a
routine service key change, the application server MUST accept any ticket that is encrypted with an older key that it
has retained and is still valid (not compromised). This key versioning on the application server will prevent against
many MTAs from suddenly flooding a KDC with PKINIT Requests for new tickets.

If a service key is changed because it has been compromised, the application server MUST flag all older key
versions it has retained as invalid and reject any AP Request that contains a ticket that is encrypted with one of these
invalid keys. When rejecting the AP Request, the application server MUST respond as specified in Appendix II with
a KRB_AP_ERR_BADKEYVER error. The application server MUST still decrypt the rejected ticket, using the
invalid service key, in order to extract the session key.

This session key is needed to securely bind the KRB_ERROR reply message to the AP Request message using a
keyed checksum (see section 6.5.2.3.1). Note that this step is necessary in order to prevent denial-of-service attacks,
which could otherwise occur if the MTA was unable to verify the authenticity of the KRB_ERROR message.

Upon receiving this error reply, the MTA MUST discard the service ticket which is no longer valid and fetch a new
one from its KDC.

6.4.10 Kerberos Cross-Realm Operation
The text in this section has been removed because it is not within the scope of IPCablecom 1.0.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 69

6.5 Kerberized Key Management

6.5.1 Overview
This section specifies how Kerberos tickets are used to perform key management between a client and an
Application Server, where a client is able to get a Kerberos ticket for the server but not the other way around.

The same protocol described here applies in a symmetric case – where both sides of a key management interface are
able to get a ticket for each other, i.e., each side is both a client and a server. In the symmetric case, only the AP
Request and AP Reply messages apply.

The Kerberos session key is used in the AP Request and AP Reply messages that are exchanged in order to re-
establish security parameters. Subkeys from the AP-REQ and AP-REP are used to derive all of the secret keys used
for both directions. The AP Request and AP Reply messages are small enough to fit into a standard UDP packet, not
requiring fragmentation.

A Kerberos AP Request / Reply exchange MAY occur periodically, to insure that there are always valid security
parameters between the client and the Application Server. It MAY also occur on-demand, where the security
parameters are allowed to time out and are re-established the next time that application traffic needs to be sent over a
secure link.

The UDP port used for all key management messages between the client and the Application Server MUST be 1293
(on both devices).

A recipient of any Kerberized Key Management message that doesn't fully comply with the IPCablecom
requirements MUST reject the message.

6.5.2 Kerberized Key Management Messages
The following figure illustrates an AP Request / AP Reply exchange:

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 70

secure session

MTA Application
Server

Ticket,
Session Key

subkey security parameters

Service Key{ }{ }

{{ } }subkey security parameters

(3) AP Reply:
time + subkey

encrypted with session key
Application Specific Data (e.g., SPI for IPsec)
selected ciphersuite
SA lifetime
Grace period
Re-establish flag
ACK required flag
SHA-1 HMAC

(2) AP Request:
Service Ticket,
MTA name + time + hash

encrypted with session key
Server-nonce
Application Specific Data (e.g., SPI for IPsec)
list of available ciphersuites
Re-establish flag
SHA-1 HMAC

(1) Wake Up*:
Server-nonce
Application Server Kerberos Principal Identifier

* This message is sent whenever key management is initiated by an
Application Server

** This message is optional, sent whenever the ACK-required flag is set in
the preceeding AP Reply

(4) Security Parameter Recovered**

Figure 8. Kerberos AP Request / AP Reply Exchange

(1) Wake Up: An Application Server sends this message when it initiates a new key management exchange.

To prevent denial-of-service attacks, this message includes a Server-nonce field – a random value generated by the
Application Server. The Client includes the exact value of this Server-nonce in the subsequent AP Request.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 71

This message also contains the Server Kerberos Principal Identifier, used by the Client to find or to obtain a correct
Kerberos ticket for that Application Server.

The Wake Up message MUST be formatted as the concatenation of the following fields:

• Key Management Message ID – 1 byte value. Always set to 0x01.

• Domain of Interpretation (DOI) – 1 byte value. Specifies the target protocol for which security parameters are
established.

DOMAIN OF INTERPRETATION VALUES

VALUE TARGET PROTOCOL

1 IPsec

2 SNMPv3

• Protocol Version – 1 byte. The high order nibble is the major version number, and the lower order nibble is the

minor version number. For IPCablecom, the major number MUST be 1, and the minor number MUST be 0.

• Server-nonce – a 4-byte random binary string. Its value MUST NOT be all 0’s.

• Server Kerberos Principal Identifier – a printable, null-terminated ASCII string, representing the Kerberos
Principal Identifier of the Application Server, as defined in section 6.4.5.

Once the Application Server has sent a Wake Up, it MUST save the Server-nonce. The Application Server MUST
keep this nonce in order to validate a matching AP Request. In the case of a time out, the Application Server MUST
adhere to the exponential retry backoff procedure described in section 6.4.8. The Application Server MUST begin
each retry by re-sending a Wake Up message with a new server-nonce value. When the "Timeout Procedure" has
completed without success, the Application Server MUST discard the server-nonce from the last retry, after which it
will no longer accept a matching AP Request.

(2) AP Request: MUST be sent by the Client in order to establish a new set of security parameters. Any time that
the Client receives a Wake Up message from a valid application server that is listed as part of client configuration
data, it MUST respond with the AP Request message specified below. If a client receives a Wake Up message from
an unknown application server, the client MUST NOT respond.

In addition, this document specifies the use of this message by the Client to periodically establish a new set of
security parameters with the Application Server – see section 6.5.4.2. It also specifies the use of this message by the
Client to establish a new set of security parameters with the Application Server, when the Client somehow loses the
security parameters (e.g., after a reboot) – see section 6.5.3.5.

The Client starts out with a valid Kerberos ticket, previously obtained during a PKINIT exchange. The Application
Server starts out with its Service Key that it can use to decrypt and validate Kerberos tickets.

The Client sends an AP Request that includes a ticket and an authenticator, encrypted with the session key. The
Application Server gets the session key out of the ticket and uses it to decrypt and then validate the authenticator.

The AP Request includes the Kerberos KRB_AP_REQ message along with some additional information, specific to
IPCablecom. It MUST consist of the concatenation of the following fields:

• Key Management Message ID – 1 byte value. Always set to 0x02.

• Domain of Interpretation (DOI) – 1 byte value. Specifies the target protocol for which security parameters are
established. See Table above.

• Protocol Version – 1 byte. The high order nibble is the major version number, and the lower order nibble is the
minor version number. For IPCablecom, the major number MUST be 1, and the minor number MUST be 0.

• KRB_AP_REQ – DER encoding of the KRB_AP_REQ Kerberos message, as specified in Appendix II.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 72

• Server-nonce – a 4-byte random binary string. If this AP Request is in response to a Wake Up, then the value
MUST be identical to that of the Server-nonce field in the Wake Up message. If this AP Request is in response
to a Rekey, next section 6.5.2.1, then the value MUST be identical to that of the Server-nonce field in the Rekey
message. Otherwise, the value MUST be all 0’s.

• Application-Specific Data – additional information that must be communicated by the client to the server,
dependent on the target protocol for which security is being established (e.g., IPsec or SNMPv3).

• List of ciphersuites available at the Client.

• Number of entries in this list (1 byte).

Each entry has the following format:

Authentication Algorithm
(1 byte)

Encryption Transform ID
(1 byte)

The actual values of the authentication algorithms and encryption transform Ids depend on the target protocol.

• Re-establish flag – a 1-byte Boolean value. When the value is TRUE (1), the Client is making an attempt to
automatically establish a new set of Security Parameters before the old ones expire. Otherwise the value is
FALSE (0).

• SHA-1 HMAC - (20 bytes) over the contents of this message, not including this field. The 20-byte key for this
HMAC is determined by taking a SHA-1 hash of the session key.

Whenever the AP Request is received (by the Application Server), it MUST verify the value of this HMAC. If this
integrity check fails, the Application Server MUST immediately discard the AP Request and proceed as if the
message had never been received (e.g., if the Application Server was waiting for a valid AP Request it should
continue to do so).

Once the client has sent an AP Request, it MUST save the nonce value that was contained in the seq-number field (a
different nonce from the server-nonce specified above) along with the Server Kerberos Principal Identifier in order
to validate a matching AP Reply. If the client generated this AP Request on its own, it MUST adhere to the
exponential retry backoff procedure described in section 6.4.8.

If the AP Request was generated in response to a message sent by the Application Server (Wake Up or Rekey), then
the client MUST save the nonce and Server Kerberos Principal Identifier until the time specified by the appropriate
Key Management MIB variables (pktcMtaDevProvSolicitedKeyTimeout for Prov Server,
pktcMtaDevCmsSolicitedKeyTimeout for CMS).

After the timeout has been exceeded or when the "Timeout Procedure" has completed without success, the client
MUST discard this (nonce, Server Kerberos Principal Identifier) pair, after which it will no longer accept a matching
AP Reply.

If the MTA generated an AP Request on its own and has reached the maximum number of retries with a particular
application server IP address failing to get an AP Reply, it must retry with alternate application server IP addresses
as specified in section 6.4.8.

In the case that the Server-nonce is 0 (not filled in) and the Application Server is currently waiting for a reply to a
Wake Up or Rekey message from a client at this IP address, it MUST reject the AP Request and not reply to the
client. If the Application Server is not waiting for a reply to a Wake Up or Rekey message, it MUST verify that this
AP Request is not a replay using the procedure specified in the Kerberos standard (Appendix II):

• If the timestamp in the AP Request differs from the current Application Server time by more than the acceptable
clock skew then Application Server MUST reply with an error message specified in section 6.5.2.3.2.

• If the realm, Application Server name, along with the Client name, time and microsecond fields from the
Kerberos Authenticator (in the AP Request) match any recently-seen such tuples, the KRB_AP_ERR_REPEAT
error MAY be returned.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 73

• The Application Server MUST remember any authenticator presented within the acceptable clock skew, so that
a replay attempt is guaranteed to fail.

• If the Application Server loses track of any authenticator presented within the acceptable clock skew, it MUST
reject all requests until the interval has passed.

In the case that the Server-nonce is not 0, the Application Server MAY follow the above procedure in order to fully
conform with the Kerberos specification (Appendix II). In this case, the above procedure is not required because
matching the Server-nonce in the Wake Up or Rekey message against the Server-nonce in the AP Request also
prevents replays.

(3) AP Reply: Sent by the Application Server in response to AP Request.

The AP Reply MUST include a randomly generated subkey (inside the Kerberos KRB_AP_REP message),
encrypted with the same session key.

The AP Reply includes the Kerberos KRB_AP_REP message along with some additional information, specific to
IPCablecom. It MUST consist of the concatenation of the following fields:

• Key Management Message ID – 1 byte value. Always set to 0x03.

• Domain of Interpretation (DOI) – 1 byte value. Specifies the target protocol for which security parameters are
established. See Table in section 6.5.2.

• Protocol Version – 1 byte. The high order nibble is the major version number, and the lower order nibble is the
minor version number. For IPCablecom, the major number MUST be 1, and the minor number MUST be 0.

• KRB_AP_REP – DER encoding of the KRB_AP_REP Kerberos message, as specified in Appendix II.

• Application-Specific Data – additional information that must be communicated by the server to the client,
dependent on the target protocol for which security is being established (e.g., IPsec or SNMPv3).

• Selected ciphersuite for the target protocol, using the same format as defined for AP Request. The number of
entries in the list MUST be one.

• Security parameters lifetime – a 4-byte value, MSB first, indicating the number of seconds from now, when
these security parameters are due to expire.

• Grace period – a 4-byte value in seconds, MSB first. This indicates to the client to start creating a new set of
security parameters (with a new AP Request / AP Reply exchange) when the timer gets to within this period of
their expiration time.

• Re-establish flag – a 1-byte Boolean value. When the value is TRUE (1), a new set of security parameters
MUST be established before the old one expires. When the value is FALSE (0), the old set of security
parameters MUST be allowed to expire.

• ACK-required flag – a 1-byte Boolean value. When the value is TRUE (1), the AP Reply message requires an
acknowledgement, in the form of the Security Parameter Recovered message.

• SHA-1 HMAC – (20 bytes) over the contents of this message, not including this field. The 20-byte key for this
HMAC is determined by taking a SHA-1 hash of the session key.

Whenever the AP Reply is received (by the Client) it MUST:

• Verify the value of HMAC field in AP Reply. If HMAC integrity check fails, the Client MUST immediately
discard the AP Reply.

• Verify that the AP Reply Source IP Address matches the AP Request Destination IP Address in the list of
outstanding AP Requests. The Client MUST immediately discard the AP Reply, which cannot be matched for
the corresponding AP Request.

• Verify that the nonce value contained in the seq-number field in AP Reply matches the one in the corresponding
AP Request. The Client MUST immediately discard the AP Reply if seq-number field value in AP Reply does
not match.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 74

If the AP Reply is discarded, the Client MUST proceed as if the message had never been received (e.g. if the Client
was waiting for a valid AP Reply it should continue to do so).

Once the Application Server has sent an AP Reply with the ACK-required flag set, it MUST compute the expected
value in the Security Parameter Recovered message and save it for an appropriate timeout period during which it
will accept a matching Security Parameter Recovered Message. Once the appropriate timeout period is exceeded, the
Application Server MUST discard the saved values and no longer accept a matching Security Parameter Recovered
Message.

Each time the Application Server times out waiting for the Security Parameter Recovered message, it MUST
continue with the exponential back-off algorithm until all retries have been exhausted, as specified in section 6.4.8.
The Application Server MUST begin each retry by re-sending a Wake Up message with a new server-nonce value.

(4) Security Parameter Recovered: Sent by the Client to the Application Server to acknowledge that it received an
AP Reply and successfully set up new Security Parameters. This message is only sent when ACK-required flag is set
in the AP Reply.

This message MUST consist of the concatenation of the following:

• Key Management Message ID – 1 byte value. Always set to 0x04.

• Domain of Interpretation (DOI) – 1 byte value. Specifies the target protocol for which security parameters are
established. See Table in section 6.5.2.

• Protocol Version – 1 byte. The high order nibble is the major version number, and the lower order nibble is the
minor version number. For IPCablecom, the major number MUST be 1, and the minor number MUST be 0.

• HMAC – a 20-byte SHA-1 HMAC of the preceding AP Reply message. The 20-byte key for this HMAC is
determined by taking a SHA-1 hash of the subkey from the AP Reply.

If the receiver (Application Server) gets a bad Security Parameter Recovered message that does not match an AP
Reply, the Application Server MUST discard it and proceed as if this Security Parameter Recovered message was
never received.

6.5.2.1 Rekey Messages

The Rekey message replaces the Wake Up message and provides better performance, whenever a receiver
(Application Server) wants to trigger the establishment of a Security Parameter with a specified Client. The Rekey
message requires the availability of the shared Server Authentication Key, which is not always available. Thus,
support for the Wake Up message is still required.

The Rekey message was added specifically for use with the NCS-based clustered Call Agents, potentially consisting
of multiple IP addresses and multiple hosts. Any IP address or host within one cluster needs the ability to quickly
establish a new Security Parameter with a Client, without a significant impact to the ongoing voice communication.

The use of the Rekey message eliminates the need for the AP Reply message, thus reducing the key management
overhead to a single roundtrip. This is illustrated in Figure 9:

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 75

MTA CMS

(1) Rekey:
CMS nonce
CMS Kerberos Principal Identifier
timestamp
IPsec parameters:

list of available ciphersuites
SA lifetime
IPsec grace period
Re-establish flag

SHA-1 HMAC

(2) AP Request:
CMS ticket,
MTA name + time + subkey + hash

encrypted with the
session key

CMS nonce
IPsec parameters:

ASD
selected ciphersuite

SHA-1 HMAC

IPSEC ESP

sub-key IPSEC ESP Keys {{ } }sub-key IPSEC ESP Keys

Ticket,
Session Key,
Server Auth Key{ } Service Key,

Server Auth Key{ }

Figure 9. Rekey Message to Establish a Security Parameter

The messages listed in this diagram are defined as follows:

(1) Rekey: sent by the Application Server to establish a new set of Security Parameters. It MUST be a concatenation
of the following:

• Key Management Message ID – 1 byte value. Always set to 0x05.

• Domain of Interpretation (DOI) – 1 byte value. Specifies the target protocol for which security parameters are
established. See Table in section 6.5.2.

• Protocol Version – 1 byte. The high order nibble is the major version number, and the lower order nibble is the
minor version number. For IPCablecom, the major number MUST be 1, and the minor number MUST be 0.

• Server-nonce – a 4-byte random binary string. Its value MUST NOT be all 0’s.

• Server Kerberos Principal Identifier – a printable, null-terminated ASCII string, representing the Kerberos
Principal Identifier of the Application Server, as defined in section 6.4.5. This allows the Client to both find the
right Server Authentication Key and to pick the right Kerberos ticket for the subsequent AP Request message.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 76

• Timestamp – a string of the format YYMMDDhhmmssZ, representing UTC time. This string is not NULL-
terminated.

• Application-Specific Data – additional information that must be communicated by the server to the client,
dependent on the target protocol for which security is being established (e.g., IPsec).

• List of ciphersuites available at the server – see above specification for the AP Request message.

• Security parameters lifetime – a 4-byte value, MSB first. This indicates the number of seconds from now, when
this set of security parameters is due to expire.

• Grace period – a 4-byte value in seconds, MSB first. This indicates to the client to start creating a new set of
security parameters (with a new AP Request / AP Reply exchange) when the timer gets to within this period of
their expiration time.

• Re-establish flag – a 1-byte Boolean value. When the value is TRUE (1), a new set of security parameters
MUST be established before the old one expires. When the value is FALSE (0), the old set of security
parameters MUST be allowed to expire.

• SHA-1 HMAC – over the concatenation of all of the above listed fields.

The Server Authentication Key used for this HMAC is uniquely identified by the following name pair (client
principal name, server principal name). This key MUST be updated at the Application Server right after it sends an
AP Reply message. It MUST be set to a (20-byte) SHA-1 hash of the Kerberos session key used in that AP Reply.
The Client MUST also update this key as soon as it receives the AP Reply. (Note that multiple AP Replies will
continue using the same Kerberos session key, until it expires. That means that the derived Server Authentication
Key may have the same value as the old one.)

It is possible, that the Application Server sends a Rekey message as soon as it sends an AP Reply (from another IP
address), and before the Client is able to derive the new Server Authentication Key. In that case, the Client will not
authenticate the Rekey message and the Application Server will have to retry.

Similarly, after sending an AP Reply the Application Server might immediately send an IP packet using the just
established Security Parameter, when the Client is not yet ready to receive it. In this case, the Client will reject the
packet and the Application Server will have to retransmit.

Both of these error cases could be completely avoided with a 3-way handshake (a Client acknowledging an AP
Reply with a Security Parameter Recovered message).

Whenever the Rekey message is received (by the Client), it MUST verify the value of this HMAC. If this integrity
check fails, the Client MUST immediately discard this message and proceed as if the message had never been
received.

Once the Application Server has sent a Rekey, it MUST save the server-nonce in order to validate a matching AP
Request. In the case of a time out, the Application Server MUST adhere to the exponential retry backoff procedure
described in section 6.4.8. The Application Server MUST begin each retry by re-sending a Rekey message with a
new server-nonce value. When the "Timeout Procedure" has completed without success, the Application Server
MUST discard the server-nonce from the last retry, after which it will no longer accept a matching AP Request.

When this Rekey message is received and validated by the Client, all previously existing outgoing Security
Parameters with this Application Server IP address MUST be removed at this time. If the Client previously had a
timer set for automatic refresh of Security Parameters with this Application Server IP address, that automatic refresh
MUST be reset or disabled.

The Client MUST verify that this Rekey message is not a replay using the procedure similar to the one for AP
Request in the Kerberos standard Appendix II:

• If |TCMS – (TMTA + Skew)| > The acceptable Clock Skew then the Client MUST drop the message. Here,
TCMS is the timestamp in the Rekey message and TMTA is the reading of the MTA local clock. Skew is the
saved difference between the Application Server and MTA clock. PktcSrvrToMtaMaxClockSkew is currently
in the MTA MIB (see [25]) as the variable pktcMtaDevCmsMaxClockSkew.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 77

• If the Server-nonce, principal name and timestamp fields match any recently seen (within the
pktcSrvrToMtaMaxClockSkew) Rekey messages, then the Client MUST drop the message.

(2) AP Request: MUST be sent by the Client as a response to a Rekey message. Unlike the AP Request message
described above, this one MUST also include the subkey (inside KRB_AP_REQ ASN.1 structure). KRB_AP_REQ
will have a Kerberos flag set, indicating that an AP Reply MUST NOT follow.

The format of the AP Request is as specified above in section 6.5.2. The only difference is that the list of
ciphersuites here MUST contain exactly one entry – the ciphersuite selected by the client from the list provided in
the Rekey message.

Right before the client sends out this AP Request, it MUST establish the security parameters with the corresponding
server IP address. If the corresponding Rekey message had the Re-establish flag set, the client MUST be prepared to
automatically re-establish new security parameters, as specified in section 6.5.

Once this AP Request is received and verified by the Application Server, the server MUST also establish the
security parameters.

6.5.2.2 IPCablecom Profile for KRB_AP_REQ / KRB_AP_REP Messages

In the KRB_AP_REQ, only the following option is supported:

• MUTUAL-REQUIRED – mutual authentication required. When this option is set, the server MUST respond
with an AP Reply message. When this option is not set, the AP Reply message MUST NOT be sent in reply.

All other options MUST NOT be set. If an application server receives a request containing the unsupported
option USE-SESSION-KEY, it MUST return an error with the error code KRB_AP_ERR_METHOD. If an
application server receives a request containing any other unsupported options, it MUST return an error with the
error code KRB_ERR_GENERIC.

When MUTUAL-REQUIRED is set, the encrypted authenticator in the KRB_AP_REQ MUST contain the
following field, which is optional in Kerberos:

• seq-number MUST contain a pseudo-random number generated by the client (to be used as a nonce).

• The server MUST accept otherwise-valid KRB-AP-REQ messages that contain a seq-number in the range –
2^31 to –1.

When MUTUAL-REQUIRED is not set, the encrypted authenticator MUST contain the following field that is
optional in Kerberos.

• subkey – used to generate security parameters for the target protocol. The subkey type MUST be set to –1.
The actual subkey length is dependent on the target protocol.

When MUTUAL-REQUIRED is set, the target protocol is IPsec and the client is an MTA, the client MAY include
the subkey field; in the case that the target protocol is IPsec and the client is other than an MTA, the client SHOULD
include the subkey field. For IPsec, the subkey, if present, MUST contain a pseudo-random number of length 46
octets generated by the client.

Other optional fields in the authenticator MUST NOT be present. If the authenticator contains the authorization-data
field, the application server MUST return an error with the error code KRB_ERR_GENERIC. If the authenticator
contains any other optional fields (apart from subkey and authorization-data), the application server MUST ignore
those fields.

The negative key type is used to indicate that it is application-specific and not defined in the Kerberos specification.
When the Kerberos specification is updated to include this key type, the IPCablecom spec will be updated
accordingly.

The authenticator itself MUST be encrypted using 3-DES CBC with the Kerberos etype value des3-cbc-md5 as it is
specified in section 6.4.2.2.

In the encrypted part of the KRB_AP_REP, the optional subkey field MUST be used for IPCablecom. Its type and
format MUST be the same as when it appears in the KRB_AP_REQ (see above).

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 78

The optional seq-number MUST be present, and MUST echo the value that was sent by the client in the
KRB_AP_REQ. In this context, the seq-number field is used as a random nonce. The encrypted part of the
KRB_AP_REP MUST be encrypted with the Kerberos etype value des3-cbc-md5 as specified in section 6.4.2.2.

6.5.2.3 Error Handling

6.5.2.3.1 Error Reply

If the Application Server is able to successfully parse the AP Request and the ticket that is inside of it, but the AP
Request is rejected, it MUST return an error message. This error message MUST be formatted as the concatenation
of the following fields:

• Key Management Message ID – 1 byte value. Always set to 0x06.

• Domain of Interpretation (DOI) – 1 byte value. Specifies the target protocol for which security parameters are
established. See section 6.5.2.

• Protocol Version – 1 byte value. The high order nibble is the major version number and the lower order nibble
is the minor version number. For IPCablecom, the major version number MUST be 1 and the minor version
number MUST be 0.

• KRB_ERROR – Kerberos error message as specified in Appendix II. It MUST include typed-data of REQ-SEQ
to bind the error message to the sequence number from the authenticator in the AP-REQ message. The value
encapsulated by the REQ-SEQ typed data MUST be the same as the value of the seq-number that was sent by
the client in the KRB_AP_REQ. Also, the error message MUST include the optional e-cksum member, which is
the keyed hash over the KRB_ERROR message. The checksum type MUST be rsa-md5-des3, as it is specified
in section 6.4.3.1.

If the error is application-specific (not a Kerberos-related error), then the KRB_ERROR MUST include typed-data
of type TD-APP-DEFINED-ERROR (value 106). The value of this typed-data is the following ASN.1 encoding
(specified in Appendix II):

AppSpecificTypedData ::= SEQUENCE {
 oid [0] OPTIONAL OBJECT IDENTIFIER,
 -- identifies the application
 data-value [1] OCTET STRING
 -- application specific data
}

Both the oid and the data-value fields inside AppSpecificTypedData are specified separately for each DOI.

Upon receiving this error reply, the Client MUST verify both the keyed checksum and the REQ-SEQ field, to make
sure that it matches the seq-number field from the authenticator in the AP Request.

If the Application Server is not able to successfully parse the AP Request and the ticket, it MUST drop the request
and it MUST NOT return any response to the Client. In case of a line error, the Client will time out and re-send its
AP Request. If the verification has failed, then the MTA MUST ignore this error message and continue waiting for
the reply as if the error message was never received.

When a client receives an error message, in some cases this specification calls for the client to take some recovery
steps and then send a new AP Request message. When a client is responding to an error message, it is not a retry and
MUST NOT be considered to be part of the client’s back-off and retry procedure specified in section 6.4.8. The
client MUST reset its timers accordingly, to reflect that the AP Request in response to an error message is not a
retry.

Although this specification calls for an application server to return some specific error codes under certain error
conditions, in the case when a server is repeatedly getting the same error from the same client IP address, it MAY at
some point choose to stop sending back any further replies (errors or otherwise) to this client.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 79

6.5.2.3.2 Clock Skew Error

When the Application Server clock and the client clock are off by more than the limit for a clock skew, an error code
KRB_AP_ERR_SKEW MUST be returned. The value for the maximum clock skew allowed by the Application
Server MUST NOT exceed 5 minutes. The optional client's time in the KRB_ERROR MUST be filled out, and the
client MUST compute the difference (in seconds) between the two clocks based upon the client and server time
contained in the KRB_ERROR message. The client SHOULD store this clock difference in non-volatile memory
and MUST use it to adjust Kerberos timestamps in subsequent AP Request messages by adding the clock skew to its
local clock value each time. The client MUST maintain a separate clock skew value for each realm and MAY share
the same clock skew between the KDC and various application servers within that realm. The clock skew values are
intended for uses only within the Kerberos protocol and SHOULD NOT otherwise affect the value of the local clock
(since a clock skew is likely to vary from realm to realm).

In the case that an AP Request failed due to a clock skew error, a client MUST immediately retry after adjusting the
Kerberos timestamp inside the AP Request message.

Additionally, the Client MUST validate the time offset returned in the clock skew error, to make sure that it does not
exceed a maximum allowable amount. This maximum time offset MUST not exceed 1 hour. This Client check
against a maximum time offset protects against an attack, where a rogue KDC attempts to fool a Client into
accepting an expired KDC certificate (later, during the next PKINIT exchange).

6.5.2.3.3 Handling Ticket Errors After a Wake Up

6.5.2.3.3.1 KRB_AP_ERR_BADKEYVER after a Wake Up

This section addresses a scenario when an application server sends a Wake Up to a client and subsequently receives
an AP Request that contains a ticket that is encrypted using an obsolete service key (results in the
KRB_AP_ERR_BADKEYVER error code). This error normally requires the client to get another ticket and retry
but in this particular scenario the client has to retry in the middle of a key management transaction.

In this scenario, the application server MUST reply to the invalid AP Request with the KRB_ERROR message with
the KRB_AP_ERR_BADKEYVER error code. Subsequent to the reply, the server MUST wait for another AP
Request and MUST use the same time out value that it would normally use when waiting for an AP Request. The
client, upon getting back the above error code MUST attempt to obtain a new ticket from the KDC (if the client
hasn’t done so already while waiting for server’s reply) and if successful, MUST send another AP Request to the
application server. If the client is unsuccessful in obtaining another ticket, it MUST not reply. If the server times out
waiting for the second AP Request, it MUST proceed as if it timed out waiting for the original AP Request.

If the application server is able to validate the second AP Request, it MUST then proceed as specified in section
6.5.3. If the second AP Request again results in the KRB_AP_ERR_BADKEYVER error, the server MUST abort
key management with this client and not reply.

6.5.2.3.3.2 KRB_AP_ERR_SKEW After a Wake Up

An application server is not required to check for a clock skew in this case, but if it does generate the
KRB_AP_ERR_SKEW, the same procedure MUST be followed as in section 6.5.2.3.3.1, except that the client
MUST retry after adjusting the timestamp (see section 6.5.2.3.2) instead of getting a new ticket.

6.5.3 Kerberized IPsec
This section specifies the Kerberized key management profile specific to IPsec ESP in transport mode. IPsec uses
the term Security Association (SA) to refer to a set of security parameters. IPsec Security Associations are always
uni-directional and they MUST always be established in pairs within IPCablecom.

An MTA MUST establish SAs with the IP address from where the corresponding Kerberized IPsec key management
message (AP-REP or REKEY) has been received. Note that a CMS can notify an MTA that it is listening for NCS
messages on a different port. Also, both the CMS and the MTA can send NCS messages from different ports, and
the response must be sent to the port from which the message was sent. Kerberized Key Management does not allow
for the negotiation of source or destination ports. Therefore SAs established to protect NCS signaling need to
support multiple ports.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 80

One way to accomplish this is to establish two separate policies, outbound and inbound, in the IPsec Security Policy
Database (see [19]). Table 11 illustrates an example policy that would support changes in port numbers. Note that
this table only illustrates inbound and outbound policies for NCS signaling between a specific MTA and a specific
CMS. The table is not a complete IPsec Security Policy Database. Other entries would be required to support
communications over different protocols with the same host (e.g., Kerberized Key Management), communications
with other hosts, or default policies for unknown hosts.

Table 11. Sample IPsec Security Policy Database Entries
 for NCS Signaling between MTA and CMS

Direction Policy Source
IP

Source Port Destinati
on IP

Destination Port

Inbound – this
applies to messages
being received

Apply
IPsec ESP

Remote IP
address

Wildcard - any port Local IP
address

Bind to local port(s)
that NCS messages
will be sent from,
and the provisioned
NCS listening port.

Outbound – this
applies to messages
being sent

Apply
IPsec ESP

Local IP
address

Bind to local
port(s) that
messages will be
sent from.

Remote IP
address

Wildcard - any port

The DOI value for IPsec MUST be set to 1.

The ASD (Application-Specific Data) field in the AP Request key management message MUST be the SPI (Security
Parameter Index) for the client’s inbound Security Association. It is a 4-byte integer value, MSB first.

The ASD (Application-Specific Data) field in the AP Reply and Rekey key management messages MUST be the
SPI (Security Parameter Index) for the server’s inbound Security Association. It is a 4-byte integer value, MSB first

The subkey for IPsec MUST be a 46-byte value, defined as follows:

• If the AP-REQ does not include a subkey, the 46-octet subkey from AP-REP is taken as the subkey for IPsec.

• If the AP-REQ does include a subkey but no AP-REP (in the case of Rekey) is sent, then the 46-octet AP-REQ
subkey is used as the subkey for IPsec.

• Otherwise, both the AP-REQ and the AP-REP messages include 46-octet subkeys, and their bit-by-bit XOR is
the 46-byte subkey for IPsec.

An MTA MUST NOT perform Kerberized Key Management or establish IPsec Security Associations with a CMS
when the pktcMtaDevCmsIpsecCtrl flag for that CMS is set to false in the pktcMtaDevCmsTable. Note that this flag
may only be set in the MTA configuration file and cannot be updated using SNMPv3. In the case of an NCS
Redirect or any other dynamic method for associating a new CMS with an MTA endpoint where there is not an
entry in the pktcMtaDevCmsTable for the new CMS, the MTA MUST perform Kerberized Key Management and
establish IPsec Security Associations with the new CMS.

The CMS MUST be capable of disabling its Kerberized Key Management interface. The CMS MUST NOT perform
Kerberized Key Management or establish IPsec Security Associations when so configured.

6.5.3.1 Derivation of IPsec Keys
After the Application Server sends out an AP Reply message, it is ready to derive a new set of IPsec keys. Similarly,
after the Client receives this AP Reply, it is ready to derive the same set of keys for IPsec. This section specifies
how the IPsec keys are derived from the Kerberos subkey.

The size of the Kerberos subkey MUST be 46 bytes (the same as with the SSL or TLS pre-master secret).

The IPsec ESP keys MUST be derived in the following order:

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 81

1. Message authentication key for Client->Application Server messages
2. Encryption key for Client->Application Server messages
3. Message authentication key for Application Server->Client messages
4. Encryption key for Application Server->Client messages

For specific authentication and encryption algorithms that may be used by IPCablecom for IPsec, refer to section
6.1.2.

The derivation of the required keying material MUST be based on running a one-way pseudo-random function F(S,
"IPsec Security Association") recursively until the right number of bits has been generated. Here, S is the Kerberos
subkey and the ASCII string "IPsec Security Association" is taken without quotes and without a terminating null
character. F is defined in section 9.6.

6.5.3.2 Periodic Re-establishment of IPsec Security Associations
An IPsec SA is defined with an expiration time TEXP and a grace period GPIPsec. The subsections below specify how
both the Client and the Application Server handle the re-establishment of IPsec Security Associations (re-establish
flag was TRUE in the AP Reply). When the re-establishment of IPsec SAs is required there MUST always be at
least one SA available for each direction and there MUST NOT be an interruption in the call signaling.

6.5.3.2.1 Periodic Re-establishment of IPsec SAs at the Client

If the re-establish flag is set, the Client MUST attempt to establish a new set of IPsec SAs (one for each direction)
starting at the time TEXP - GPIPsec. At this time, the Client MUST send an AP Request as specified in section 6.5. The
destination IP Address of the AP Request message MUST be the destination IP Address of the outbound IPsec SA
that is about to expire. After the Client receives an AP Reply, it MUST perform the following steps:

1. Create new IPsec SAs, based on the negotiated ciphersuite, SPIs and on the established Kerberos subkey, from
which the IPsec keys are derived as specified in section 6.5. The expiration time for the outgoing SA MUST be
set to TEXP, while the expiration time for the incoming SA MUST be set to TEXP + GPIPsec.

2. From this point forward, the new SA MUST be used for sending messages to the Application Server. The old
SA that the Client used for sending signaling messages to the Application Server MAY be explicitly removed at
this time, or it MAY be allowed to expire (using an IPsec timer) at the time TEXP.

3. Continue accepting incoming signaling messages from the Application Server on both the old and the new
incoming SAs, until the time TEXP + GPIPsec. After this time, the old incoming SA MUST expire. If a Client
receives a signaling message from the Application Server using a new incoming SA at an earlier time, it MAY
at that time remove the old incoming SA.

If the client fails to get any reply from the server and has to retry one or more times with another AP Request, the re-
establish flag MUST be set to FALSE in each retry. This implies that when CMS processes a retry, it will remove
any existing outgoing IPsec SAs, including the ones that may have been created after the processing of the initial AP
Request, and proceed as if it is processing the SAs on demand (see section 6.5.3.5.1).

6.5.3.2.2 Periodic Re-establishment of IPsec SAs at the Application Server

When an AP Request message is received with re-establish flag set, the Application Server MUST perform the
applicable processing steps in section 6.5.2. If the client is an MTA, the Application Server MUST also verify that
the source IP address in the received datagram of the AP Request message is the same IP address as was used when
the initial SA was established. The Application Server MUST ignore the AP Request if the IP addresses do not
match.

In addition, the Application Server MUST perform the following steps, in the specified order, immediately before an
AP Reply is returned:

1. Create new IPsec SAs, based on the negotiated ciphersuite, SPIs and on the established Kerberos subkey, from
which the IPsec keys are derived as specified in section 6.5.

2. Send back an AP Reply.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 82

3. Continue sending signaling messages to the Client using an old outgoing SA until the time TEXP. During the
same period, accept incoming messages from either the old or the new incoming SA.

4. At the time TEXP both the old incoming and the old outgoing SAs MUST expire. At the time TEXP, the
Application Server MUST switch to the new SA for outgoing signaling messages to the Client. If for some
reason the new IPsec SAs were not established successfully, there would not be any IPsec SAs that are available
after this time.

6.5.3.3 Expiration of IPsec SAs
An IPsec SA is defined with an expiration time TEXP and a grace period GPIPsec. This section specifies how both the
Client and the Application Server MUST handle the expiration of IPsec Security Associations (re-establish flag was
FALSE in the AP Reply).

At the Client:

• Outgoing SA expires at TEXP

• Incoming SA expires at TEXP + GPIPsec

At the Application Server:

• Outgoing SA expires at TEXP

• Incoming SA expires at TEXP + GPIPsec

Whenever an IPsec SA has been expired and a signaling message needs to be sent by either the Client or the
Application Server, the key management layer MUST be signaled to establish a new IPsec SA. It is established
using the same procedures as the ones specified in section 6.5.3.5.

6.5.3.4 Initial Establishment of IPsec SAs

When a Client is rebooted, it does not have any current IPsec SAs established with the Application Server, since
IPsec SAs are not saved in non-volatile memory. In order to re-establish them, it MUST go through the recovery
procedure that is described in section 6.5.3.5.

6.5.3.5 On-demand Establishment of IPsec SAs
This section describes the recovery steps that MUST be taken in the case that a IPsec SA is somehow lost and needs
to be re-established.

6.5.3.5.1 Client Loses an Outgoing IPsec SA

If a client attempts to send a signaling message to the Application Server without a valid IPsec SA, the IPsec layer in
the Client will realize the SA is missing and return an error back to the signaling application. In this case, the
following recovery steps MUST be taken at the key management layer:

1. The Client first makes sure that it has a valid Kerberos ticket for the Application Server. If not, it must first
perform a PKINIT exchange as specified in section 6.4.2.

2. Client sends a new AP Request to the Application Server and gets back an AP Reply, as specified in section
6.5.2. After the receipt of an AP Reply the Client MUST:

• create new IPsec SAs

• remove any old outgoing IPsec SAs

• be prepared to use both of the newly created IPsec SAs.

If the Kerberos ticket includes the optional caddr field and the caddr does not contain a matching source IP address
for the AP Request datagram, the Application Server MUST ignore the request.

The Application Server MUST NOT set the ACK-required flag in the AP Reply. Right after sending out an AP
Reply, the Application Server MUST be prepared to both send and receive messages on the newly created SAs.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 83

After receiving this AP Request (with Re-establish flag = FALSE), the Application Server MUST remove any
existing outgoing IPsec SAs that it might already have for this Client.

The key management application running on the Client MUST send an explicit signal to the signaling application
when it completes the re-establishment of the IPsec SAs.

6.5.3.5.2 Client Loses an Incoming IPsec SA

When the Client receives an IP packet from an Application Server on an unrecognized IPsec SA, the Client MUST
ignore this error and the packet MUST be dropped.

6.5.3.5.3 Application Server Loses an Outgoing IPsec SA

When an Application Server attempts to send a signaling message to the Client, and the IPsec layer in the
Application Server realizes a valid SA is missing, the IPsec layer MUST return an error back to the signaling
application.3 In this case, the following recovery steps MUST be taken at the key management layer:

1. Application Server sends a Wake Up message to the Client.

2. The Client makes sure that it has a valid Kerberos ticket for the Application Server. If not, it MUST first obtain
it from the KDC.

3. Client sends a new AP Request to the Application Server, as specified in section 6.5.2. If the Kerberos ticket
includes the optional caddr field and the caddr does not contain a matching source IP address for the AP
Request datagram, the Application Server MUST ignore the request.

4. For each AP Request, the Client generates a nonce and puts it into the seq-number field. As specified in section
6.5.2, the Client will save this nonce for a period of time specified by the pktcMtaDevCmsSolicitedKeyTimeout
MIB object and wait for a matching AP Reply (this is not the same nonce as the Server-nonce received in the
Wake Up). However, after this timeout, the Client MUST NOT retry and MUST abort an attempt to establish a
IPsec SA in response to a received Wake Up.

Once the Client gets back a matching AP Reply, it will be in the format specified in section 6.5.2. The ACK-
required flag in the AP Reply MUST be set, to insure that the Client replies with the SA Recovered message in
the following step.

If this Client previously had any outgoing IPsec SAs with this Application Server IP address, they MUST be
removed at this time. If the Client previously had a timer set for automatic refresh of IPsec SAs with this
Application Server IP address, that automatic refresh MUST be reset or disabled. The Client MAY start using
both of the newly created SAs. If the AP Reply had the Re-establish flag set, the Client MUST be prepared to
automatically re-establish new IPsec SAs, as specified in section 6.5.3.2.

The Application Server can receive signaling messages from the Client on the new incoming SA, but cannot yet
start using an outgoing SA for sending messages to the Client.

5. Immediately after the Client establishes the new IPsec SAs, it MUST send a SA Recovered message to the
Application Server.

6. Upon receipt of this message, the Application Server MUST immediately activate the new outgoing SA for
sending signaling messages to the Client.

The key management application running on the Application Server MUST send an explicit signal to the signaling
application when it completes the re-establishment of the IPsec SAs.

6.5.3.5.4 Application Server Loses an Incoming IPsec SA

When the Application Server receives an IP packet from a Client on an unrecognized IPsec SA, the Application
Server MUST ignore this error and the packet MUST be dropped. In this case, any attempt at recovery (e.g.,
establishing a new SA) is prone to denial-of-service attacks.

3 In this case, there are no actual messages exchanged between the MTA and the CMS or other application server.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 84

6.5.3.6 IPsec-Specific Errors Returned in KRB_ERROR
Inside AppSpecificTypedData the oid field MUST be set to: enterprises (1.3.6.1.4.1) cableLabs (4491) clabProjects
(2) clabProjPacketCable (2) pktcSecurity (4) errorCodes (1) ipSec (1).

The data-value field MUST correspond to the following typed-data value:
PktcKrbIpsecError ::= SEQUENCE {
 e-code [0] INTEGER,
 e-text [1] GeneralString OPTIONAL,
 e-data [2] OCTET STRING OPTIONAL
}

The e-code field MUST correspond to one of the following error code values:

KRB_IPSEC_ERR_NO_POLICY 1 No IPsec policy defined for request
KRB_IPSEC_ERR_NO_CIPHER 2 No support for requested ciphersuites
KRB_IPSEC_NO_SA_AVAIL 3 No IPsec SA available (i.e., SAD is full)
KRB_IPSEC_ERROR_GENERIC 16 Generic KRB IPsec error

The optional e-text field can be used for informational purposes (i.e., logging, network troubleshooting) and the
optional e-data field is reserved for future use to transport any application data associated with a specific error.

6.5.4 Kerberized SNMPv3
This section specifies the Kerberized key management profile specific to SNMPv3, see [27]. In the case of
SNMPv3, the security parameters are associated with the usmUserName (SNMPv3 user name), the agent’s
usmUserEngineID (SNMPv3 engine ID) and the manager’s usmUserEngineID.

Multiple SNMP managers on different hosts but with the same user name are considered as unique Kerberos
principals. Still, the SNMPv3 keys generated by any one of these SNMP managers MUST be shared across all the
managers – as long as they apply to the same SNMPv3 user name and the same SNMPv3 engine ID (of the agent).

The security parameters consist of a single authentication key, a single privacy (encryption) key, SNMPv3 boot
count and engine time. SNMPv3 privacy can be turned off by selecting a NULL encryption transform.

The DOI value for SNMPv3 MUST be set to 2.

The ASD field in the AP Request message MUST be set to the concatenation of the values shown in Table 12:
Table 12. Required Format for Data in the AP Request

Attribute Length

Agent’s snmpEngineID Length 1 byte
Agent’s snmpEngineID variable
Agent’s snmpEngineBoots 4 bytes, network byte order
Agent’s snmpEngineTime 4 bytes, network byte order
usmUserName Length 1 byte
usmUserName variable

The ASD field in the AP Reply message MUST be set to the concatenation of the values shown in Table 13:

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 85

Table 13. Required Format for Data in the AP Reply

Attribute Length

Manager’s snmpEngineId Length 1 byte
Manager’s snmpEngineId variable
Manager’s snmpEngineBoots 4 bytes, network byte order
Manager’s snmpEngineTime 4 bytes, network byte order
usmUserName Length 1 byte
usmUserName variable

For IPCablecom MTAs, the usmUserName contains in it the MTA MAC address (see [4]). The manager MUST
verify that this MAC address and the MTA FQDN specified in the MTA principal name match. The manager MUST
also verify that any SNMP INFORM message containing a MAC address from the MTA contains a correct MAC
address – the same one that is in the usmUserName. The usmUserName field inside the application-specific data
field in the AP Reply MUST be the same as the one in the preceding AP Request.

The Rekey message is not used for SNMPv3 key management.

The subkey for SNMPv3 MUST be a 46-byte value.

6.5.4.1 Derivation of SNMPv3 Keys

After the server sends out an AP Reply message, it is ready to derive a new set of SNMPv3 keys. Similarly, after the
client receives this AP Reply, it is ready to derive the same set of keys for SNMPv3. This section specifies how the
SNMPv3 keys are derived from the Kerberos subkey.

The size of the Kerberos subkey MUST be 46 bytes.

The derived SNMPv3 keys MUST be as follows, in the specified order:

• SNMPv3 authentication key

• SNMPv3 privacy key

For specific authentication and encryption algorithms that may be used by IPCablecom for SNMPv3, refer to section
6.3.

The derivation of the required keying material MUST use a one-way pseudo-random function F(S, "SNMPv3
Keys") recursively until the right number of bits has been generated. Here, S is the subkey and the string "SNMPv3
Keys" is taken without quotes and without a terminating null character. F is defined in section 9.6.

6.5.4.2 Periodic Re-establishment of SNMPv3 Keys
Periodic re-establishment of SNMPv3 keys, where the next set of keys is created before the old one expired, is
currently not supported by IPCablecom. The re-establish flag in the AP Reply key management message MUST be
set to FALSE.

6.5.4.3 Expiration of SNMPv3 Keys

Expiration of SNMPv3 keys is currently not supported by IPCablecom. The values of the Security Parameters
Lifetime and Grace Period fields in the AP Reply MUST be set to 0.

6.5.4.4 Initial Establishment of SNMPv3 Keys
When a client is rebooted, it may not have any saved SNMPv3 keys established with the SNMP Manager. In order
to re-establish them, it goes through the recovery procedure that is described in section 6.5.4.5.1.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 86

6.5.4.5 Error Recovery
This section describes the recovery steps that must be taken in the case that SNMPv3 keys are somehow lost and
need to be re-established.

6.5.4.5.1 SNMP Agent Wishes to Send with Missing SNMPv3 Keys

In the case of SNMP, an SNMP agent is not responsible for re-establishing SNMPv3 keys because it does not send
unsolicited requests to the Provisioning Server after the initial provisioning is done. Still, an SNMP agent could
attempt to re-establish SNMPv3 keys after it gets an SNMPv3 authentication error back from the SNMP manager. If
the SNMP agent determines that it has incorrect SNMPv3 keys, it MUST perform the following steps before it is
able to send out an SNMP message:

1. The agent first makes sure that it has a valid Kerberos ticket for the Application Server. If not, it must first
obtain it as specified in section 6.5.2.

2. The agent sends a new AP Request to the manager and gets back an AP Reply, as specified in section 6.5.2.
After the receipt of the AP Reply the agent is prepared to use the newly created SNMPv3 keys. In this scenario,
the SNMP manager MUST NOT set an ACK-required flag in the AP Reply. Right after sending out an AP
Reply, the manager is prepared to both send and receive messages with the new SNMPv3 keys. After receiving
this AP Request (with Re-establish flag = FALSE), the manager MUST remove its previous set of SNMPv3
keys that it might already have for this agent (and for this SNMPv3 user name).

It is possible that the SNMP manager already initiated key management (with a Wake Up) but instead receives an
unsolicited AP Request from the agent (with server-nonce = 0). This unlikely scenario might occur if the manager
and the agent decide to initiate key management at about the same time. In this case, the SNMP manager MUST
ignore the unsolicited AP Request message and continue waiting for the one that is in response to a Wake Up.

6.5.4.5.2 SNMP Agent Receives with Missing SNMPv3 Keys

If SNMP agent receives a request from SNMP manager and is unable to find SNMPv3 keys for the specified USM
User Name, the agent MUST process the SNMP message according to [27], [40].

6.5.4.5.3 SNMP Manager Wishes to Send with Missing SNMPv3 Keys

SNMP manager attempts to send a message to the agent and does not find the desired user’s SNMPv3 keys (or
considers the existing SNMPv3 keys invalid or compromised). In this case, the following recovery steps MUST be
taken at the key management layer:

1. Manager sends a Wake Up message to the agent.

2. The agent makes sure that it has a valid Kerberos ticket for the manager. If not, it MUST first obtain it from the
KDC.

3. Agent sends a new AP Request to the manager, as specified in section 6.5.2. For each AP Request, the agent
generates a nonce and puts it into the seq-number field. As specified in section 6.5.3.5.3, the agent will save this
nonce for a period of time specified by the pktcMtaDevProvSolicitedKeyTimeout MIB object and wait for a
matching AP Reply (this is not the same nonce as the server-nonce received in the Wake Up). However, after
this timeout, the agent MUST NOT retry and MUST abort an attempt to establish SNMPv3 keys in response to
a received Wake Up.

Once the agent gets back a matching AP Reply, it will be in the format specified in section 6.5.2. The ACK-
required flag in the AP Reply MUST be set, to insure that the agent replies with the SA Recovered message in
the following step.

If this agent previously had SNMPv3 keys for the specified SNMPv3 user, they MUST be removed at this time.

4. After the receipt and validation of the AP Reply, the agent sends SA Recovered message to the manager. At this
time the agent will be ready to use the new SNMPv3 keys and will enable SNMPv3 security.

5. Upon receipt of the SA Recovered message, the manager will immediately activate the new set of SNMPv3
keys and will enable SNMPv3 security.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 87

It is possible that the SNMP agent already initiated key management (with an unsolicited AP Request) but instead
receives a Wake Up from the manager. This unlikely scenario might occur if the manager and the agent decide to
initiate key management at about the same time. In this case, the SNMP agent MUST abort waiting for the reply to
the unsolicited AP Request message and instead generate a new AP Request in response to the Wake Up.

If an SNMP agent receives a second Wake Up message from a different SNMP manager (FQDN or IP address)
before the first key management session has been completed, the SNMP agent MUST ignore the second Wake Up
message.

6.5.4.6 SNMPv3-Specific Errors Returned in KRB_ERROR
Inside AppSpecificTypedData the Oid field MUST be set to:
enterprises (1.3.6.1.4.1) cableLabs (4491) clabProjects (2) clabProjPacketCable (2)
pktcSecurity (4) errorCodes (1) snmpv3 (2)

The data-value field MUST correspond to the following typed-data value:
PktcKrbSnmpv3Error ::= SEQUENCE {
 e-code [0] INTEGER,
 e-text [1] GeneralString OPTIONAL,
 e-data [2] OCTET STRING OPTIONAL
}

The e-code field MUST correspond to one of the following error code values:

KRB_SNMPV3_ERR_USER_NAME 1 Unrecognized SNMPv3 user name
KRB_SNMPV3_ERR_NO_CIPHER 2 No support for requested ciphersuites
KRB_ SNMPV3_ERR_ENGINE_ID 3 Invalid SNMPv3 Engine ID specified
KRB_ SNMPV3_ERROR_GENERIC 16 Generic KRB SNMPv3 error

The optional e-text field can be used for informational purposes (i.e., logging, network troubleshooting) and the
optional e-data field is reserved for future use to transport any application data associated with a specific error.

6.6 End-to-End Security for RTP

RTP security is currently fully specified in section 7.6.2.1. Key Management for RTP requires that both the
(encryption) Transform ID and the Authentication Algorithm are specified, analogous to the IPsec key management.
This section lists the Transform IDs and Authentication Algorithms that are available for RTP security.

Table 14. RTP Packet Transform Identifiers

Transform ID Value Key Size
(in bits)

MUST
Support

Description

RTP_ENCR_NULL 0x50 N/A yes Encryption turned off
RTP_AES 0x51 128 yes AES-128 in CBC mode

with 128-bit block size
RTP_XDESX_CBC 0x53 192 no DESX-XEX-CBC
RTP_DES_CBC_PAD 0X54 128 no DES-CBC-PAD
RTP_3DES_CBC 0X56 128 no 3DES-EDE-CBC
reserved 0x57-59 - -

The RTP_AES and RTP_ENCR_NULL Transform IDs MUST be supported. AES-128 [33] MUST be used in CBC
mode with a 128-bit block size and an Initialization Vector (IV) generated in accordance with section 7.6.2.1.2.2.2.
AES-128 requires 10 rounds of cryptographic operations [33].

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 88

Table 15. RTP IPCablecom Authentication Algorithms

Authentication
Algorithm

Value Key Size (in
bits)

MUST
Support

Description

AUTH_NULL 0x60 0 yes Authentication turned off.
reserved 0x61 - -

RTP_MMH_2 0x62 variable (see
section
7.6.2.1.2.1.1)

yes 2-byte MMH MAC

reserved 0x63 - -

RTP_MMH_4 0x64 variable (see
section
7.6.2.1.2.1.1)

yes 4-byte MMH MAC

reserved 0x65 - -

The Authentication Algorithms AUTH_NULL, RTP_MMH_2 and RTP_MMH_4 MUST be supported.

6.7 End-to-End Security for RTCP

RTCP security is currently fully specified in section 7.6.2.2. Key Management for RTCP requires that both the
(encryption) Transform ID and the Authentication Algorithm be specified. This section lists the Transform IDs and
Authentication Algorithms that are available for RTCP security.

Table 16. RTCP Packet Transform Identifiers

Transform ID Value Key Size
(in bits)

MUST
Support

Description

RTCP_ENCR_NULL

0x70 0 yes Encryption turned off.

AES-CBC 0x71 128 yes AES-128 in CBC mode with 128-bit
block size

XDESX-CBC 0x72 192 no DESX-XEX-CBC
DES-CBC-PAD 0x73 128 no DES-CBC-PAD
3DES-CBC 0x74 128 no 3DES-EDE-CBC
reserved 0x75-7f - -

The AES-CBC and RTCP_ENCR_NULL Transform IDs MUST be supported. AES-128 [33] MUST be used in
CBC mode with a 128-bit block size and a randomly generated Initialization Vector (IV). AES-128 requires 10
rounds of cryptographic operations [33].

Table 17. RTCP Authentication Algorithms

Transform ID Value Key Size
(in bits)

MUST
Support

Description

RTCP_AUTH_NULL 0x80 N/A yes Authentication turned off
HMAC-SHA1-96 0x81 160 yes First 12 bytes of the HMAC-SHA1

as described in [23].

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 89

Transform ID Value Key Size
(in bits)

MUST
Support

Description

HMAC-MD5-96 0x82 128 no First 12 bytes of the HMAC-MD5
as described in [35].

reserved 0x83-8f - -

The HMAC-SHA1-96 and RTCP_AUTH_NULL authentication algorithm MUST be supported.

6.8 BPI+

All E-MTAs and S-MTAs MUST use DOCSIS 1.1 compliant cable modems that implement BPI+ [9]. Baseline
Privacy Plus (BPI+) provides security services to the DOCSIS 1.1 data link layer traffic flows running across the
cable access network, i.e., between CM and CMTS. These services are message confidentiality and access control.
The BPI+ security services operating in conjunction with DOCSIS 1.1 provide cable modem users with data privacy
across the cable network and protect cable operators from theft of service.

The protected DOCSIS 1.1 MAC data communications services fall into three categories:

• Best-effort, high-speed, IP data services;

• QoS (e.g., constant bit rate) data services; and

• IP multicast group services.

When employing BPI+, the CMTS protects against unauthorized access to these data transport services by (1)
enforcing encryption of the associated traffic flows across the cable network and (2) authenticating the DOCSIS
MAC management messages that CMs use to establish QoS service flows. BPI+ employs a client/server key
management protocol in which the CMTS (the server) controls distribution of keying material to client CMs. The
key management protocol ensures that only authorized CMs receive the encryption and authentication keys needed
to access the protected services.

Baseline Privacy Plus has two component protocols:

• An encapsulation protocol for encrypting packet data across the cable network. This protocol defines (1) the
frame format for carrying encrypted packet data within DOCSIS MAC frames, (2) a set of supported
cryptographic suites, i.e., pairings of data encryption and authentication algorithms, and (3) the rules for
applying those algorithms to a DOCSIS MAC frame’s packet data.

• A key management protocol (Baseline Privacy Key Management, or "BPKM") provides the secure distribution
of keying data from CMTS to CMs. Through this key management protocol, CM and CMTS synchronize
keying data; in addition, the CMTS uses the protocol to enforce conditional access to network services.

Baseline Privacy Plus does not provide any security services beyond the DOCSIS 1.1 cable access network. The
majority of IPCablecom’s signaling and media traffic flows, however, take paths that traverse the managed IP "back
haul" networks, which lie behind CMTSes. Since DOCSIS and IPCablecom service providers typically will not
guarantee the security of their managed IP back haul networks, the IPCablecom security architecture defines end-to-
end security mechanisms for all these flows. End-to-end security is provided at the Network layer through IPsec, or,
in the case of Client media flows, at the application/transport layer through RTP application layer security. Thus,
IPCablecom does not rely on BPI+ to provide security services to its component protocol interfaces.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 90

7 SECURITY PROFILE
The IPCablecom architecture defines over half a dozen networked components and the protocol interfaces between
them. These networked components include the media terminal adapter (MTA), call management server (CMS),
signaling gateway (SG), media gateway (MG) and a variety of OSS systems (DHCP, TFTP and DNS servers,
network management systems, provisioning servers, etc.). IPCablecom security addresses the security requirements
of each constituent protocol interface by:

• Identifying the threat model specific to each constituent protocol interface

• Identifying the security services (authentication, authorization, confidentiality, integrity, non-repudiation)
required to address the identified threats

• For each constituent protocol interface, specifying the particular security mechanism providing the required
security services

Section 5.2 summarizes the threat models applicable to IPCablecom’s protocol interfaces. In this section, we
identify the security service requirements of each protocol interface and security mechanisms providing those
services.

The security mechanisms include both the security protocol (e.g., IPsec, RTP-layer security, SNMPv3 security) and
the supporting key management protocol (e.g., IKE, PKINIT/Kerberos).

The security analysis in section 5.3.3 is organized by functional categories. For each functional category, we identify
the constituent protocol interfaces, the security services required by each interface, and the particular security
mechanism employed to deliver those security services. Each per-protocol security description includes the detailed
information sufficient to ensure interoperability. This includes cryptographic algorithms and cryptographic
parameters (e.g., key lengths).

As a convenient reference, each functional category’s security analysis includes a summary security profile matrix
of the form shown in Table 18 (media security profile matrix shown):

Table 18. RTP – RTCP Security Profile Matrix

 RTP (MTA – MTA,
MTA – PSTN GW)

RTCP (MTA – MTA,
MTA – MG, MG – MG)

authentication optional (indirect) optional (indirect)
access control optional optional
integrity optional yes
confidentiality yes yes
non-repudiation no no
Security mechanisms Application Layer Security via RTP

IPCablecom Security Profile keys
distributed over secured MTA-CMS
links
AES-128 encryption algorithm
Optional 2-byte or 4-byte MAC
based on MMH algorithm
IPCablecom supports ciphersuite
negotiation.

Application Layer Security via RTCP
IPCablecom Security Profile keys distributed
over secured MTA-CMS links
RTCP ciphersuites are negotiated separately
from the RTP ciphersuites and include both
encryption and message authentication
algorithms.
Keys are derived from the end-end secret using
the same mechanism as used for RTP
encryption.

Each matrix column corresponds to a particular protocol interface. All but the last row corresponds to a particular
security service; the cell contents in these rows indicate whether the protocol interface requires the corresponding
security service. The final row summarizes the security mechanisms selected to provide the required services.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 91

Note that the protocol interface column headings not only identify the protocol, but also indicate the network
components the protocols run between.

7.1 Device and Service Provisioning

Device provisioning is the process by which an MTA is configured to support voice communications service. The
MTA provisioning process is specified in [4].

Figure 10 illustrates only the flows involved with the Secure provisioning processes. The provisioning specification
lays out in detail these Secure Provisioning flows along with two non-secure MTA provisioning flows called Basic
and Hybrid. The Secure Provisioning flows involving security mechanisms are described in this section of the
document. Refer to the provisioning specification for the non-secure flows [4].

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 92

Flow
CM /
MTA

DOCSIS
DHCP

DOCSIS
TFTP

DOCSIS
ToD

Prov
Server

PKT
DHCP

PKT
DNS

PKT
TFTP

MSO
KDC CMS

Telephony
Provider KDC SYSLOGCMTS

Complete DOCSIS 1.1 Initialization / Registration

CM-1 DHCP Broadcast Discover (Option Code 60 w/ MTA device identifier)
CM-2 DHCP Offer (Option Code 122 w/ Telephony Service Provider's DHCP server address)
CM-3 DHCP Request (device ID, e.g., MAC Address)
CM-4 DHCP ACK (CM IP, ftp srv addr, CM Configuration filename)
CM-5 DOCSIS 1.1 CM config file request
CM-6 DOCSIS 1.1 config file
CM-7 ToD Request
CM-8 ToD Response
CM-9 CM registration with CMTS
CM-10 CMTS Registration ACK

MTA-1 DHCP Broadcast Discover (Option Code 60 w/ MTA device identifier)
MTA-2 DHCP Offer (Option Code 122 w/ name of provision realm)
MTA-3 DHCP Request
MTA-4 DHCP ACK
MTA-5 DNS Request
MTA-6 DNS SRV (KDC host name associated with the provisioning REALM)
MTA-7 DNS Request
MTA-8 DNS Response (KDC IP Address)
MTA-9 AS Request
MTA-9a MTA FQDN Request
MTA-9b MTA FQDN Reply
MTA-10 AS Reply
MTA-11 TGS Request
MTA-12 TGS Reply
MTA-13 AP Request
MTA-14 AP Reply
MTA-15 SNMP Inform
MTA-16 SNMP Get Request(s) for MTA device capabilities (optional / iterative)
MTA-17 SNMP Get Response(s) containing MTA device capabilities (optional / iterative)
MTA-18 MTA config file
MTA-19 SNMP Set with URL encoded file download access method (TFTP or HTTP) and filename
MTA-20 Resolve TFTP server FQDN
MTA-21 TFTP server IP address
MTA-22 Telephony config file request
MTA-23 Telephony config file
MTA-24 MTA send telephony service provider SYSLOG a notification of provisioning completed
MTA-25 Notify completion of telephony provisioning (MTA MAC address, ESN, pass/fail)
SEC-1 DNS Request
SEC-2 DNS SRV (KDC host name associated with the telephony REALM)
SEC-3 DNS Request
SEC-4 DNS Response (MSO KDC IP Address)
SEC-5 AS Request (PKINIT) (MTA Device Cert, MTA Manufacturer Cert, MTA FQDN, Prov CMS ID)
SEC-5a MTA FQDN Request
SEC-5b MTA FQDN Reply
SEC-6 AS Reply (PKINIT) (TGT with MTA service provide FQDN)
SEC-7 TGS Request (CMS Kerberos ticket)
SEC-8 TGS Reply (CMS Kerberos Ticket)
SEC-9 AP Request
SEC-10 AP Reply

Flows CM /
MTA

Start with DOCSIS 1.1 Initialization / Registration

DOCSIS
DHCP

DOCSIS
ToD

PKT
DHCP

PKT
TFTP CMS SYSLOG

Figure 10. IPCablecom Provisioning Flows

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 93

As part of the provisioning process, the MTA performs Kerberos key management (AS Request/AS Reply and AP
Request/AP Reply, and optional TGS Request/TGS Reply).

Table 19 describes the execution of the Kerberos key management step during MTA Provisioning:

Table 19. Kerberos Key Management During MTA Provisioning

Flow Step Security Requirement Life Time Step Bypass Permitted

MTA-9/MTA-10 –
AS Request/AS
Reply (see section
6.4.1).

TGT ticket if using TGS
Request, Provisioning
Server Ticket if otherwise.

Max. 7 days This step MUST NOT be
performed if the MTA
already possesses a valid
ticket for the Provisioning
Server.

MTA-11/MTA 12 –
TGS Request/TGS
Reply (see section
6.4.4).

Applies when a TGT is
used. Obtains a
Provisioning Server Ticket.

Lifetime set to
expire no later
than the
expiration time of
the TGT ticket.

This step MUST NOT be
performed if the MTA
already possesses a valid
ticket for the Provisioning
Server.

MTA-9a/MTA-9b –
MTA FQDN
Request/MTA FQDN
Reply (see section
6.4.7).

MTA FQDN Request and
Reply are protected using
Kerberos tickets

 These steps will not occur if
MTA-9 is skipped.
Otherwise, this step cannot
be bypassed.

MTA-13/MTA-14 –
AP Request/AP
Reply (see section
6.5.2 and section
6.5.4).

Initial SNMPv3
authentication and privacy
keys for the MTA. The
user name for the MTA is
specified as "MTA-Prov-
xx:xx:xx:xx:xx:xx". Where
xx:xx:xx:xx:xx:xx
represents the MAC
address of the MTA.
AP Req /AP Rep messages
don't specify the SNMPv3
key expiration time in the
protocol, but the SNMP
Manager may still set up
expiration time locally;
after the keys expire the
manager can send a Wake
Up message to create a
new set of SNMPv3 keys.

Expiration is not
supported by
IPCablecom.

None - new SNMPv3 keys
and User Ids are created
each time the MTA is
reinitialized. It is assumed
that SNMPv3 keys and User
Ids are not saved in
NVRAM. Also note that
this step is used for Engine
ID determination and
SNMPv3 time
synchronization - the two
sides exchange initial values
for SNMPv3 boots and
engine time parameters.

An MTA MUST get a new ticket before performing Kerberized Key Management with a particular Application
Server if the ticket(s) it currently possesses is not valid. A ticket would no longer be valid if the KDC REALM or
Application Server FQDN changes, if the MTA’s IP address has changed, or if the current time, adjusted by the time
offset for that REALM or Application Server, does not fall within the ticket validity period.

The PKINITGP for the Provisioning Server’s realm is specified in the MTA MIB inside the realm table. When the
MTA implementation requests a TGT in an AS Request and when the MTA needs to obtain tickets for one or more
CMSes in the same realm as the Provisioning Server, the PKINITGP value specified in the MIB MUST be used to
refresh the TGT. In all other cases, the AS Request for the TGT in the Provisioning Server’s realm or for the
Provisioning Server’s ticket directly MAY be issued on-demand.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 94

The TGS Grace Period is not specified for the key management between the MTA and the Provisioning Server. The
TGS Request for the Provisioning Server’s ticket MAY be issued on-demand.

7.1.1 Device Provisioning
Device provisioning occurs when an MTA device is inserted into the network. A provisioned MTA device that is not
yet associated with a billing record MAY have minimal voice communications service available.

Device provisioning involves the MTA making itself visible to the network, obtaining its IP configuration and
downloading its configuration data.

As defined in [4], the IPCablecom architecture supports three provisioning flow:

• Basic Flow

• Hybrid Flow

• Secure Flow

The Basic and Hybrid Flows are completely insecure flows (i.e., there are no mechanisms in the flows that would
prevent a user from provisioning their own MTA). The Basic and Hybrid Flows also do not provide a means to
secure the SNMP management interface on the MTA. Service providers that choose to deploy MTAs with one of
these insecure flows must accept that there are security risks. For example, a Denial-of-Service attack could be
mounted by sending SNMP TRAPs and INFORMs to the MSO’s management system. The management system
would have to process them, even though they are unauthenticated. Unfortunately, the inclusion of these insecure
flows also poses security risks for Service Providers that choose to deploy MTAs with the Secure Flow.

MTAs that support the insecure flows may be provisioned by a user, even if the service provider is using the Secure
Flows. Unauthorized provisioning of an MTA allows a user to provide their own configuration file. The MTA could
then be used to communicate normally with a CMS. Alternatively, un-authorized provisioning of an MTA could be
used to bypass service provider controls on secure software download (in the case of the S-MTA) and provide a
software image that has some perceived value (such as a security vulnerability).

With respect to the Secure Flow, support for SNMPv2c coexistence for network management operations also
introduces vulnerabilities to service providers that use the Secure Flow (unauthenticated TRAPs and INFORMs
could be sent). The best way to address these vulnerabilities is to disable SNMPv2c coexistence.

Therefore it is recommended, as always, that service providers use multiple layers of security to ensure that their
CMSes and back-office systems are protected against rogue MTAs.

7.1.1.1 Security Services

7.1.1.1.1 MTA-DHCP Server

Authentication and Message Integrity is desirable on this interface, in order to prevent denial-of-service attacks, that
cause an MTA to be improperly configured. Securing DHCP is considered an operational issue to be evaluated by
each network operator. It is possible to use access control through the local DHCP relay inside the local loop. IPsec
can be used for security between the DHCP relay and the DHCP server.

7.1.1.1.2 MTA-SNMP Manager

This section applies to all SNMPv3 messages between the MTA and an SNMPv3 Manager. Within the IPCablecom
architecture, the Provisioning Server includes the SNMPv3 Manager function, although SNMPv3 traffic occurs both
during and after the provisioning phase.

Authentication: the identity of the MTA that is sending configuration parameters and faults to the SNMP manager
must be authenticated, to prevent denial of service attacks. For example, the Provisioning Server may be tricked into
continuously creating bogus configuration files or into creating a configuration file based on incorrect MTA
capabilities that in effect disable that MTA.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 95

Also, during the provisioning sequence the MTA is told (via an SNMP Set) the parameters needed to find,
authenticate and decrypt its configuration file. If this SNMP Set were forged, it would disrupt the MTA provisioning
sequence.

Message Integrity: required to prevent denial of service attacks at the OSS and at the MTA – see the above
description of the denial of service attacks under authentication.

Confidentiality: may be used to protect sensitive MTA configuration data. IPCablecom currently does not specify
any such sensitive MTA parameters and so confidentiality is optional.

Access Control: write access to the MTA configuration parameters must be allowed only to the authorized OSS
users, to prevent denial of service/misconfiguration attacks. Read access can be enforced in conjunction with
confidentiality, which is optional (see above on confidentiality).

Note that DHCP is used to configure the MTA with the Kerberos realm name, which points it to a particular KDC.
DHCP also configures the MTA with the location of the Provisioning Server. Since IPCablecom currently does not
specify DHCP security, by faking DHCP responses it is possible to point MTAs to a wrong Provisioning Server and
to a wrong KDC that permits security establishment with that Provisioning Server. (The MTA would only
authenticate that wrong KDC if the CableLabs Service Provider Root CA signed the KDC certificate.) So, it is
possible to bypass access control, but the attack has to be orchestrated by another MSO that had also been certified
by IPCablecom.

7.1.1.1.3 MTA-Provisioning Server, via TFTP Server

Authentication: required to prevent denial-of-service attacks that cause an MTA to be improperly configured.

Message Integrity: required to prevent denial-of-service attacks that cause an MTA to be either improperly
configured or configured with old configuration data that was replayed.

Confidentiality: optional, it is up to the Provisioning Server to decide whether or not to encrypt the file.

Access Control: not required at the TFTP Server. If needed, MTA configuration file is encrypted with the
Provisioning Server-MTA shared key.

Non-Repudiation: not required.

7.1.1.2 Cryptographic Mechanisms

7.1.1.2.1 Call Flows MTA-15, 16, 17: MTA-SNMP Manager: SNMP Inform/Get Requests/Responses

All SNMP traffic between the MTA and the SNMP Manager in both directions is protected with SNMPv3 security
[27] during the Secure Provisioning process. IPCablecom requires that SNMPv3 message authentication is always
turned on with privacy being optional (see section 6.3). The only SNMPv3 encryption algorithm is currently DES-
CBC. This is the limitation of the SNMPv3 IETF standard, although stronger encryption algorithms are desirable.
See section 6.3 for the list of SNMPv3 cryptographic algorithms supported by IPCablecom.

7.1.1.2.2 Call Flow MTA-18: Provisioning Server-TFTP Server: Create MTA Config File

This section describes the MTA Config file creation in the Secure Provisioning Flow. In this flow, the Provisioning
Server builds an MTA device configuration file. This file MUST contain the following configuration info for each
endpoint (port) in the MTA:

• CMS name (FQDN format)

• Kerberos Realm for this CMS

• Telephony Service Provider Organization Name

• PKINIT Grace Period

This file MUST be authenticated and MAY be encrypted. If the configuration file is encrypted then the SNMPv3
privacy MUST be used in order to transport the configuration file encryption key securely. Once the Provisioning
Server builds the configuration file, it will perform the following steps:

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 96

1. The Provisioning Server decides to encrypt the file, it creates a configuration file encryption key and encrypts
the file with this key. The encryption algorithm MUST be the same as the one that is used for SNMPv3 privacy.
It then stores the key and the cipher. The file MUST be encrypted using the following procedure:

a. prepend the file contents with a random byte sequence, called a confounder. The size of the confounder
MUST be the same as the block size for the encryption algorithm. In the case of DES it is 8 bytes.

b. append random padding to the result in (a). The output of this step is of length that is a multiple of the
block size for the encryption algorithm.

c. encrypt the result in (b) using IV=0. The output of this step is the encrypted configuration file.
2. It creates a SHA-1 hash of the configuration file and stores it. If the file was encrypted, the hash is taken over

the encrypted file.

3. It sends the following items to the MTA in the SNMP SET in the flow MTA-19.

a. pktcMtaDevConfigKey, which is the configuration file encryption key MIB variable generated in step 1.
b. pktcMtaDevConfigHash, which is the SHA-1 of the configuration file MIB variable generated in step 2.
c. Name and location of the configuration file.

Steps 1 and 2 MUST occur only when a configuration file is created or an existing file is modified. If the
pktcMtaDevConfigKey is set, then the MTA MUST use this key to decrypt the configuration file. Otherwise, MTA
MUST assume that the file is not encrypted. SNMPv3 provides authentication when the pktcMtaDevConfigHash is
set and therefore the configuration file is authenticated indirectly via SNMPv3.

In the event that SNMPv3 privacy is selected during the key management phase, but is using a different algorithm
than the one that was selected to encrypt the configuration file (or the configuration file was previously in the clear),
the configuration file MUST be re-encrypted and the TFTP server directory MUST be updated with the new file.
Similarly, if the Provisioning Server decides not to encrypt the file this time, after it was previously encrypted, the
TFTP server directory MUST be updated with the new file.

MTA endpoints MAY also be configured for IP Telephony service while the MTA is operational. In that case the
same information that is normally assigned to an endpoint in a configuration file MUST be assigned with SNMP Set
commands.

7.1.1.2.3 Call Flows MTA-19, 20 and 21: Establish TFTP Server Location

This set of call flows is used to establish the IP address of the TFTP server from where the MTA will retrieve its
configuration file. Although flow MTA-19 is authenticated via SNMPv3, MTA-20 and 21 are not authenticated.

Flow MTA-21 allows for denial-of-service attacks, where the MTA is pointed to a wrong TFTP server (IP address).
The MTA cannot be fooled in accepting the wrong configuration file since checking the hash of the file
authenticates the file – this denial-of-service attack will result in failed MTA provisioning.

The denial-of-service threats, where responses to DNS queries are forged, are currently not addressed by
IPCablecom. It is mainly because DNS security (DNSSEC) is not yet available as a commercial product and would
cause significant operational difficulty in the conversion of the DNS databases.

7.1.1.2.4 Call Flows MTA-22, 23: MTA-TFTP Server: TFTP Get/Get Response

The TFTP get request is not authenticated and thus anyone can request an MTA configuration file. This file does not
contain any sensitive data and may be encrypted with the Provisioning Server-MTA shared key if the Provisioning
Server chooses to. In this case no one except the MTA can make use of this file.

This flow is open for a denial-of-service attack, where the TFTP server is made busy with useless TFTP-get
requests. This denial-of-service attack is not addressed at this time.

The TFTP get response retrieves a configuration file from the TFTP server. The contents of the configuration file are
listed in section 7.1.1.2.2.

7.1.1.2.5 Security Flows

For each CMS specified in the pktcMtaDevCmsTable table with pktcMtaDevCmsIpsecCtrl value set to true and
assigned to a provisioned MTA endpoint, the MTA MUST perform the following security flows after the

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 97

provisioning process and prior to any NCS message exchange. For each CMS specified in pktcMtaDevCmsTable
with pktcMtaDevCmsIpsecCtrl set to false, the MTA MUST NOT perform the following flows and MUST send and
receive NCS messages without IPsec (i.e., NCS packets are sent in the "clear").

Table 20. Post-MTA Provisioning Security Flows

Sec Flow Flow Description If Step Fails, Proceed Here
Get Kerberos tickets associated with each CMS with which the MTA communicates.
SEC-1 DNS SRV Request

The MTA requests the Telephony KDC host name for
the Kerberos realm.
This step MUST NOT be performed if the MTA already
possesses a valid ticket for the CMS.

SEC-1

SEC-2 DNS SRV Reply
Returns the Telephony KDC host name associated with
the provisioning REALM. If the KDC’s IP Address is
included in the Reply, proceed to SEC-5.
This step MUST NOT be performed if the MTA already
possesses a valid ticket for the CMS.

SEC-1

SEC-3 DNS Request
The MTA now requests the IP Address of the Telephony
KDC.
This step MUST NOT be performed if the MTA already
possesses a valid ticket for the CMS.

SEC-1

SEC-4 DNS Reply
The DNS Server returns the IP Address of the
Telephony KDC.
This step MUST NOT be performed if the MTA already
possesses a valid ticket for the CMS.

SEC-1

SEC-5 AS Request
For each different CMS assigned to voice
communications endpoints, the MTA requests a TGT or
a Kerberos Ticket for the CMS by sending a PKINIT
REQUEST message to the KDC. This request contains
the MTA Device Certificate and the MTA FQDN.
This step MUST NOT be performed if the MTA already
possesses a valid ticket for the CMS.

Report alarm. Abort
establishment of signaling
security.

SEC-5a MTA FQDN Request
The KDC requests the MTA’s FQDN from the
Provisioning Server.
This step will not occur if the MTA skips SEC-5.

SEC-5b MTA FQDN Reply
The Provisioning Server replies to the KDC request with
the MTA’s FQDN.
This step will not occur if the MTA skips SEC-5.

SEC-6 AS Reply
The KDC sends the MTA a PKINIT REPLY message
containing the requested Kerberos Ticket.
This step MUST NOT be performed if the MTA already
possesses a valid ticket for the CMS.

Proceed to SEC-5 or abort
signaling security depending
upon error conditions.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 98

Sec Flow Flow Description If Step Fails, Proceed Here
SEC-7 TGS Request

In the case where the MTA obtained a TGT in SEC-6, it
now obtains the Kerberos ticket for the TGS request
message.
This step MUST NOT be performed if the MTA already
possesses a valid ticket for the CMS.

Report alarm. Abort
establishment of signaling
security.

SEC-8 TGS Reply
Response to TGS Request containing the requested
CMS Kerberos Ticket.
This step MUST NOT be performed if the MTA already
possesses a valid ticket for the CMS.

Proceed to SEC-7/SEC-5 or
abort signaling security
depending upon error
conditions.

SEC-9 AP Request
The MTA requests a pair of IPsec simplex Security
Associations (inbound and outbound) with the assigned
CMS by sending the assigned CMS an AP REQUEST
message containing the CMS Kerberos Ticket.

Report alarm. Abort
establishment of signaling
security.

SEC-10 AP Reply
The CMS establishes the Security Associations and then
sends an AP REPLY message with the corresponding
IPsec parameters. The MTA derives IPsec keys from the
subkey in the AP Reply and establishes IPsec SAs.

Proceed to SEC-9/SEC-
7/SEC-5 or abort signaling
security depending upon
error conditions.

Several tables in the MTA MIB are used to control security flows SEC-1 through SEC-10 (see Table 20).

The CMS table (pktcMtaDevCmsTable) and the realm table (pktcMtaDevRealmTable) are used for managing the
MTA security signaling. The realm table defines the domains for the CMSes. The CMS table defines the CMSes
within the domains. An endpoint is associated with one CMS at any given time. The following restrictions MUST be
adhered to:

1. The realm table in the configuration file MUST at a minimum include an entry for the realm that is identified in
DHCP option 122, suboption 6.

2. There MUST be a realm table entry for each CMS table entry. Multiple CMS table entries MAY utilize the
same realm table entry.

3. Each MTA endpoint defined in the NCS endpoint table (pktcNcsEndPntConfigTable) MUST be configured
with a CMS FQDN (pktcNcsEndPntConfigCallAgentId) that is also present in the CMS table
(pktcMtaDevCmsFqdn).

4. All members of a CMS cluster defined by the same FQDN MUST use the same configuration for establishing
Security Associations as defined in pktcMtaDevCmsTable.

5. If NCS signaling selects a CMS (with an N: parameter selection) that is not defined by an entry in the CMS
table, the same realm and CMS parameters, with the exception of the CMS FQDN and
pktcMtaDevCmsIpsecCtrl, are used as defined in the current CMS table entry. The pktcMtaDevCmsIpsecCtrl
flag for the new CMS MUST be set to true.

The use of the security-relevant MIB tables immediately following step MTA-25 is as follows:

1. The MTA finds a list of CMSes with which it needs to establish IPsec SAs. This list MUST include every CMS
that is assigned to a configured endpoint, as specified by the NCS MIB table pktcNcsEndPointConfigTable.
This list of CMSes MUST include only CMSes that are listed in the pktcMtaDevCmsTable.

2. For each CMS in the above list, the MTA MUST attempt to establish IPsec Security Associations as follows:

a. Find the corresponding CMS table entry.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 99

b. If the MTA doesn’t already possess a valid ticket for the specified CMS, use the
pktcMtaDevCmsKerbRealmName parameter in the CMS table entry to index into pktcMtaDevRealmTable.
Then, using the parameters associated with that realm perform steps SEC-1 through SEC-6 and optionally
SEC-7 and SEC-8 in order to obtain the desired CMS ticket.

c. Perform IPsec key management according to flows SEC-9 and SEC-10. This step MAY occur at any time
after step b. above, but it must occur before any signaling messages are exchanged with that CMS.
The CMS table entry contains various timing parameters used in steps SEC-9 and SEC-10. In the case of
time outs or other errors, the MTA may retry using the timing parameters specified in the CMS table entry.

The above steps MUST also apply when an additional MTA endpoint is activated (see [4]) or when an
endpoint is configured (via SNMP sets) for a new CMS in the NCS MIB (see [26]).

3. Any time before an MTA endpoint sends a signaling message to a particular CMS, it MUST ensure that the
respective Security Association is present. If the MTA is unable to establish IPsec SAs with a CMS that is
associated with a configured endpoint (by the NCS MIB), it MUST set the NCS MIB variable
pktcNcsEndPntStatusError to noSecurityAssociation (2).

After the initial establishment of the IPsec Security Associations for CMSes, the MTA MIB is utilized in subsequent
key management as follows:

1. When the MTA receives a Wake Up message, it MUST respond with an AP Request when the corresponding
CMS FQDN is found in the pktcMtaDevCmsTable and MUST NOT respond otherwise.

Note that establishment of IPsec Security Associations due to a Wake Up does not result in any call signaling traffic
between the MTA and the CMS.

7.1.1.2.5.1 Call Flows SEC-5,6: Get a Kerberos Ticket for the CMS

The MTA uses PKINIT protocol to get a Kerberos Ticket for the specified CMS (see section 6.4.3). After the KDC
receives a ticket request, it retrieves the MTA FQDN from the provisioning server so that it can verify the request
before replying with a ticket. The Telephony KDC issues the Kerberos Ticket for a group of one or more CMSes
uniquely identified with the pair (Kerberos Realm, CMS Principal Name).

In the event that different MTA ports are configured for a different group of CMSes, the MTA MUST obtain
multiple Kerberos Tickets by repeating these call flows for each CMS. Note that there is no requirement that the
MTA obtain all the tickets from a single KDC.

7.1.1.2.5.2 Call Flows SEC-7,8,9: Establish IPsec SAs with the CMS

The MTA uses the Kerberos Ticket to establish a pair of simplex IPsec Security Associations with the given CMS.
In the event that different MTA ports are configured with different CMS FQDN names, multiple pairs of SAs will
be established (one set for each CMS).

When a single Kerberos ticket is issued for clustered Call Agents, it is used to establish more than one pair of IPsec
SAs.

A CMS FQDN MAY translate into a list of multiple IP addresses, as would be the case with the NCS clustered Call
Agents. In those cases, the MTA MUST initiate Kerberized key management with one of the IP addresses returned
by the DNS Server. The MTA MAY also establish SAs with the additional CMS IP addresses.

Additional IPsec SAs with the other IP addresses MAY be established later, as needed (e.g., the current CMS IP
address does not respond).

7.1.1.3 Key Management

7.1.1.3.1 MTA – SNMP Manager

Key Management for the MTA-Provisioning SNMPv3 user MUST use the Kerberized key management protocol as
it is specified in section 6.5.4. The MTA and the Provisioning Server MUST support this key management protocol.
Additional SNMPv3 users MAY be created with the standard SNMPv3 cloning method [27] or with the same
Kerberized key management protocol.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 100

In order to perform Kerberized key management, the MTA must first locate the KDC. It retrieves the provisioning
realm name from DHCP and then uses a DNS SRV record lookup to find the KDC FQDN(s) based on the realm
name (see section 6.4.5.1). When there is more than one KDC (DNS SRV record) found, DNS assigns a priority
(and possibly a weighting) to each one. The MTA will choose a KDC based on the DNS priority and weight labeling
and will go through the list until it finds a KDC that is able to respond.

7.1.1.3.2 MTA – TFTP Server

The optional encryption key for the MTA configuration file is passed to the MTA with an SNMP Set command (by
the Provisioning Server) shown in the provisioning flow MTA-19. SNMPv3 security is utilized to provide message
integrity and privacy. In the event that SNMPv3 privacy is not enabled, the MTA configuration file MUST NOT be
encrypted and the file encryption key MUST NOT be passed to the MTA.

The encryption algorithm used to encrypt the file MUST be the same as the one used for SNMPv3 privacy. The
same file encryption key MAY be re-used on the same configuration file while the MTA configuration file contents
are unchanged. However, if the MTA configuration file changes or if a different encryption algorithm is selected for
SNMPv3 privacy, the Provisioning Server MUST generate a new encryption key, MUST re-encrypt the
configuration file and MUST update the TFTP Server with the re-encrypted file.

7.1.1.4 MTA Embedded Keys
The MTA device MUST be manufactured with a public/private RSA key pair and an X.509 device certificate that
MUST be different from the BPI+ device certificate.

7.1.1.5 Summary Security Profile Matrix – Device Provisioning
The matrix shown in Table 21 applies only to the Secure Provisioning Flow and SNMPv3.

Table 21. Security Profile Matrix – MTA Device Provisioning

 SNMP TFTP (MTA – TFTP Server)

authentication Yes Yes: authentication of source of
configuration data.

access control Yes: write access to MTA
configuration is limited to
authorized SNMP users.
Read access can also be
limited to the valid users when
confidentiality is enabled.

Yes: write access to the TFTP server must be
limited to the Provisioning Server but is out
of scope for IPCablecom. Read access can be
optionally indirectly enabled when the MTA
configuration file is encrypted.

integrity Yes Yes
confidentiality Optional Optional (of MTA configuration information

during the TFTP-get)
non-repudiation No No
security
mechanisms

SNMPv3 authentication and
privacy. Kerberized key
management protocol defined
by IPCablecom.

Hash of the MTA configuration file is sent to
the MTA over SNMPv3, providing file
authentication. When the file is encrypted,
the key is also sent to the MTA over
SNMPv3 (with SNMPv3 encryption turned
on).

7.1.2 Subscriber Enrollment
The subscriber enrollment process establishes a permanent customer billing account that uniquely identifies the
MTA to the CMS via the endpoint ID, which contains the MTA’s FQDN. The billing account is also used to identify
the services subscribed to by the customer for the MTA.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 101

Subscriber enrollment MAY occur in-band or out-of-band. The actual specification of the subscriber enrollment
process is out of scope for IPCablecom and may be different for each Service Provider. The device provisioning
procedure described in the previous section allows the MTA to establish IPsec Security Associations with one or
more Call Agents, regardless of whether or not the corresponding subscriber had been enrolled.

As a result, when subscriber enrollment is performed in-band, a communication to a CSR (or to an automated
subscriber enrollment system) is protected using the same security mechanisms that are used to secure all other
voice communication.

During each communication setup (protected with IPsec ESP), the CMS MUST check the identity of an MTA
against its authorization database to validate which voice communications services are permitted. If that MTA does
not yet correspond to an enrolled subscriber, it will be restricted to permitting a customer to contact the service
provider to establish service ("customer enrollment"). Some additional services, such as communications with
emergency response organizations (e.g., 911), may also be permitted in this case. Since in-band customer enrollment
is based on standard security provided for call signaling and media streams, no further details are provided in this
section. Refer to section 7.6 and to section 6.6 on media streams.

7.2 Quality of Service (QoS) Signaling

7.2.1 Dynamic Quality of Service (DQoS)

7.2.1.1 Reference Architecture for Embedded MTAs

CMS/Gate
Controller

pkt-q3

CM
CM

MTA

Record
Keeping
Server

Record
Keeping
Server

CMTS CMTS

CMS/Gate
Controller

pkt-q5 pkt-q5

pkt-q4

pkt-q2

pkt-q7 pkt-q3

pkt-q1
pkt-q2

pkt-q4

pkt-q1

pkt-q6pkt-q6

MTA

Figure 11. QoS Signaling Interfaces in IPCablecom Network

7.2.1.2 Security Services

7.2.1.2.1 CM-CMTS DOCSIS 1.1 QoS Messages

Refer to the DOCSIS 1.1 RFI spec [8].

7.2.1.2.2 Gate Controller – CMTS COPS Messages

Authentication, Access Control and Message Integrity: required to prevent QoS theft and denial-of-service
attacks.

Confidentiality: required to keep customer information private.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 102

7.2.1.3 Cryptographic Mechanisms

7.2.1.3.1 CM-CMTS DOCSIS 1.1 QoS Messages

The DOCSIS 1.1 QoS messages are specified in the DOCSIS 1.1 RFI spec [8].

7.2.1.3.1.1 QoS Service Flow

A Service Flow is a DOCSIS MAC-layer transport service that provides unidirectional transport of packets either to
upstream packets transmitted by the CM or to downstream packets transmitted by the CMTS. A service flow is
characterized by a set of QoS Parameters such as latency, jitter, and throughput assurances. In order to standardize
operation between the CM and CMTS, these attributes include details of how the CM requests mini-slots and the
expected behavior of the CMTS upstream scheduler.

DOCSIS defines a Classifier, which consists of some packet matching criteria (IP source address, for example), a
Classifier priority, and a reference to a service flow. If a packet matches the specified packet matching criteria, it is
then delivered on the referenced service flow.

Downstream Classifiers are applied by the CMTS to packets it is transmitting, and Upstream Classifiers are applied
at the CM and may be applied at the CMTS to police the classification of upstream packets.

The network can be vulnerable to IP packet attacks; i.e., attacks stemming from an attacker using another MTA's IP
source address and flooding the network with the packets intended for another MTA's destination address. A CMTS
controlling downstream service flows will limit an MTA's downstream bandwidth according to QoS allocations. If
the CMTS is flooded from the backbone network with extra packets intended for one of its MTAs, packets for that
MTA may be dropped to limit the downstream packet rate to its QoS allocation. The influx of the attacker’s packets
may result in the dropping of good packets intended for the destination MTA.

To thwart this type of network attack, access to the backbone network should be controlled at the entry point. This
can be accomplished using a variety of QoS Classifiers, but is most effective when the packet source is verified by
its source IP address. This will limit the ability of a rogue source to flood the network with unauthorized IP packets.

CMTSes SHOULD use classifiers to police upstream packets (including verifying source IP addresses) arriving over
the HFC access network.

For more information regarding the use of packet Classifiers, refer to the DOCSIS 1.1 RFI spec [8].

7.2.1.3.2 Gate Controller – CMTS COPS Messages

To download a QoS policy for a particular communications connection, the Gate Controller function in the CMS
must send COPS messages to the CMTS. These COPS messages MUST be both authenticated and encrypted with
IPsec ESP. Refer to section 6.1.2 on the details of how IPsec ESP is used within IPCablecom and for the list of
available ciphersuites.

7.2.1.4 Key Management

7.2.1.4.1 Gate Controller – CMTS COPS Messages

Key management for this COPS interface is either IKE or Kerberos. Implementations MUST support IKE with pre-
shared keys. Implementations MAY support IKE with X.509 certificates and they MAY support Kerberos using
symmetric keys. For more information on the IPCablecom use of IKE, refer to section 6.2.2. For more information
on the IPCablecom use of Kerberos with symmetric keys, refer to sections 6.4.3 and 6.5.

When the Gate Controller detects a failure of all COPS connections associated with a particular outgoing IPsec SA,
it MUST delete all associated SAs (IKE and IPsec SAs if IKE is used as the Key management protocol or only IPsec
SAs if Kerberos is used as the Key management protocol).

Subsequently, every N times (1<= N <= 10) that the Gate Controller tries to recover the connection, the SAs MUST
be removed.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 103

7.2.1.4.2 Security Profile Matrix Summary
Table 22. Security Profile Matrix – DQoS

 COPS
(CMTS-CMS)

Authentication Yes
Access control Yes
Integrity Yes
Confidentiality yes
Non-repudiation No
Security mechanisms IPsec with encryption and message integrity

IKE or Kerberos

7.3 Billing System Interfaces

7.3.1 Security Services

7.3.1.1 CMS-RKS Interface
Authentication, Access Control and Message Integrity: required to prevent service theft and denial-of-service
attacks. Want to insure that the billing events reported to the RKS are not falsified.

Confidentiality: required to protect subscriber information and communication patterns.

7.3.1.2 CMTS-RKS Interface

Authentication, Access Control and Message Integrity: required to prevent service theft and denial-of-service
attacks. Want to insure that the billing events reported to the RKS are not falsified.

Confidentiality: required to protect subscriber information and communication patterns. Also, effective QoS
information and network performance is kept secret from competitors.

7.3.1.3 MGC – RKS Interface

Authentication, Access Control and Message Integrity: required to prevent service theft and denial-of-service
attacks. Want to insure that the billing events reported to the RKS are not falsified.

Confidentiality: required to protect subscriber information and communication patterns.

7.3.2 Cryptographic Mechanisms
Both message integrity and privacy MUST be provided by IPsec ESP, using any of the ciphersuites that are listed in
section 6.1.2.

RADIUS itself defines MD5-based keyed MAC for message integrity at the application layer. And, there does not
appear to be a way to turn off this additional integrity check at the application layer. For IPCablecom, the key for
this RADIUS MAC MUST always be hardcoded to the value of 16 ASCII 0s. This in effect turns the RADIUS
keyed MAC into an MD5 hash that can be used to protect against transmission errors but does not provide message
integrity. No key management is needed for RADIUS MACs.

Billing event messages contain an 8-octet Element ID of the CMS, CMTS or the MGC. The RKS MUST verify each
billing event by ensuring that the specified Element ID correctly corresponds to the IP address. This check is done
via a lookup into a map of IP addresses to Element IDs. Refer to section 7.3.3 on how this map is maintained. A
combined element (such as a combined CMS/MGC) MAY use the same IP address and Security Association to

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 104

convey Event Messages from both elements. Additionally, both elements may use the same Element ID. Refer to
section 7.3.3.1 for information on how to maintain a map of multiple elements and Element IDs.

7.3.2.1 RADIUS Server Chaining

RADIUS servers may be chained. This means that when the local RADIUS server that is directly talking to the CMS
or CMTS client is not able to process a message, it forwards it to the next server in the chain.

IPCablecom specifies security mechanisms only on the links to the local RADIUS server. IPCablecom also requires
authentication, access control, message integrity and privacy on the interfaces between the chained RADIUS
servers, but the corresponding specifications are outside of the scope of IPCablecom.

Key Management (in the following section) applies to the local RADIUS Server/RKS only.

7.3.3 Key Management

7.3.3.1 CMS – RKS Interface
The CMS and the RKS MUST negotiate a shared secret (CMS-RKS Secret) using IKE or Kerberos with symmetric
keys (implementations MUST support IKE with pre-shared keys; they MAY support IKE with X.509 certificates
and they MAY support Kerberos using symmetric keys). For more information on the IPCablecom use of IKE, refer
to section 6.2.2. For more information on the IPCablecom use of Kerberos with symmetric keys, refer to sections
6.4.3 and 6.5.

The key management protocol MUST run asynchronous to billing event generation, and will guarantee that there is
always a valid, non-expired CMS-RKS Secret.

An RKS MUST maintain a mapping between an IP address and an Element ID for each host with which it has IPsec
Security Associations. How this mapping is created depends on the IPsec key management protocol:

• IKE with Pre-Shared Keys. One way to implement this mapping is to provide a local database of which
Element ID(s) are associated with the source IP address.

• IKE with Certificates. As specified in section 8.2.3.4.3, a certificate of a server that sends billing event
messages to an RKS contains its Element ID(s) in the CN attribute of the distinguished name. During IKE phase
1, the RKS MUST save a mapping between the IP address and its Element ID(s) that is contained in the
certificate.

• Kerberized Key Management. As specified in section 6.4.5.5, a principal name of each server that reports
billing event messages to the RKS includes its Element ID(s). After an RKS receives and validates an AP
Request message, it MUST save a mapping between the IP address and its Element ID(s) that is contained in the
principal name.

When an event message arrives at the RKS, the RKS MUST retrieve a source IP address based on the Element ID,
using the mapping established during key management. The RKS MUST ensure that this address is the same as the
source IP address in the IP packet header.

7.3.3.2 CMTS – RKS Interface

The CMTS and the RKS MUST negotiate a shared secret (CMTS-RKS Secret) using IKE or Kerberos
(implementations MUST support IKE with pre-shared keys; they MAY support IKE with X.509 certificates and
they MAY support Kerberos using symmetric keys). For more information on the IPCablecom use of IKE, refer to
section 6.2.2. For more information on the IPCablecom use of Kerberos with symmetric keys, refer to sections 6.4.3
and 6.5.

The key management protocol MUST be running asynchronous to billing event generation, and will guarantee that
there is always a valid, non-expired CMTS-RKS Secret.

An RKS maintains a mapping between an IP address and an Element ID for each host with which it has IPsec
Security Associations, as specified in section 7.3.3.1. This includes the CMTS.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 105

When a billing event arrives at the RKS, the RKS MUST retrieve a source IP address based on the Element ID,
using the mapping established during key management. The RKS MUST ensure that this address is the same as the
source IP address in the IP packet header.

7.3.3.3 MGC – RKS Interface
The MGC and the RKS MUST negotiate a shared secret (MGC-RKS Secret) using IKE or Kerberos
(implementations MUST support IKE with pre-shared keys; they MAY support IKE with X.509 certificates and
they MAY support Kerberos using pre-shared keys). For more information on the IPCablecom use of IKE, refer to
section 6.2.2. For more information on the IPCablecom use of Kerberos with symmetric keys, refer to sections 6.4.3
and 6.5.

The key management protocol MUST be running asynchronous to billing event generation, and will guarantee that
there is always a valid, non-expired MGC-RKS Secret.

An RKS maintains a mapping between an IP address and an Element ID for each host with which it has IPsec
Security Associations, as specified in section 7.3.3.1. This includes the MGC.

When an event message arrives at the RKS, the RKS MUST retrieve a source IP address based on the Element ID,
based on the mapping established during key management. The RKS MUST ensure that this address is the same as
the source IP address in the IP packet header.

7.3.4 Billing System Summary Security Profile Matrix
Table 23. Security Profile Matrix – RADIUS

 RADIUS Accounting
(CMS - RADIUS

Server/RKS)

RADIUS Accounting
(CMTS – RADIUS

Server/RKS)

RADIUS Accounting
(MGC – RADIUS

Server/RKS)
Authentication yes yes yes
Access control yes yes yes
Integrity yes yes yes
Confidentiality yes yes yes
Non-repudiation no no no
Security
mechanisms

IPsec ESP with
encryption and message
integrity enabled.
Key management using
IKE or Kerberos

IPsec ESP with encryption
and message integrity
enabled
Key management using
IKE or Kerberos

IPsec ESP with
encryption and message
integrity enabled
Key management using
IKE or Kerberos

7.4 Call Signaling

7.4.1 Network Call Signaling (NCS)

7.4.1.1 Reference Architecture
Figure 12 shows the network components and the various interfaces that are discussed in this section.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 106

Figure 12. NCS Reference Architecture

Figure 12 shows a CMS containing a cluster of Call Agents, which are identifiable by one CMS FQDN. It also
shows, even though this is not a likely scenario in early deployments, that different CMSes could potentially manage
different endpoints in a single MTA.

The security aspects of interfaces pkt-s3 and pkt-s4 (RTP bearer channel and RTCP) are described in section 6.6 of
this document.

7.4.1.2 Security Services

Authentication: signaling messages should be authenticated, in order to prevent a third party masquerading as
either an authorized MTA or CMS.

Confidentiality: NCS messages carry dialed numbers and other customer information, which must not be disclosed
to a third party. Thus confidentiality of signaling messages should be required. The signaling messages carry media
stream keying material that must be kept private not only on each signaling hop, but also end-to-end between the
initiating and target CMSes, to avoid exposure at SIP signaling proxies.

Message integrity: should be assured in order to prevent tampering with signaling messages – e.g., changing the
dialed numbers.

Access control: Services enabled by the NCS signaling should be made available only to authorized users – thus
access control is required at the CMS.

7.4.1.3 Cryptographic Mechanisms
IPsec ESP MUST be used to secure the MTA-CMS interface. IPsec keys MUST be derived using the mechanism
described in section 6.5.3.1.

7.4.1.3.1 MTA-CMS Interface

Each signaling message coming from the MTA and containing the MTA domain name (included in the NCS
endpoint ID field) must be authenticated by the CMS. This domain name is an application-level NCS identifier that
will be used by the Call Agent to associate the communication with a paying subscriber. In order to perform this
authentication, the CMS MUST maintain an IP address to FQDN map for each MTA IP address that has a current
SA. This map MUST be built during the key management process described in the following section and does not
need to reside in permanent storage.

CMS a
CMS b

(Call Agent Cluster)

MTA 1

MTA 2

pkt-s5: NCS

pkt-s3: RTP

pkt-s4: RTCP

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 107

7.4.1.3.2 CMS-CMS, CMS-SIP Proxy and SIP Proxy – SIP Proxy Interfaces

The text in this section has been removed because it is not within the scope of IPCablecom 1.0.

7.4.1.3.3 End-to-End Protection of Media Stream Keying Material

The text in this section has been removed because it is not within the scope of IPCablecom 1.0.

7.4.1.4 Key Management

7.4.1.4.1 MTA-CMS Key Management

The MTA MUST use Kerberos with PKINIT to obtain a CMS service ticket (see section 6.4.3). The MTA
SHOULD first obtain a TGT (Ticket Granting Ticket) via the AS Request/AS Reply exchange with the KDC
(authenticated with PKINIT). In the case that the MTA obtained a TGT, it performs a TGS Request/TGS Reply
exchange to obtain the CMS service ticket (see section 6.4.4).

After the MTA has obtained a CMS ticket, it MUST execute a Kerberized key management protocol (that utilizes
the CMS ticket) with the CMS to create SAs for the pkt-s10 interface. This Kerberized key management protocol is
specified in section 6.5. Section 6.5 also describes the mechanism to be deployed to handle timed-out IPsec keys and
Kerberos tickets. The mechanism for transparently handling key switchover from one key lifetime to another key
lifetime is also defined.

The key distribution and timeout mechanism is not linked to any specific NCS message. Rather, the MTA will
obtain the Kerberos ticket from the KDC when started and will refresh it based on the timeout parameter. Similarly,
the MTA will obtain the sub-key (and thus IPsec ESP keys) based on the IPsec timeout parameters. In addition,
when the IPsec ESP keys are timed out and the MTA needs to transmit data to the CMS, it will perform key
management with the CMS and obtain the new keys. It is also possible for the IPsec SAs to expire at the CMS while
it has data to send to the MTA. In this case, section 6.5.3.5.3 describes the technique for the CMS to initiate key
management and establish new Security Associations.

7.4.1.4.1.1 Call Agent Clustering

At the time that the CMS receives a Kerberos ticket for establishing an IPsec SA, it MUST extract the MTA FQDN
from the MTA principal name in the ticket and map it to the IP address. This map is later used to authenticate the
MTA endpoint ID in the NCS signaling messages.

In the case a CMS, or an application server, is constructed as a cluster of Call Agents with different IP addresses, all
Call Agents should share the same service key for decrypting a Kerberos ticket. Thus the MTA will need to execute
single PKINIT Request/Reply sequence with the KDC and multiple AP Request/Reply sequence for each Call Agent
in the cluster. The Kerberos messages are specified in section 6.4.4.

Optimized key management is specified for the case when in the middle of a communication, a clustered Call Agent
sends a message to an MTA from a new IP address, where it doesn’t yet have a IPsec SA with that MTA (see
section 6.5.2.1).

In this optimized approach, the CMS sends a Rekey message instead of the Wake Up. This Rekey message is
authenticated with a SHA-1 HMAC, using a Server Authentication Key, derived from a session key used to encrypt
the last AP Reply sent from the same CMS (or another CMS with the same Kerberos Principal Name).

Additionally, the Rekey message includes IPsec parameters, to avoid the need for the AP Reply message. The MTA
responds with a different version of the AP Request that includes the MTA-CMS Secret, normally sent by the CMS
in the AP Reply. As a result, after the MTA responds with the AP Request, a new IPsec SA can be established with
no further messages. The total price for establishing a new SA with this optimized approach is a single roundtrip
time. This is illustrated in Figure 13:

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 108

MTA

Call Agent
Cluster

IP1

IP2

IP3

(1) AP Request

(2) AP Reply (includes K SRA)

(3) RSIP (NCS over IPSEC)

(4) REKEY + new IPSEC SA params + HMAC

(5) AP Request (includes MTA-CMS Secret)

(6) NCS Signaling Msg (over IPSEC)

Server
Authen
tication

Key
KSRA

sh
ar

ed
 a

cr
os

s
th

e
cl

us
te

r

Both MTA and CMS (at IP3) generate IPSEC keys needed
to establish Security Association SA3.

Figure 13. Key Management for NCS Clusters

In this figure, an NCS clustered Call Agent suddenly decides to send an NCS message from a new IP address that
didn't previously have any SA established with that MTA.

The first Security Association SA1 with CMS at IP1 was established with a basic AP Request / AP Reply exchange.
HMAC key KSRA for authenticating Rekey message from the CMS was derived from the session key used to encrypt
the AP Reply.

When a new SA3 needs to be established between the MTA and CMS at IP3, the key management is as follows:

(4) The CMS at IP3 sends a REKEY message, similar in functionality to the Wake Up message, but with a
significantly different content. It contains:

• IPsec parameters (also found in the AP Reply): SPI, selected ciphersuite, SA lifetime, grace period, and re-
establish flag. The purpose of adding these IPsec parameters to REKEY is to eliminate the need for the
subsequent AP Reply message.

• SHA-1 HMAC using KSRA

(5) AP Request that includes the MTA-CMS secret, normally sent in the AP Reply message. This is a legal Kerberos
mode, where the key is contained in the AP Request and AP Reply is not used at all.

For more details, refer to section 6.5.3.

7.4.1.4.1.2 MTA Controlled by Multiple CMSes

In the case a single MTA is controlled by multiple CMSes and each CMS is associated with a different Kerberos
realm, the MTA will need to execute multiple PKINIT Request/Reply exchanges with the KDC, one for each realm,
optionally followed by a TGS Request/Reply exchanges. Then, an MTA would execute multiple AP Request/Reply
exchanges in order to create the Security Associations with the individual CMSs.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 109

7.4.1.4.1.3 Transferring from one CMS to Another via NCS signaling

When control of an MTA endpoint is transferred from one CMS to another via NCS signaling, the following steps
are taken:

1. The new CMS might not have been included in the CMS table. In that case, the corresponding table entry
MUST be locally created. Refer to section 7.1.1.2.5 for instructions on how to create the new CMS table entry.

2. If the MTA doesn’t already have IPsec SAs established with this CMS (e.g., via an earlier Wake Up), it MUST
attempt to establish them at this time.

3. If the MTA now possesses valid IPsec Security Associations with the new CMS, the NCS signaling software is
notified and the Security Association can be utilized. Further signaling traffic for this affected endpoint related
to the prior CMS Security Association MUST NOT be sent.

7.4.1.4.2 CMS-CMS, CMS-SIP Proxy, SIP Proxy-SIP Proxy Key Management

The text in this section has been removed because it is not within the scope of IPCablecom 1.0.

7.4.2 Call Signaling Security Profile Matrix
Table 24. Security Profile Matrix – Network Call Signaling

 MTA-CMS

authentication optional
access control optional
integrity optional
confidentiality optional
non-repudiation no
security mechanisms IPsec ESP with encryption and message integrity enabled

Authentication via Kerberos with PKINIT
Kerberized key management defined by IPCablecom
Security may be disabled through the provisioning process.

7.5 PSTN Gateway Interface

7.5.1 Reference Architecture
An IPCablecom PSTN Gateway consists of three functional components:

• a Media Gateway Controller (MGC) which may or may not be part of the CMS,

• a Media Gateway (MG),

• a Signaling Gateway (SG).

These components are described in detail in [5].

7.5.1.1 Media Gateway Controller

The Media Gateway Controller (MGC) is the PSTN gateway’s overall controller. The MGC receives and mediates
call-signaling information between the IPCablecom and the PSTN domains (from the SG), and it maintains and
controls the overall state for all communications.

7.5.1.2 Media Gateway
Media Gateways (MG) provide the bearer connectivity between the PSTN and the IPCablecom IP network.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 110

7.5.1.3 Signaling Gateway
IPCablecom provides support for SS7 signaling gateways. The SG contains the SG to MGC interface. Refer to [5]
for more detail on signaling gateways.

The SS7 Signaling Gateway performs the following security-related functions:

• Isolates the SS7 network from the IP network. Guards the SS7 network from threats such as Information
Leakage, integrity violation, denial-of-service, and illegitimate use.

• Provides mechanism for certain trusted entities ("TCAP Users") within the IPCablecom network, such as Call
Agents, to query external PSTN databases via TCAP messages sent over the SS7 network.

7.5.2 Security Services

7.5.2.1 MGC – MG Interface
Authentication: Both the MG and the MGC must be authenticated, in order to prevent a third party masquerading
as either an authorized MGC or MG.

Access Control: MG resources should be made available only to authorized users – thus access control is required
at the MG.

Integrity: must be assured in order to prevent tampering with the TGCP signaling messages – e.g., changing the
dialed numbers.

Confidentiality: TGCP signaling messages carry dialed numbers and other customer information, which must not
be disclosed to a third party. Thus confidentiality of the TGCP signaling messages is required.

7.5.2.2 MGC – SG Interface
Authentication: signaling messages must be authenticated, in order to prevent a third party masquerading as either
an authorized MGC or SG.

Access Control: Services enable by the NCS signaling should be made available only to authorized users – thus
access control is required at the MGC.

Integrity: must be assured in order to prevent tampering with the signaling messages – e.g., changing the dialed
numbers.

Confidentiality: NCS messages carry dialed numbers and other customer information, which must not be disclosed
to a third party. Thus confidentiality of signaling messages is required.

7.5.2.3 CMS – SG Interface

The text in this section has been removed because it is not within the scope of IPCablecom 1.0.

7.5.3 Cryptographic Mechanisms

7.5.3.1 MGC – MG Interface

IPsec ESP MUST be used to both authenticate and encrypt the messages from MGC to MG and vice versa. Refer to
section 6.1.2 for details of how IPsec ESP is used within IPCablecom and for the list of available ciphersuites.

7.5.3.2 MGC – SG Interface

IPsec ESP MUST be used to both authenticate and encrypt the messages from MGC to SG and vice versa. Refer to
section 6.1.2 for details of how IPsec ESP is used within IPCablecom and for the list of available ciphersuites.

7.5.3.3 CMS – SG Interface

The text in this section has been removed because it is not within the scope of IPCablecom 1.0.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 111

7.5.4 Key Management

7.5.4.1 MGC – MG Interface
Key management for the MGC-MG interface is either IKE or Kerberos. Implementations MUST support IKE with
pre-shared keys. Implementations MAY support IKE with X.509 certificates and they MAY support Kerberos using
symmetric keys. For more information on the IPCablecom use of IKE, refer to section 6.2.2. For more information
on the IPCablecom use of Kerberos with symmetric keys, refer to sections 6.4.3 and 6.5.

The key management protocol ensures that there is always a valid, non-expired MGC – MG secret.

7.5.4.2 MGC – SG Interface
Key management for the MGC – SG interface is either IKE or Kerberos. Implementations MUST support IKE with
pre-shared keys. Implementations MAY support IKE with X.509 certificates and they MAY support Kerberos using
symmetric keys. For more information on the IPCablecom use of IKE, refer to section 6.2.2. For more information
on the IPCablecom use of Kerberos with symmetric keys, refer to sections 6.4.3 and 6.5.

The key management protocol ensures that there is always a valid, non-expired MGC – SG secret.

7.5.4.3 CMS – SG Interface

The text in this section has been removed because it is not within the scope of IPCablecom 1.0.

7.5.5 MGC-MG-CMS-SG Summary Security Profile Matrix
Table 25. Security Profile Matrix – TCAP/IP and TGCP

 TCAP-IP, ISUP-IP (MGC -
SG)

TGCP (MG – MGC) TCAP-IP (CMS -
SG)

authentication yes yes yes
access control yes yes yes
integrity yes yes yes
confidentiality yes yes yes
non-repudiation no no no
security
mechanisms

IPsec
IKE or Kerberos

IPsec
IKE or Kerberos

IPsec
IKE or Kerberos

7.6 Media Stream

This security specification allows for end-to-end ciphersuite negotiation, so that the communicating parties can
choose their preferred encryption and authentication algorithms for the particular communication.

7.6.1 Security Services

7.6.1.1 RTP
Authentication: End-to-end authentication cannot be required, because the initiating party may want to keep their
identity private. Optional end-to-end exchanges for both authentication and additional key negotiation are possible
but are outside of the scope for IPCablecom.

Encryption: The media stream between MTAs and/or MGs should be encrypted for privacy. Without encryption,
the stream is vulnerable to eavesdropping at any point in the network.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 112

Key Distribution via the CMS, a trusted third party, assures the MTA (or MG) that the communication was
established through valid signaling procedures, and with a valid subscriber. All this guarantees confidentiality (but
not authentication).

Message integrity: It is desirable to provide each packet of the media stream with a message authentication code
(MAC). A MAC ensures the receiver that the packet came from the legitimate sender and that it has not been
tampered with en route. A MAC defends against a variety of potential known attacks, such as replay, clogging, etc.
It also may defend against as-yet-undiscovered attacks. Typically, a MAC consists of 8 or more octets appended to
the message being protected. In some situations, where data bandwidth is limited, a MAC of this size is
inappropriate. As a tradeoff between security and bandwidth utilization, a short MAC consisting or 2 or 4 octets is
specified and selectable as an option to protect media stream packets. Use of the MAC during an end-to-end
connection is optional; whether it is used or not is decided during the end-to-end ciphersuite negotiation (see section
7.6.2.3.1).

Low complexity: Media stream security must be easy to implement. Of particular concern is a PSTN gateway,
which may have to apply security to thousands of media streams simultaneously. The encryption and MAC
algorithms used with the PSTN gateway must be of low complexity so that it is practical to implement them on such
a scale.

7.6.1.2 RTCP

Authentication: see the above section.

Encryption: within IPCablecom, RTCP messages are not permitted to contain the identity of the RTCP termination
endpoint. Snooping on RTCP messages, therefore, does not reveal any subscriber-specific information but may
reveal network usage and reliability statistics. RTCP encryption is optional.

Message integrity: RTCP signaling messages (e.g., BYE) can be manipulated to cause denial-of-service attacks and
alteration of reception statistics. To prevent these attacks, message integrity should be used for RTCP.

7.6.2 Cryptographic Mechanisms
MTAs and MGs MUST have an ability to negotiate a particular encryption and authentication algorithm. If media
security parameters are negotiated and RTP encryption is on (Transform ID is not RTP_ENCR_NULL), each media
RTP packet MUST be encrypted for privacy. If RTP encryption is on, encryption MUST be applied to the RTP
payload and MUST NOT be applied to the RTP header. Security MUST NOT be applied to RTP packets if the
negotiated RTP ciphersuite is AUTH_NULL and RTP_ENCR_NULL. Each RTP packet MAY include an optional
message authentication code (MAC).

The MAC algorithm can also be negotiated. The MAC computation MUST span the packet’s unencrypted header
and encrypted payload. The receiver MUST perform the same computation as the sender and it MUST discard the
received packet if the value in the MAC field does not match the computed value.

Keys for the encryption and MAC calculation MUST be derived from the End-End secret, which is exchanged
between sending and receiving MTA as described in section 7.6.2.3.1.

7.6.2.1 RTP Messages
Figure 14 shows the format of an encoded RTP packet. IPCablecom MUST adhere to the RTP packet format as
defined by RFC 1889 and RFC 1890 after being authenticated and decrypted (where the MAC bytes, if included, are
stripped off as part of the authentication).

The packet’s header consists of 12 or more octets, as described in [10]. The only field of the header that is relevant
to the encoding process is the timestamp field.

The RTP header has the [RFC-1889] format shown in Figure 14:

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 113

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
320 1

Timestamp
Synchronization Source (SSRC) Identifier

Contributing Source (CSRC) Identifier

V=2 P X CC M PT Sequence Number

Figure 14. RTP Packet Header Format

The first twelve octets are present in every RTP packet, while the list of CSRC identifiers is present only when
inserted by a mixer.

payload
(0 or more octets)

. . .
(4 or more octets)

. . .
(4 octets)

optional MAC
(0, 2, or 4 octets)

timestamp
(4 octets)

authenticated

encrypted

header

Figure 15. Format of Encoded RTP Packet

In IPCablecom, an RTP packet will carry compressed audio from the sender’s voice codec, or it will carry a message
describing one or more events such as a DTMF tone, trunk or line signaling, etc. For simplicity, the former is
referred to as a "voice packet" and the latter as an "event packet."

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 114

A voice packet’s payload consists of compressed audio from the sender’s voice codec. The length of the payload is
variable and depends on the voice codec as well as the number of codec frames carried by the packet.

An event packet’s payload consists of a message describing the relevant event or events. The format of the message
is outside the scope of this specification. The length of the payload is variable, but it will not exceed a known,
maximum value.

For either type of packet, the payload MUST be encrypted. If the optional MAC is selected, the MAC field is
appended to the end of the packet after the payload.

Parameters representing RTP packet characteristics are defined as follows:

• Nc, the number of octets in one frame of compressed audio. Each codec has a well-defined value of Nc. In the
case of a codec that encodes silence using short frames, Nc refers to the number of octets in a nonsilent frame.

• Nu, the number of speech samples in one frame of uncompressed audio. The number of speech samples
represented by a voice packet is an integral multiple of Nu.

• Nf, the frame number. The first frame of the sender’s codec has a value of zero for Nf. Subsequent frames
increment Nf by one. Nf increments regardless of whether a frame is actually transmitted or discarded as silent.

• Mf, the maximum number of frames per packet. Mf is determined by the codec’s frame rate and by the sender’s
packetization rate. The packetization rate is specified during communications setup. For NCS signaling, it is a
parameter in the LocalConnectionOptions – see [2].

For example, suppose the speech sample rate is 8,000 samples/sec, the frame rate is 10 msec, the packetization
rate is 30 msec, and the compressed audio rate is 16,000 bits/sec. Then Nc = 20, Nu = 80, Mf = 3, and Nf counts
the sequence 0, 1, 2.

Ne, the maximum number of bytes that might be sent within the duration of one codec frame. It is assumed that
an event packet can have a payload as large as that of a voice packet, but no longer. In the case of a block
cipher, the cryptographic keys do not change after midstream codec changes. When a codec change does not
require a corresponding key change, the value of Ne MUST be calculated as follows:

Ne = MAX { NcK } for K = 1, … N

Where N1, N2, … NK are the different frame sizes for codecs that are supported by a particular endpoint.

Otherwise, Ne = Nc , where Nc is the frame size for the current codec.

• Nm, the number of MAC octets. This value is 0, if the optional MAC is not selected; or 2 or 4, representing the
MAC size if the optional MAC is selected.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 115

Header Timestamp CSCI Payload MMH MAC

Nm
(bytes)

octet octet octet octet octet

S S S S S S S S S S S S S S S

Frame N (N-1) Frame N (1) Frame N (N+1)

Mf (Frames / Packet)

Nc (Octets / Frames)

Compressed Frame

Uncompressed Frame

Nu (Samples)

Figure 16. RTP Packet Profile Characteristics

7.6.2.1.1 RTP Timestamp

According to [RFC 1889], the timestamp field is a 32-bit value initially chosen at random. According to
IPCablecom, the timestamp MUST increment according to the codec sampling frequency. The timestamp in the
RTP header MUST reflect the sampling instant of the first octet in each RTP packet presented as offset from the
initial random timestamp value. The timestamp field MAY be used by the receiver to synchronize its decryption
process to the encryption process of the sender.

Based on the definition of the timestamp and the packet parameters described in the previous section, the timestamp
MUST equate to the value: ((Nf*Nu) + (RTP Initial Timestamp)) modulo 232, where Nf is the frame number of the
first frame included in the packet.

7.6.2.1.2 Packet Encoding Requirements

Prior to encoding the packets of an RTP stream, the sending MTA MUST derive the keys and parameters from the
End-End Secret it shares with the receiving MTA, as specified in section 7.6.2.3.3.

An MTA MUST derive two distinct sets of these quantities, one set for processing outgoing packets and another set
for processing incoming packets.

7.6.2.1.2.1 Encryption and MMH MAC Option

7.6.2.1.2.1.1 Deriving an MMH MAC Key

The MMH MAC Key size MUST be determined before generating the MMH MAC Key. The following algorithm
specifies how to derive the MMH MAC Key when being used with block ciphers.

MMH MAC key size = (Mf * Ne) + Nh + Nm - 2 + P

Where: Mf is the maximum number of frames per packet; Ne is maximum number of octets in one frame of
compressed audio; Nh is the maximum number of octets in the RTP header, as defined in section 7.6.2.1; and Nm is
the number of octets in the MAC. Therefore, (Mf * Ne) + Nh represents the maximum size of an RTP packet, and Nm
– 2 represents the additional two octets that are added to the key size when a four octet MMH MAC is used. (The

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 116

key size is the same as the maximum RTP packet size when a two octet MMH MAC is used.) P is 0 or 1, as needed
to make the MMH MAC key size an even number so that it is a multiple of the word size (2 bytes) used in the MMH
MAC algorithm.

The number of octets in the RTP header ranges from 12 to 72, inclusive, depending on the number of CSRC
identifiers that are included [10]. An implementation MUST choose Nh at least as large as required to accommodate
the maximum number of CSRC identifiers that may occur during a session. An implementation MUST set Nh to 72
if the maximum number of CSRC identifiers is otherwise unknown.

Since the key derivation procedure generates the MMH MAC key last (see section 7.6.2.3.3.1), it is not necessary to
generate a complete MMH MAC key at the start of the RTP session. Implementations MAY generate less than the
full MMH MAC key and generate the rest later, as needed. For example, instead of using a value of Ne that reflects
all possible codecs supported by an endpoint, an implementation might initially derive an MMH key of size (Mf *
Nc) + Nh + Nm – 2 + P, where Nc is the frame size for the currently selected codec. Later, after a codec change that
results in a larger value of Nc, additional bytes for the MMH key may be generated.

7.6.2.1.2.1.2 RTP Timestamp Wrap-around

Assume that the initial RTP timestamp value is T0. A timestamp wrap-around occurs when:

• an RTP packet with sequence number i has a timestamp value 232 - ξ1 for:

0 < ξ1 <= ∆TMAX , where ∆TMAX is the maximum difference between two consecutive RTP timestamps.

• an RTP packet with a sequence number i+1 has a timestamp value ξ2 for 0 <= ξ2 < ∆TMAX.

The wrap-around point is between the RTP packets i and i+1.

Each endpoint MUST keep a count NWRAP of RTP timestamp wrap-arounds, with a range from 0 to 216-1 and
initialized to zero at the start of the connection NWRAP MUST be incremented by the sender right after the wrap-
around point. NWRAP MUST also be incremented by the receiver before it decrypts any RTP packets after the wrap-
around point.

7.6.2.1.2.2 Block Cipher Encryption of RTP Packets

The AES Block Cipher must be supported for encryption of RTP packets. The following sections specify how to
support any Block Cipher, including AES.

7.6.2.1.2.2.1 Block Termination

If an implementation supports block ciphers, residual block termination (RBT) MUST be used to terminate streams
that end with less than a full block of data to encrypt (see section 9.3).

7.6.2.1.2.2.2 Initialization Vector

An Initialization Vector (IV) is required when using a block cipher in CBC mode to encrypt RTP packet payloads.
The size of an IV is the same as the block size for the particular block cipher. For example, the IV size for DESX
and 3-DES is 64 bits, while for AES-CBC it is 128 bits. In order to calculate the IV each endpoint MUST keep track
of NWRAP - the count of timestamp wrap-arounds during this RTP session, see section 7.6.2.1.2.1.2. The IV MUST
be calculated new for each RTP packet as specified below:

1. Take the first N bits of the header, where N = min(cipher block size, RTP header size).

2. In the result of the previous step replace the first 16 bits of the header with the 16-bit value of NWRAP, MSB
first.

3. PAD the result of previous step with 0's on the right, so that the resulting bit string is equal in size to the cipher
block size.

4. XOR the result of the previous step with the RTP Initialization Key (defined in section 7.6.2.3.3.1). The size of
the RTP Initialization Key is the same as the cipher block size.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 117

5. Encrypt the result of the previous step using the same block cipher that is used to encrypt RTP packets, but in
ECB mode. The result of this step is the Initialization Vector for this RTP packet.

7.6.2.1.2.2.3 MMH-MAC PAD Derivation When Using a Block Cipher

The MMH-MAC algorithm requires a one-time pad for each RTP packet. The MMH-MAC PAD MUST be derived
by performing the MMH Function on the Block Cipher’s IV. For a 2-byte MMH-MAC, use the MMH Function
described in section 9.7.1.1; for a 4-byte MMH-MAC, use the MMH Function described in section 9.7.1.2.

The IV is calculated according to section 7.6.2.1.2.2.2 for block ciphers that require an IV. Even if the block cipher
does not require an IV, one MUST be derived according to section 7.6.2.1.2.2.2 and used as the basis of the MMH-
MAC PAD derivation.

A key is also required by the MMH digest function in order to calculate the pad. The MMH MAC key derived in
section 7.6.2.3.3.1 MUST be truncated according to section 9.7.2.2 and MUST then be used as the key to the MMH
digest. Accordingly, the MMH MAC key is truncated to:

<size of IV> + Nm – 2

Where <size of IV> is 16 bytes for AES, Nm is the size of the MMH MAC in bytes, as defined in section 7.6.2.1,
and Nm – 2 represents the additional two octets that are added to the key size when a four octet MMH MAC is used.
(The truncated key size is the same as the IV size when a two octet MMH MAC is used.)

7.6.2.1.3 Packet Decoding Requirements

Prior to decoding the packets of an RTP stream, the receiving MTA MUST derive the keys and parameters from the
End-End Secret it shares with the sending MTA, as specified in section 7.6.2.3.3.

The derived quantities MUST match the corresponding quantities at the sending MTA.

7.6.2.1.3.1 Timestamp Tolerance Check

Before processing a received packet, the receiver SHOULD perform a sanity check on the timestamp value in the
RTP header, consisting of items (1) and (2) below:

1. Beginning with the RTP timestamp in the first packet received from a sender, the receiver calculates an
expected value for the timestamp of the sender’s next RTP packet based on timestamps received in the sender’s
previous packets for the session.

2. The next packet is rejected without being processed if its timestamp value is outside a reasonable tolerance of
the expected value. (Timestamps from rejected packets are not to be used to predict future packets). The
tolerance value is defined to be:

a. sufficiently tight to ensure that an invalid timestamp value cannot derail the receiver's state so much that it
cannot quickly recover to decrypting valid packets.

b. able to account for known differences in the expected and received timestamp values, such as might occur
at call startup, codec switch over and due to sender/receiver clock drift.

3. If the timestamp value in the RTP headers from a sender never comes back within the acceptable range, the
receiver discontinues the session.

4. At the receipt of each packet, the receiver adjusts its time relationship with the sender within the acceptable
tolerance range of estimated values.

7.6.2.1.3.2 Packet Authentication

If authentication is used on an RTP packet stream, verification of the MAC MUST be the first step in the packet
decoding process. When the timestamp tolerance check is performed, the MAC MAY be verified on packets with
valid RTP timestamps immediately after the check is completed.

If the MAC does not verify, the packet MUST be rejected.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 118

7.6.2.2 RTCP Messages

7.6.2.2.1 RTCP Format

[RFC 1889] defines the packet format of RTCP messages; this format is shown in Figure 17.

v=2 p count pkt type length

SSRC

Figure 17. RTCP Packet Format

The RTCP packet type could be SR (sender reports), RR (receiver reports), SDES (source description), BYE
(leaving conference), and APP (application specific function). The length varies depending on the message type, but
generally around 40 bytes.

7.6.2.2.2 RTCP Encryption

RTCP messages MUST always be encrypted in their entirety when the negotiated encryption algorithm is a block
cipher in CBC mode. RTCP messages MUST NOT be encrypted when the negotiated encryption algorithm is
RTCP_ENCR_NULL. However, the encoded RTCP messages MUST still be formatted according to section
7.6.2.2.2 when RTCP_ENCR_NULL is selected in conjunction with a non-NULL authentication algorithm (e.g.,
HMAC-SHA1-96 or HMAC-MD5-96). Security MUST NOT be applied to RTCP packets if the negotiated RTCP
ciphersuite is RTCP_AUTH_NULL and RTCP_ENCR_NULL. After the message is encrypted, an additional header
and MAC (Message Authentication Code) are added. The resulting packet has the format shown in Figure 18.

sequence number (4 bytes)

IV

Encrypted RTCP message

MAC

Figure 18. RTCP Encrypted Packet Format

The first 4 bytes MUST be the sequence number, MSB first. The initial sequence number for each direction of
traffic MUST be 0. Afterwards, the sequence number for each direction MUST be incremented by 1. Generally, one

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 119

RTCP message is sent every 5 seconds for each channel. Thus 32 bits for the sequence number field would be big
enough for any connections without wrapping around.

The IV (Initialization Vector) MUST immediately follow the sequence number. The IV MUST be randomly
generated by the sender for each RTCP message and the IV size MUST be the same as the block size for the
selected block cipher. The Initialization Vector (IV) MUST NOT be included when RTCP_ENCR_NULL is used.

The original cleartext RTCP message encrypted in its entirety MUST immediately follow the IV. The MAC
(Message Authentication Code) computed over the concatenation of the sequence number, IV and the encrypted
message MUST follow the encrypted RTCP message. The size of the MAC is algorithm-dependent.

7.6.2.2.3 Sequence Numbers

The receiver of RTCP messages SHOULD keep a sliding window of the RTCP sequence numbers. The size of the
sliding window WRTCP depends on the reliability of the UDP transport and is locally configured at each endpoint.
WRTCP SHOULD be 32 or 64. The sliding window is most efficiently implemented with a bit mask and bit shift
operations.

When the receiver is first ready to receive RTCP packets, the first sequence number in this window MUST be 0 and
the last MUST be WRTCP – 1. All sequence numbers within this window MUST be accepted the first time but MUST
be rejected when they are repeated. All sequence numbers that are smaller than the "left" edge of the window MUST
be rejected.

When an authenticated RTCP packet with a sequence number that is larger than the "right" edge of the window is
received, that sequence number is accepted and the "right" edge of the window is replaced with this sequence
number. The "left" edge of the window is updated in order to maintain the same window size.

When for a window (SRIGHT – WRTCP + 1, SRIGHT), sequence number SNEW is received and SNEW > SRIGHT, then the
new window becomes:

(SNEW – WRTCP + 1, SNEW)

7.6.2.2.4 Block Termination

Residual block termination (RBT) MUST be used to terminate RTCP messages that end with less than a full block
of data to encrypt (see section 9.3).

7.6.2.2.5 RTCP Message Encoding

Each RTCP message MUST be encoded using the following procedure:

1. A random IV is generated.

2. The entire RTCP message is encrypted with the selected block cipher and the just generated IV.

3. The current sequence number, IV and the encrypted RTCP message are concatenated in that order.

4. The MAC is computed (using the selected MAC algorithm) over the result in c) and appended to the message.

7.6.2.2.6 RTCP Message Decoding

Each RTCP message MUST be decoded using the following procedure:

1. Regenerate the MAC code and compare to the received value. If the two don’t match, the message is dropped.

2. The sequence number is verified based on the sliding window approach specified in section 7.6.2.2.3. If the
sequence number is rejected, the message is dropped. The sliding window is also updated as specified in section
7.6.2.2.3.

3. The RTCP message is decrypted with the shared encryption key and with the IV that is specified in the message
header.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 120

7.6.2.3 Key Management
The key management specified here for end-to-end communication is identical in the cases of the MTA–to-PSTN
and MTA-to-MTA communications. In the case of the MTA-to-PSTN communications, one of the MTAs is
replaced by a MG (Media Gateway).

The descriptions below refer to MTA-to-MTA communications only for simplicity. In this context, an MTA actually
means a communication end point, which can be an MTA or a MG. In the case that the end point is a MG, it is
controlled by an MGC instead of a CMS.

During call setup MTA0 (the initiating MTA) and MTA1 (the terminating MTA) exchange randomly generated
keying material, carried inside the call signaling messages. Call signaling messages are themselves protected by
IPsec ESP at each hop. This keying material is then used to generate the AES-CBC keys used to protect both RTP
and RTCP messages between the two MTAs.

MTA0 generates two randomly generated values: End-End Secret0 (46-bytes) and PAD1 (46-bytes).

MTA1 generates two randomly generated values: End-End Secret1 (46-bytes) and PAD0 (46-bytes).

MTA0 uses End-End Secret1 and PAD1 to derive encryption and authentication keys to be applied to its outbound
traffic and used by MTA1 to decrypt and authenticate it.

MTA1 uses End-End Secret0 and PAD0 to derive encryption and authentication keys to be applied to its outbound
traffic, and used by MTA0 to decrypt and authenticate it. As a result, both MTA0 and MTA1 contribute randomly
generated bytes to all of the keying material for both RTP and RTCP traffic.

The distribution of the end-to-end keying material is specific to the call signaling from [2] and is described in the
following subsections.

7.6.2.3.1 Key Management over NCS

Figure 19 shows the actual NCS messages that are used to carry out the distribution of end-to-end keys. Each NCS
message that is involved in the end-to-end key management is labeled with a number of the corresponding key
management interface.

The name of each NCS message is in bold. Below the NCS message name is the information needed in the NCS
message, in order to perform end-to-end key distribution.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 121

Figure 19. End-End Secret Distribution over NCS

This figure shows that before the start of this scenario, both the source and destination MTAs had already
established an IPsec ESP session with their local CMS.

This allows the End-End Secrets to be distributed securely, with privacy, integrity and anti-replay mechanisms
already in place. The CMS has access to this keying material but is trusted by the MTAs.

7.6.2.3.1.1 NULL Ciphersuite Combinations and Ordering

RTP_ENCR_NULL MUST only be used in conjunction with AUTH_NULL. RTP packets, with authentication but
no encryption, are not allowed.

RTCP_AUTH_NULL MUST only be used in conjunction with RTCP_ENCR_NULL. RTCP messages with
encryption and without authentication are not allowed.

Response

NTFY
(digits)

MDCXMDCX

Response

Response

(5) Response

Endpoint Connection ID
End-End Secret1 Pad0
list of RTP ciphersuites

list of RTCP ciphersuites

(4) CRCX

Endpoint Connection ID
End-End Secret0 Pad1
list of RTP ciphersuites

list of RTCP ciphersuites

(7) MDCX

Endpoint Connection ID
End-End Secret1 Pad0
list of RTP ciphersuites

list of RTCP ciphersuites

(1) CRCX

list of RTP ciphersuites
list of RTCP ciphersuites

(2) Response

Endpoint Connection ID
End-End Secret0 Pad1
list of RTP ciphersuites

list of RTCP ciphersuites

RQNT (ring)

NTFY

IPsec ESP

Source
MTA or MG

(MTA0)

Dest
MTA or MG

(MTA1)

CMS or
MGC

(CMS) IPsec ESP

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 122

Both RTP and RTCP security must be enabled or disabled together. The following five combinations MUST NOT
be generated:

• RTP NULL encryption and RTP non-NULL authentication

• RTCP non-NULL encryption & RTCP NULL authentication

• RTP non-NULL encryption and RTCP NULL authentication

• RTP NULL encryption and RTCP non-NULL authentication

• RTP NULL encryption and RTCP non-NULL encryption.

If the MTA receives LocalConnectionOptions parameter that meet the above combinations, the MTA MUST return
the error code 524 (Internal inconsistency in LocalConnectionOptions). Otherwise, if the MTA receives
RemoteConnectionDescriptor parameter that meet the above combinations, then the MTA MUST return the error
code 505 (Unsupported RemoteConnectionDescriptor).

For both RTP and RTCP ciphersuite lists exchanged during ciphersuite negotiation, the combination of NULL
encryption and NULL authentication algorithms MUST always be included last. For example, the list of RTP
ciphersuites "60/50;62/51;64/51" is not allowed, while the list of RTP ciphersuites "62/51;64/51;60/50", or "60/50"
is allowed. If the list of ciphersuites in LocalConnectionOptions includes the NULL authentication and NULL
encryption combination (60/50 for RTP, and 80/70 for RTCP), but this combination is not last, the MTA MUST
return error code 524 (Internal inconsistency in LocalConnectionOptions). Otherwise, if this combination is not last
in a RemoteConnectionDescriptor, error code 505 (Unsupported RemoteConnectionDescriptor) MUST be returned.

7.6.2.3.1.2 Ciphersuite Negotiation For MTAs

This specification only defines security for RTP/RTCP media streams, therefore ciphersuite negotiation applies only
to RTP/RTCP media streams. Use of security for any other type of media streams is not specified.

An MTA MUST perform RTP and RTCP ciphersuite negotiation when processing any of the following:

• a CreateConnection command

• a ModifyConnection command with a RemoteConnectionDescriptor parameter

• a ModifyConnection command where the LocalConnectionOptions parameter includes ciphersuite fields.

An MTA MUST NOT perform ciphersuite negotiation in any other case. The steps involved in ciphersuite
negotiation are the following:

1. An approved list of ciphersuites is formed by taking the intersection of the internal list of ciphersuites and
ciphersuites allowed by the LocalConnectionOptions parameter, subject to the constraints specified in section
7.6.2.3.1.1. The internal list of ciphersuites contains the ciphersuites that the MTA supports and which this
specification requires. If the LocalConnectionOptions parameter was not included, or if the ciphersuite fields
were not provided in the LocalConnectionOptions parameter, the approved list of ciphersuites contains the
previously agreed upon approved list, or if no such list exists, the internal list of ciphersuites.

2. If the approved list of ciphersuites is empty, an error response MUST be generated, error code 532
(Unsupported value(s) in LocalConnectionOptions).

3. Otherwise, a negotiated list of ciphersuites is formed by taking the intersection of the approved list of
ciphersuites and ciphersuites allowed by the RemoteConnectionDescriptor parameter (if present), subject to the
constraints specified in section 7.6.2.3.1.1. If a RemoteConnectionDescriptor was not provided, the negotiated
list of ciphersuites thus contains the approved list of ciphersuites. If a RemoteConnectionDescriptor parameter
is provided without fields containing the RTP and RTCP ciphersuite lists, then the RTP
AUTH_NULL/RTP_ENCR_NULL and RTCP_AUTH_NULL/RTCP_ENCR_NULL ciphersuites are assumed
for the remote endpoints, and the regular ciphersuite negotiation process continues (i.e., the negotiated list of
ciphersuites is formed by taking the intersection of the approved list of ciphersuites and the RTP
AUTH_NULL/RTP_ENCR_NULL and RTCP_AUTH_NULL/RTCP_ENCR_NULL ciphersuites).

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 123

4. If the negotiated list of ciphersuites is empty, a ciphersuite negotiation failure has occurred and an error
response MUST be generated. If a RemoteConnectionDescriptor parameter was provided, two different error
codes can be returned:

a. If the endpoint does not support any of the ciphersuites allowed by the RemoteConnectionDescriptor, error
code 505 (Unsupported RemotedConnectionDescriptor) MUST be used.

b. If the endpoint does support at least one of the ciphersuites, but the negotiated list of ciphersuites ended up
being empty, error code 506 (Unable to satisfy both LocalConnectionOptions and
RemoteConnectionDescriptor) MUST be used.

5. Otherwise, ciphersuite negotiation has succeeded, and the negotiated list of ciphersuites is returned in the
LocalConnectionDescriptor parameter. Note that both LocalConnectionOptions and the
RemoteConnectionDescriptor parameters can contain a list of ciphersuites that MUST be ordered by preference
provided by the CMS in the RemoteConnectionDescriptor parameter. When both are supplied, the MTA
SHOULD adhere to the preferences provided by the CMS in the RemoteConnectionDescriptor parameter, and
otherwise, the MTA SHOULD adhere to the preferences provided in the LocalConnectionOptions parameter. If
the MTA receives a RemoteConnectionDescriptor parameter with AUTH_NULL/RTP_ENCR_NULL for RTP
or RTCP_AUTH_NULL/RTCP_ENCR_NULL for RTCP that is not last in the list, it MUST return the error
code 505 (Unsupported RemoteConnectionDescriptor).

The following requirements apply during ciphersuite negotiation:

• A CMS MUST be capable of sending the allowable lists of ciphersuites for RTP and/or RTCP in the
LocalConnectionOptions parameter of a CreateConnection command (CRCX) or a ModifyConnection
command (MDCX) in the order of preference specified by the operator subject to the constraints specified in
section 7.6.2.3.1.1.

• Whenever possible, a MTA SHOULD select the first supported ciphersuite for RTP and the first supported
ciphersuite for RTCP in the RemoteConnectionDescriptor parameter. This allows the MTA to immediately start
sending RTP and RTCP packets to the other MTA. An MTA MAY instead select alternate ciphersuites
specified by the other MTA.

• When returning a LocalConnectionDescriptor and the negotiated list of RTP and RTCP ciphersuites is NULL,
an MTA MUST NOT include an End-End Secret or PAD.

• When returning a LocalConnectionDescriptor and the negotiated list of RTP and RTCP ciphersuites contains at
least one non-NULL selection each, an MTA MUST include an End-End Secret (for incoming RTP and RTCP
packets) and MAY include a PAD value (for outgoing RTP and RTCP packets). The following rules apply:

1. The MTA MUST generate a new End-End Secret when responding to a CreateConnection command.
2. The MTA MUST generate a new End-End Secret when responding to a ModifyConnection command if the

remote connection address (e.g., IP address) or the remote transport address (e.g., port) are not identical to
what was previously assigned.

3. The MTA MUST use the existing End-End Secret when responding to a ModifyConnection command
where there was no previous RemoteConnectionDescriptor provided.

4. The MTA MUST generate a new PAD when responding to a CreateConnection command without a
RemoteConnectionDescriptor.

5. The MTA MUST generate a new PAD when generating a new End-End Secret in response to a
ModifyConnection command without a RemoteConnectionDescriptor.

6. If not otherwise required, the MTA MAY generate a new PAD when generating a new End-End Secret.
7. The MTA MUST NOT generate a new PAD when not generating a new End-End Secret.

• If, in response to a CreateConnection command, the list of ciphersuites selected for RTP contains at least one
non-NULL encryption or authentication algorithm, before sending the response message, an MTA MUST:

1. Establish inbound RTP security based on the preferred (first) RTP ciphersuite, its End-End Secret (which it
generated), and a PAD value (if included in the RemoteConnectionDescriptor), as described in section
7.6.2.3.3.1 of this specification.

2. If a RemoteConnectionDescriptor was included and it contains media security attributes, establish
outbound RTP security based on the selected RTP ciphersuite, End-End Secret (generated by the other

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 124

MTA), and a PAD value (which it may have generated) as described in section 7.6.2.3.3.1 of this
specification.

3. If connection mode allows, be ready to receive RTP packets, which may arrive any time after the Response
message is sent.

• If, in response to a CreateConnection command, the list of ciphersuites for RTCP contains at least one non-
NULL encryption algorithm, before sending the response message, an MTA MUST:

1. Establish inbound RTCP security based on the preferred (first) RTCP ciphersuite, its End-End Secret
(which it generated), and a PAD value (if included in the RemoteConnectionDescriptor), as described in
section 7.6.2.3.3.1 of this specification.

2. If a RemoteConnectionDescriptor was included and it contained media security attributes, establish
outbound RTCP security based on the selected RTCP ciphersuite, End-End Secret (generated by the far-end
MTA), and a PAD value (which it may have generated) as described in section 7.6.2.3.3.1 of this
specification.

3. Be ready to receive RTCP packets, which may arrive any time after the Response message is sent.
• If, in response to a ModifyConnection command that includes a RemoteConnectionDescriptor, and negotiated

lists of ciphersuites for RTP and RTCP contain at least one non-NULL encryption or authentication algorithm
each, before sending the response message, an MTA MUST:

1. If a PAD was included in the RemoteConnectionDescriptor and it is different than a PAD that may have
previously been received, remove any existing inbound RTP keys and generate new ones, based on the
keys that are generated from both the End-End Secret (generated locally) and the PAD (generated by the
other MTA). The MTA MUST re-initialize the RTP timestamp if new keys are generated The ciphersuites
used for these inbound keys are taken from the RemoteConnectionDescriptor parameter just received from
the CMS.

2. If a PAD was included in the RemoteConnectionDescriptor and it is different than a PAD that may have
previously been received, remove any existing inbound RTCP keys and generate new ones, based on the
keys that are generated from both the End-End Secret (generated locally) and the PAD (generated by the
other MTA). The MTA MUST re-initialize RTCP sequence numbers if new keys are generated. The
ciphersuites used for these inbound keys are taken from the RemoteConnectionDescriptor parameter just
received from CMS.

3. If the RemoteConnectionDescriptor parameter was received without a PAD, check if the first RTP
ciphersuite field in the RemoteConnectionDescriptor parameter differs from the one that the MTA
originally selected. Also, check to see if a PAD had been previously received. If the ciphersuites differ, or
if a PAD had been previously received, perform the following steps:

a. Remove any existing inbound RTP key.
b. If the new RTP ciphersuite is non-NULL, generate new inbound RTP keys and RTP timestamp

from the same End-End Secret (generated locally) as the last time, as specified in section
7.6.2.3.3.1.

4. If the RemoteConnectionDescriptor parameter was received without a PAD, check if the first RTCP
ciphersuite field in the RemoteConnectionDescriptor parameter differs from the one that the MTA
originally selected. Also, check to see if a PAD had been previously received. If the ciphersuites differ, or
if a PAD had been previously received, perform the following steps:

a. Remove any existing inbound RTCP key.
b. If the new RTCP ciphersuite is non-NULL, generate new inbound RTCP keys from the same End-

End Secret (generated locally) as the last time, as specified in section 7.6.2.3.3.1, and reset the
RTCP sequence number to 0.

5. If the End-End Secret included in the RemoteConnectionDescriptor has changed or the negotiated RTP
ciphersuite has changed, perform the following steps:

a. Remove any existing outbound RTP keys.
b. If the new list of RTP ciphersuites is non-NULL, generate new outbound RTP keys, based on the

End-End Secret (generated by the other MTA) and the PAD (generated locally), and generate a
new RTP timestamp.

6. If the End-End Secret included in the RemoteConnectionDescriptor has changed or the negotiated RTCP
ciphersuite has changed, perform the following steps:

a. Remove any existing outbound RTCP keys

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 125

b. If the new list of RTCP ciphersuites is non-NULL, generate new outbound RTCP keys, based on
the End-End Secret (generated by the other MTA) and the PAD (generated locally), and reset the
RTCP sequence number to 0.

7. Be ready to send RTCP messages to and receive RTCP messages from the remote MTA. If connection
mode allows, be ready to send and receive RTP messages with the remote MTA. If the list of ciphersuites
for RTP was sent within a ModifyConnection command, the CMS MAY send an inactive directive to the
MTA in the same command. The MTA should be returned to active status only when the new ciphersuite
negotiation is complete.

• If, in response to a ModifyConnection command that does not include a RemoteConnectionDescriptor, and
negotiated lists of ciphersuites for RTP and RTCP contain at least one non-NULL encryption or authentication
algorithm each, before sending the response message, an MTA MUST:

1. If the first RTP ciphersuites field in the negotiated list differs from the one that the MTA previously
selected, then perform the following steps:

a. Remove any existing inbound RTP keys.
b. Generate new inbound RTP keys from the previous End-End Secret (locally generated) and PAD

(generated by the other MTA), and generate a new RTP timestamp.
2. If the first RTCP ciphersuites field in the negotiated list differs from the one that the MTA previously

selected, then perform the following steps:
a. Remove any existing inbound RTCP keys.
b. Generate new inbound RTCP keys from the previous End-End Secret (locally generated) and PAD

(generated by the other MTA), and reset the RTCP sequence number to 0.
3. Be ready to send RTCP messages to and receive RTCP messages from the remote MTA. If connection

mode allows, be ready to send and receive RTP messages with the remote MTA. If the list of ciphersuites
for RTP was sent within a ModifyConnection command, the CMS MAY send an inactive directive to the
MTA in the same command. The MTA should be returned to active status only when the new ciphersuite
negotiation is complete.

• If an MTA receives a ModifyConnection command, and the resulting intersection of ciphersuites results in
NULL encryption and authentication algorithms for RTP and RTCP, then the MTA MUST remove any existing
RTP and RTCP keys and do not perform security on the RTP and RTCP packets.

• If an MTA returns a LocalConnectionDescriptor parameter, it MUST return the latest negotiated list of
ciphersuites.

The following message flow is informative. Each of the numbered flows in Figure 19 is described below:

(1) CMS -> MTA0

CMS may send the allowable lists of ciphersuites for the new communication to MTA0 in the CreateConnection
(CRCX) command, inside the LocalConnectionOptions parameter, if the CMS has been configured to do so.
The ciphersuites are provided in the order of preference specified by the operator subject to the constraints
specified in section 7.6.2.3.1.1. There can be two lists of ciphersuites, one list for RTP security and one for
RTCP security. Each of these two lists may be included to specify the list of allowable ciphersuites, however
ciphersuite negotiation will take place for both RTP and RTCP irrespective of whether the lists are included or
not.

If RTP and/or RTCP ciphersuites are included but do not adhere to the rules provided in section 7.6.2.3.1.1, the
MTA returns an error, e.g. 524 (Internal inconsistency in LocalConnectionOptions).

(2) MTA0 -> CMS

MTA0 performs ciphersuite negotiation according to the ciphersuite negotiation procedure described above, and
returns a non-empty list of RTP ciphersuites in the response message. This list contains the list of MTA0’s list
of allowed ciphersuites in the order of preference specified by CMS if the LocalConnectionOptions ciphersuites
parameter(s) is included in step (1), as specified above. If RTP or RTCP ciphersuite negotiation fails, MTA0
returns an error code as specified above.

If the lists of negotiated ciphersuites for RTP and RTCP contain at least one non-NULL combination each,
MTA0 generates the End-End Secret0 and PAD1 value and returns them along with the ciphersuites in the

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 126

LocalConnectionDescriptor parameter. For further details on the NCS message syntax, refer to [2]. Note that the
NULL authentication and NULL encryption combinations will be at the end of each ciphersuite list.

The response message also includes the ConnectionId and the EndpointId for MTA0 as described in [2]. The
pair (ConnectionId, EndpointId) uniquely identifies this connection, where the EndpointId is an NCS identifier
for MTA0.

If the list of ciphersuites for RTP contains at least one non-NULL encryption or authentication algorithm,
before sending the response message, MTA0 must:

1. Establish inbound RTP security based on its preferred (first) RTP ciphersuite and End-End Secret0, as
described in section 7.6.2.3.3.1 of this specification.

2. If connection mode allows, be ready to receive RTP packets, which may arrive any time after this message
is sent by the MTA0. If the list of ciphersuites for RTP was sent within a ModifyConnection command, the
CMS may send an inactive directive to the MTA in the same command. The MTA should be returned to
active status only when the new ciphersuite negotiation is complete.

If the list of ciphersuites for RTCP contains at least one non-NULL encryption algorithm, before sending the
response message, MTA0 must:

1. Establish inbound RTCP security based on its preferred (first) RTCP ciphersuite and End-End Secret0, as
described in section 7.6.2.3.3.1 of this specification.

2. Be ready to receive RTCP packets, which may arrive any time after this message is sent by MTA0.

If MTA1 decides to use an alternate ciphersuite listed by MTA0, MTA0 will later have to update its RTP and
RTCP keys. If MTA1 decides to send MTA0 packets before ciphersuite negotiation had completed, processing
on those packets at MTA0 will fail (since it assumed a different ciphersuite). If media stream security is
disabled (AUTH_NULL/RTP_ENCR_NULL ciphersuite list for RTP and
RTCP_AUTH_NULL/RTCP_ENCR_NULL for RTCP), MTA0 will later have to discard its keys and send and
receive RTP and RTCP packets without any security.

(3) CMS -> MTA1

CMS sends a CreateConnection to MTA1. CMS may provide lists of approved RTP and RTCP ciphersuites, if
the CMS has been configured to do so. The ciphersuites are provided in the order of preference specified by the
operator subject to the constraints specified in section 7.6.2.3.1.1. The RemoteConnectionDescriptor must be
included in this CRCX command. It must contain End-End Secret0 (if sent in step (2) and PAD1 (if sent in step
(2)) received from MTA0. It must also contain the ciphersuites preferred by MTA0.

(4) MTA1 -> CMS

MTA1 has received a CRCX message that contains both LocalConnectionOptions and
RemoteConnectionDescriptor parameters and must follow the ciphersuite negotiation procedure described
above to negotiate RTP and RTCP ciphersuites. This list will consist of MTA1’s allowed ciphersuites in the
order of preference specified by CMS if the LocalConnectionOptions ciphersuites parameter is included in step
(3). If RTP and RTCP ciphersuite negotiation succeeds and there is at least one RTP ciphersuite and at least one
RTCP ciphersuite, then MTA1 returns the negotiated list of ciphersuites in the subsequent response message, in
the LocalConnectionDescriptor parameter, in the form of SDP attributes. Note that if media stream security is
being disabled, the NULL authentication and NULL encryption combination will be the only entry in both the
RTP and RTCP ciphersuites lists. If RTP or RTCP ciphersuite negotiation fails, MTA1 must return an error
code as specified above.

In the event that MTA1 receives SDP in the RemoteConnectionDescriptor parameter without ciphersuites media
attributes, MTA1 assumes that the lists of RTP and RTCP ciphersuites supported by the remote endpoint is RTP
AUTH_NULL/RTP_ENCR_NULL and RTCP_AUTH_NULL/RTCP_ENCR_NULL.

If the RTP and RTCP ciphersuites provided do not adhere to the rules provided in section 7.6.2.3.1.1, the MTA
returns an error, e.g. 524 (Internal inconsistency in LocalConnectionOptions).

Whenever possible, MTA1 should select the first supported ciphersuite for RTP and the first supported
ciphersuite for RTCP in the RemoteConnectionDescriptor parameter. This allows MTA1 to immediately start
sending RTP and RTCP packets to MTA0. MTA1 may instead select alternate ciphersuites specified by MTA0.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 127

MTA1 returns a response message, which includes lists of the selected ciphersuites inside the
LocalConnectionDescriptor parameter, in the form of SDP attributes. The first ciphersuite in each list (one for
RTP and one for RTCP) must be the one that was selected by MTA1. Additional ciphersuites in each list are
alternatives in a prioritized order. If at any time, MTA0 wants to switch to one of the alternatives that were
selected by MTA1, it would have to go through a new key negotiation. The response message must also include
the ConnectionId (generated by MTA1) as specified in [2]. Thus, both End-End Secret0 and End-End Secret1 are
now associated with a pair (EndpointId, ConnectionId).

If the lists of ciphersuites for RTP and RTCP contain at least one non-NULL selection each, then MTA1 must
generate the End-End Secret1 for the incoming RTP and RTCP packets, MTA1 must and return it along with the
ciphersuite lists in the LocalConnectionDescriptor parameter. If the lists of ciphersuites for RTP and RTCP
contain at least one non-NULL selection each, MTA1 should also generate PAD0 and return it in the same
LocalConnectionDescriptor parameter.

Although the option of not generating PAD0 is provided in order to better support early media flows from
MTA1, it results in MTA1 using a send key that is completely dependent on a random value generated by MTA0.
In other words, privacy of the media stream generated by MTA1 in this case depends on the strength of MTA0’s
random number generator.

If the list of ciphersuites for RTP contains at least one non-NULL encryption or authentication algorithm,
before sending the response message, MTA1 must:

1. Establish inbound RTP security based on its selected RTP ciphersuite, End-End Secret1 and PAD1, as
described in section 7.6.2.3.3.1 of this specification.

2. Establish outbound RTP security based on its selected RTP ciphersuite and End-End Secret0, as described
in section 7.6.2.3.3.1 of this specification. If PAD0 was generated by MTA1, the outbound RTP security
will also be based on PAD0.

3. If connection mode allows, be ready to receive RTP packets, which may arrive from MTA0 any time after
this message is sent.

If the list of ciphersuites for RTCP contains at least one non-NULL encryption or authentication algorithm,
before sending the response message, MTA1 must:

1. Establish inbound RTCP security based on its selected RTCP ciphersuite, End-End Secret1 and PAD1 as
described in section 7.6.2.3.3.1 of this specification.

2. Establish outbound RTCP security based on its selected RTCP ciphersuite and End-End Secret0, as
described in section 7.6.2.3.3.1 of this specification. If PAD0 was generated by MTA1, the outbound RTCP
security will also be based on PAD0.

3. Be ready to receive RTCP messages, which may arrive from MTA0 any time after this message is sent.

Any time after sending this response message to the CMS, MTA1 may begin sending RTP and RTCP packets to
MTA0. However, in the case that MTA1 generated PAD0 or selected a different ciphersuite from the one
preferred by MTA0, MTA0 will not be able to decrypt packets from MTA1, until MTA0 has received MTA1's
SDP.

(5) CMS -> MTA0

CMS may send to MTA0 in the ModifyConnection command, inside the LocalConnectionOptions parameter,
the lists of allowed RTP and RTCP ciphersuites. These ciphersuites should be what CMS policy allows. (The
reason that CMS is not required to send the lists of ciphersuites is because it might have already sent them to
MTA0 in a CreateConnection command. CMS would send the ciphersuites again for consistency.

In the event that MTA0 receives SDP in the RemoteConnectionDescriptor parameter without fields containing
ciphersuites media attributes, MTA0 assumes that the RTP and RTCP ciphersuite lists supported by the remote
endpoint are AUTH_NULL/RTP_ENCR_NULL for RTP and RTCP_AUTH_NULL/RTCP_ENCR_NULL for
RTCP.

In the event that CMS received SDP from MTA1, the RemoteConnectionDescriptor parameter must be included
in this ModifyConnection command. If present, it must contain the RTP and RTCP ciphersuites (and
alternatives) selected by MTA1. If ciphersuites are included in the LocalConnectionOptions parameter or a

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 128

RemoteConnectionDescriptor parameter is included with the ModifyConnection command, MTA0 must
perform ciphersuite negotiation as described above.

If the RemoteConnectionDescriptor is not sent in this MDCX command, MTA0 will still be able to receive RTP
and RTCP messages but will be unable to send anything to MTA1.

After receiving this message, MTA0 must:

1. If PAD0 was received, remove its inbound RTP keys and replace them with new ones, based on the keys
that are generated from both End-End Secret0 and PAD0. Re-initialize the RTP timestamp for the new keys.
The ciphersuites used for these inbound keys are taken from the RemoteConnectionDescriptor just received
from CMS.

2. If PAD0 was received, remove its inbound RTCP keys and replace them with new ones, based on the keys
that are generated from both End-End Secret0 and PAD0. Re-initialize RTCP sequence numbers for the new
keys. The ciphersuites used for these inbound keys are taken from the RemoteConnectionDescriptor just
received from CMS.

3. If the RemoteConnectionDescriptor was received without PAD0, check if the first RTP ciphersuite in the
RemoteConnectionDescriptor differs from the one that MTA0 selected in step (2). If they differ, perform
the following steps:

a. Remove the inbound RTP key.
b. If the new RTP ciphersuite is non NULL, generate new inbound RTP keys and RTP timestamp

from the same End-End Secret0 as the last time, as specified in section 7.6.2.3.3.1.
4. If the RemoteConnectionDescriptor parameter was received without PAD0, check if the first RTCP

ciphersuite field in the RemoteConnectionDescriptor parameter differs from the one that MTA0 selected in
step (2). If they differ, perform the following steps:

a. Remove the inbound RTCP key.
b. If the new RTCP ciphersuite is non NULL, generate a new key based on the key generated from

the same End-End Secret0 as the last time, but for the new authentication and/or encryption
algorithms.

5. If the RemoteConnectionDescriptor parameter was received, establish outbound RTP keys, based on End-
End Secret1 and PAD1.

6. If the RemoteConnectionDescriptor parameter was received, establish outbound RTCP keys, based on End-
End Secret1 and PAD1.

7. Be ready to send and receive RTCP messages with MTA1. If connection mode allows, be ready to send and
receive RTP messages with MTA1.

For full syntax of the NCS messages, please refer to the NCS signaling specification [2].

7.6.2.3.2 Ciphersuite Format

Each ciphersuite for both RTP security and RTCP security MUST be represented as follows:

Authentication Algorithm (1 byte) –
represented by 2 ASCII hex characters
(using characters 0-9, A-F).

Encryption Transform ID (1 byte) –
represented by 2 ASCII hex characters
(using characters 0-9, A-F).

For the list of available transforms and their values, refer to section 6.6 for RTP security and 6.7 for RTCP security.
For the exact syntax of how the Authentication Algorithm and the Encryption Transform ID are included in the
signaling messages, refer to [2] for NCS.

7.6.2.3.3 Derivation of End-to-End Keys

7.6.2.3.3.1 Initial Key Derivation

The End-End Secrets MUST be 46 bytes long. The PAD parameters MUST be 46 bytes long.

Keys are independently derived by each MTA from either just the End-End Secret or from the End-End Secret and
PAD concatenated together. The PAD may or may not be available – see the call flow details specified in section
7.6.2.3.1.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 129

The keys derived from one End-End Secret (and possibly a PAD) MUST be used to secure RTP and RTCP
messages directed to only one of the MTAs. There is a separate End-End Secret and a separate PAD value for each
direction, negotiated through NCS signaling. The keys MUST be derived as follows, in the specified order:

1. RTP (media stream security). Derive a set of the following keys with the derivation function F(S, "End-End
RTP Security Association"). Here, S is concatenation of the following binary values, each in MSB-first order:

a. End-End Secret
b. PAD (optional, if it was negotiated through signaling)

The string "End-End RTP Security Association" is taken without quotes and without a terminating null
character. Function F (specified in section 9.6) is used to recursively generate enough random bytes to produce
all of the keys and other parameters that are specified below, in the listed order:

a. RTP privacy key.
b. RTP Initial Timestamp (integer value, 4 octets, Big Endian byte order).
c. RTP Initialization Key (required when using a block cipher to encrypt the RTP payload). The length

MUST be the same as the selected cipher’s block size. This value is used to derive the IV according to
7.6.2.1.2.2. The resulting IV is used for the block cipher in CBC mode (if applicable) and for the
random pad used to calculate the MMH-MAC.

d. RTP packet MAC key (if MAC option is selected). The requirements for the MMH MAC key can be
found in section 7.6.2.1.2.1.1.

2. RTCP security. Derive a set of the following keys in the specified order with the derivation function F(S, "End-
End RTP Control Protocol Security Association"). Here, S is concatenation of the following binary values:

a. End-End Secret
b. PAD (optional, if it was negotiated through signaling)

Function F (specified in section 9.6) is used to recursively generate enough random bytes to produce all of the
keys that are specified below, in the listed order:

a. RTCP authentication key
b. RTCP encryption key

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 130

7.6.2.4 RTP-RTCP Summary Security Profile Matrix
Table 26. Security Profile Matrix – RTP & RTCP

 RTP (MTA – MTA,
MTA – MG)

RTCP (MTA – MTA,
MTA – MG, MG – MG)

authentication optional (indirect)24 optional (indirect)
access control optional optional
integrity optional optional
confidentiality optional optional
non-repudiation no no
security
mechanisms

Application Layer Security via RTP
IPCablecom Security Profile
End-to-End Secret distributed over
secured MTA-CMS links. Final
keys derived from this secret.
AES-128 in CBC mode encryption
algorithm.
Optional 2-byte or 4-byte MAC
based on MMH algorithm.
RTP encryption and authentication
can be optionally turned off with the
selection of NULL encryption and
NULL authentication algorithms.
RTP security and RTCP security are
disabled together.
IPCablecom requires support for
ciphersuite negotiation.

RTCP messages are secured by RTCP
application layer security mechanisms
specified in the profile.
RTCP ciphersuites are negotiated separately
from the RTP ciphersuites and include both
encryption and message authentication
algorithms. RTCP encryption can be
optionally turned off with the selection of a
null encryption algorithm.
Both RTCP encryption and authentication
can be optionally turned off with the
selection of NULL encryption and NULL
authentication algorithms. RTCP security
and RTP security are disabled together.
Keys are derived from the end-end secret
using the same mechanism as used for RTP
encryption

7.7 Audio Server Services

The text in this section has been removed because it is not within the scope of IPCablecom 1.0.

7.8 Electronic Surveillance Interfaces

The text in this section has been removed because it is not within the scope of IPCablecom 1.0.

7.9 CMS Provisioning

The text in this section has been removed because it is not within the scope of IPCablecom 1.0.

4 MTAs do not authenticate directly. Authentication refers to the authentication of identity.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 131

8 IPCABLECOM CERTIFICATES
IPCablecom uses digital certificates, which comply with the X.509 specification [31] and the IETF PKIX
specification [32].

8.1 Generic Structure

8.1.1 Version
The Version of the certificates MUST be V3. All certificates MUST comply with [32] except where the non-
compliance with the RFC is explicitly stated in this chapter of this document.

8.1.2 Public Key Type
RSA Public Keys are used throughout the hierarchy. The subjectPublicKeyInfo.algorithm.algorithm Object
Identifier (OID) used MUST be 1.2.840.113549.1.1.1 (rsaEncryption).

The public exponent for all RSA IPCablecom keys MUST be F4 - 65537.

8.1.3 Extensions
The following four extensions MUST be used as specified in the sections below. Any other certificate extensions
MAY also be included but MUST be marked as non-critical.

8.1.3.1 subjectKeyIdentifier
The subjectKeyIdentifier extension included in all IPCablecom CA certificates as required by [32] (e.g., all
certificates except the device and ancillary certificates) MUST include the keyIdentifier value composed of the 160-
bit SHA1 hash of the value of the BIT STRING subjectPublicKey (excluding the tag, length and number of unused
bits from the ASN1 encoding) (see [32]).

8.1.3.2 authorityKeyIdentifier

The authorityKeyIdentifier extension MUST be included in all IPCablecom certificates, with the exception of root
certificates, and MUST include a keyIdentifier value that is identical to the subjectKeyIdentifier in the CA
certificate.

8.1.3.3 KeyUsage
The KeyUsage extension MUST be used for all IPCablecom CA certificates and MUST be marked as critical with a
value of keyCertSign and cRLSign. A KeyUsage extension MAY be included in end-entity certificates and
SHOULD be marked as critical if included as specified in [32].

8.1.3.4 BasicConstraints
The basicConstraints extension MUST be used for all IPCablecom CA certificates and MUST be marked as critical.
The values for each certificate for basicConstraints MUST be marked as specified in each of the certificate
description tables below.

8.1.4 Signature Algorithm
The signature mechanism used MUST be SHA-1 with RSA Encryption. The specific OID is 1.2.840.113549.1.1.5.

8.1.5 SubjectName and IssuerName
If a string cannot be encoded as a PrintableString it MUST be encoded as a UTF8String (tag [UNIVERSAL 12]).

When encoding an X.500 Name:

1. Each RelativeDistinguishedName (RDN) MUST contain only a single element in the set of X.500 attributes.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 132

2. The order of the RDNs in an X.500 name MUST be the same as the order in which they are presented in this
specification.

It should be noted that [32] and X.509 defines constraints (i.e. upper bounds) on the length of the attribute values.
For example, the maximum length for common name (CN), organization name (O) and organizational unit (OU)
name values is 64 characters. Where this specification mandates the inclusion of a static string in one of these
values, (i.e. CN=<Company> IPCablecom System Operator CA) companies MUST ensure that the addition of their
identifying information does not cause the total length of the value to exceed the upper bound. In the case where a
company’s name causes the length of the value to exceed the upper bound, the vendor MUST truncate or abbreviate
their information to ensure the total length does not exceed the upper bound.

8.1.6 Certificate Profile Notation
The tables below use the following notation:

• Extension details are specified by - [c:critical, n:non-critical; m:mandatory, o:optional].

• Optional subject naming attributes are surrounded by square brackets (e.g., [L = <city>]).

• Variable naming attribute values are surrounded by angle brackets. (e.g., CN = <Company Name> IPCablecom
CA). Values not surrounded by angle brackets are static and cannot be modified.

8.2 Certificate Trust Hierarchy

There are two distinct certificate hierarchies used in IPCablecom.

MTA Root

MTA
Manufacturer

MTA

CableLabs
Service Provider

Root

Service Provider
CA

Local System
Operator CA

KD
C

D
F

MTA Device
Hierarchy

CableLabs Service
Provider Hierarchy

Other

Figure 20. IPCablecom Certificate Hierarchy

8.2.1 Certificate Validation
Within IPCablecom certificate validation in general involves validation of a whole chain of certificates. As an
example, when the Provisioning Server validates an MTA Device certificate, the actual chain of three certificates is
validated:

MTA Root Certificate + MTA Manufacturer Certificate + MTA Device Certificate

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 133

The signature on the MTA Manufacturer Certificate is verified with the MTA Root Certificate and the signature on
the MTA Device Certificate is verified with the MTA Manufacturer Certificate. The MTA Root Certificate is self-
signed and is known in advance to the Provisioning Server. The public key present in the MTA Root Certificate is
used to validate the signature on this same certificate.

Usually the first certificate in the chain is not explicitly included in the certificate chain that is sent over the wire. In
the cases where the first certificate is explicitly included it MUST already be known to the verifying party ahead of
time and MUST NOT contain any changes to the certificate with the possible exception of the certificate serial
number, validity period and the value of the signature. If changes other than the certificate serial number, validity
period and the value of the signature, exist in the CableLabs Service Provider Root certificate that was passed over
the wire in comparison to the known CableLabs Service Provider Root certificate, the device making the comparison
MUST fail the certificate verification.

The exact rules for certificate chain validation must fully comply with [32], where they are referred to as "Certificate
Path Validation". In general, X.509 certificates support a liberal set of rules for determining if the issuer name of a
certificate matches the subject name of another. The rules are such that two name fields may be declared to match
even though a binary comparison of the two name fields does not indicate a match. [32] recommends that certificate
authorities restrict the encoding of name fields so that an implementation can declare a match or mismatch using
simple binary comparison. IPCablecom security follows this recommendation. Accordingly, the DER-encoded
tbsCertificate.issuer field of an IPCablecom certificate MUST be an exact match to the DER-encoded
tbsCertificate.subject field of its issuer certificate. An implementation MAY compare an issuer name to a subject
name by performing a binary comparison of the DER-encoded tbsCertificate.issuer and tbsCertificate.subject fields.

The sections below specify the required certificate chain, which must be used to verify each certificate that appears
at the leaf node (i.e., at the bottom) in the IPCablecom certificate trust hierarchy illustrated in the above diagram.

Validity period nesting is not checked and intentionally not enforced. Thus, the validity period of a certificate need
not fall within the validity period of the certificate that issued it.

8.2.2 MTA Device Certificate Hierarchy
The device certificate hierarchy exactly mirrors that of the DOCSIS1.1/BPI+ hierarchy. It is rooted at a CableLabs
issued IPCablecom MTA Root certificate, which is used as the issuing certificate of a set of manufacturer’s
certificates. The manufacturer’s certificates are used to sign the individual device certificates.

The information contained in the following tables contains the IPCablecom specific values for the required fields
according to [32]. These IPCablecom specific values MUST be followed according to the table below, except that
Validity Periods SHOULD be as given in the tables. If a required field is not specifically listed for IPCablecom then
the guidelines in [32] MUST be followed.

8.2.2.1 MTA Root Certificate
This certificate MUST be verified as part of a certificate chain containing the MTA Root Certificate, MTA
Manufacturer Certificate and the MTA Device Certificate.

Table 27. MTA Root Certificate

MTA Root Certificate

Subject Name Form C=US
O=CableLabs
OU=PacketCable
CN=PacketCable Root Device Certificate Authority

Intended Usage This certificate is used to sign MTA Manufacturer Certificates and is used
by the KDC. This certificate is not used by the MTAs and thus does not
appear in the MTA MIB.

Signed By Self-Signed
Validity Period 20+ Years. It is intended that the validity period is long enough that this

certificate is never re-issued.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 134

MTA Root Certificate

Modulus Length 2048
Extensions keyUsage[c,m](keyCertSign, cRLSign)

subjectKeyIdentifier[n,m]
basicConstraints[c,m](cA=true, pathLenConstraint=1)

8.2.2.2 MTA Manufacturer Certificate
This certificate MUST be verified as part of a certificate chain containing the MTA Root Certificate, MTA
Manufacturer Certificate and the MTA Device Certificate.

The state/province, city and manufacturer’s facility are optional attributes. A manufacturer may have more than one
manufacturer’s certificate, and there may exist one or more certificates per manufacturer. All Certificates for the
same manufacturer may be provided to each MTA either at manufacture time or during a field update. The MTA
MUST select an appropriate certificate for its use by matching the issuer name in the MTA Device Certificate with
the subject name in the MTA Manufacturer Certificate. If present, the authorityKeyIdentifier of the device certificate
MUST be matched to the subjectKeyIdentifier of the manufacturer certificate as described in [32].

The <CompanyName> field that is present in O and CN MAY be different in the two instances.

Table 28. MTA Manufacturer Certificate

MTA Manufacturer Certificate

Subject Name Form C=<country>
O=<CompanyName>
[ST=<state/province>]
[L=<city>]
OU=IPCablecom
[OU=<Manufacturer’s Facility>]
CN=<CompanyName> IPCablecom CA

Intended Usage This certificate is issued to each MTA manufacturer and can be provided to
each MTA as part of the secure code download as specified by the
IPCablecom Security Specification (either at manufacture time, or during a
field update). This certificate appears as a read-only parameter in the MTA
MIB.
This certificate along with the MTA Device Certificate is used to
authenticate the MTA device identity (MAC address) during authentication
by the KDC.

Signed By MTA Root Certificate CA
Validity Period 20 Years
Modulus Length 2048
Extensions keyUsage[c,m](keyCertSign, cRLSign)

subjectKeyIdentifier[n,m]
authorityKeyIdentifier[n,m](keyIdentifier=<subjectKeyIdentifier value from
CA certificate>)
basicConstraints[c,m](cA=true, pathLenConstraint=0)

8.2.2.3 MTA Device Certificate
This certificate MUST be verified as part of a certificate chain containing the MTA Root Certificate, MTA
Manufacturer Certificate and the MTA Device Certificate.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 135

The state/province, city and manufacturer’s facility are optional attributes. The Manufacturer's Facility OU field, (if
present) MAY be different from the Manufacturer's Facility OU field (if present) in the MTA Manufacturer
certificate.

The MAC address MUST be expressed as six pairs of hexadecimal digits separated by colons, e.g.,
"00:60:21:A5:0A:23". The Alpha HEX characters (A-F) MUST be expressed as uppercase letters.

The MTA device certificate should not be replaced or renewed.

Table 29. MTA Device Certificate

MTA Device Certificate

Subject Name Form C=<country>
O=<Company Name>
[ST=<state/province>]
[L=<city>]
OU=IPCablecom
[OU=<Product Name>]
[OU=<Manufacturer’s Facility>]
CN=<MAC Address>

Intended Usage This certificate is issued by the MTA manufacturer and installed in the
factory. The provisioning server cannot update this certificate. This
certificate appears as a read-only parameter in the MTA MIB.
This certificate is used to authenticate the MTA device identity (MAC
address) during provisioning.

Signed By MTA Manufacturer Certificate CA
Validity Period At least 20 years
Modulus Length 1024, 1536, or 2048
Extensions keyUsage[c,o](digitalSignature, keyEncipherment)

authorityKeyIdentifier[n,m](keyIdentifier=<subjectKeyIdentifier value from
CA certificate>)

8.2.3 CableLabs Service Provider Certificate Hierarchy
The Service Provider Certificate Hierarchy is rooted at a CableLabs issued CableLabs Service Provider Root
certificate. That certificate is used as the issuing certificate of a set of service provider’s certificates. The service
provider’s certificates are used to sign an optional local system certificate. If the local system certificate exists then
that is used to sign the ancillary equipment certificates, otherwise the ancillary certificates are signed by the Service
Provider’s CA.

The information contained in the following table contains the specific values for the required fields according to
[32]. These specific values MUST be followed according to the table below, except that Validity Periods SHOULD
be as given in the tables. If a required field is not specifically listed then the guidelines in [32] MUST be followed.

8.2.3.1 CableLabs Service Provider Root Certificate
Before any Kerberos key management can be performed, an MTA and a KDC need to perform mutual
authentication using the PKINIT extension to the Kerberos protocol. An MTA authenticates a KDC after it receives
a PKINIT Reply message containing a KDC certificate chain. In authenticating the KDC, the MTA verifies the KDC
certificate chain, including KDC’s Service Provider Certificate signed by the CableLabs Service Provider Root CA.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 136

Table 30. CableLabs Service Provider Root Certificate

CableLabs Service Provider Root Certificate

Subject Name Form C=US
O=CableLabs
CN=CableLabs Service Provider Root CA

Intended Usage This certificate is used to sign Service Provider CA certificates. This
certificate is installed into each MTA at the time of manufacture or with a
secure code download as specified by the IPCablecom Security Specification
and cannot be updated by the Provisioning Server.
Neither this root certificate nor the corresponding public key appears in the
MTA MIB.

Signed By Self-signed
Validity Period 20+. It is intended that the validity period is long enough that this certificate is

never re-issued.
Modulus Length 2048
Extensions keyUsage[c,m](keyCertSign, cRLSign)

subjectKeyIdentifier[n,m]
basicConstraints[c,m](cA=true)

8.2.3.2 Service Provider CA Certificate
This is the certificate held by the service provider, signed by the CableLabs Service Provider Root CA. It is verified
as part of a certificate chain that includes the CableLabs Service Provider Root Certificate, Telephony Service
Provider Certificate, optional Local System Certificate and an end-entity server certificate. The authenticating
entities normally already possess the CableLabs Service Provider Root Certificate and it is not transmitted with the
rest of the certificate chain.

The fact that a Service Provider CA Certificate is always explicitly included in the certificate chain allows a Service
Provider the flexibility to change its certificate without requiring re-configuration of each entity that validates this
certificate chain (e.g., MTA validating a PKINIT Reply). Each time the Service Provider CA Certificate changes, its
signature MUST be verified with the CableLabs Service Provider Root Certificate. However, new certificate for the
same Service Provider MUST preserve the same value of the OrganizationName attribute in the SubjectName.

The <Company> field that is present in O and CN MAY be different in the two instances.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 137

Table 31. Service Provider CA Certificate

Service Provider CA Certificate

Subject Name Form C=<Country>
O=<Company>
CN=<Company> CableLabs Service Provider CA

Intended Usage This certificate corresponds to a top-level Certification Authority within a
domain of a single Service Provider. In order to make it easy to update this
certificate, each network element is configured with the OrganizationName
attribute of the Service Provider Certificate SubjectName. This is the only
attribute in the certificate that must remain constant.
In the case of an MTA, there is a read-write parameter in the MIB that
identifies the OrganizationName attribute for each Kerberos realm (that may
be shared among multiple MTA endpoints). The MTA does not accept
Service Provider certificates that do not match this value of the
OrganizationName attribute in the SubjectName.
An MTA needs to perform the first PKINIT exchange with the MSO KDC
right after a reboot, at which time its MIB tables are not yet configured. At
that time, the MTA MUST accept any Service Provider OrganizationName
attribute, but it MUST later check that the value added into the MIB for this
realm is the same as the one in the initial PKINIT Reply.

Signed By Signed by CableLabs Service Provider Certificate
Validity Period 20 years
Modulus Length 2048
Extensions keyUsage[c,m](keyCertSign, cRLSign)

subjectKeyIdentifier[n,m]
authorityKeyIdentifier[n,m](keyIdentifier=<subjectKeyIdentifier value from
CA certificate>)
basicConstraints[c,m](cA=true, pathLenConstraint=1)

8.2.3.3 Local System CA Certificate
This is the certificate held by the local system. The existence of this certificate is optional, as the Service Provider
CA may be used to directly sign all network server end-entity certificates. A certificate chain with a Local System
CA Certificate MUST consist of the CableLabs Service Provider Root Certificate, Service Provider CA Certificate,
Local System CA Certificate and an end-entity certificate.

The <Company> field that is present in O and CN MAY be different in the two instances.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 138

Table 32. Local System CA Certificate

Local System CA Certificate

Subject Name Form C=<Country>
O=<Company>
OU=<Local System Name>
CN=<Company> CableLabs Local System CA

Intended Usage A Service Provider CA may delegate the issuance of certificates to a regional
Certification Authority called Local System CA (with the corresponding
Local System Certificate).
Network servers are allowed to move freely between regional Certification
Authorities of the same Service Provider. Therefore, the MTA MIB does not
contain any information regarding a Local System Certificate (which might
restrict an MTA to KDCs within a particular region).

Signed By Service Provider CA Certificate
Validity Period 20 years.
Modulus Length 1024, 1536, 2048
Extensions keyUsage[c,m](keyCertSign, cRLSign)

subjectKeyIdentifier[n,m]
authorityKeyIdentifier[n,m](keyIdentifier=<subjectKeyIdentifier value from
CA certificate>)
basicConstraints[c,m](cA=true, pathLenConstraint=0)

8.2.3.4 Operational Ancillary Certificates
All of these are signed by the either the Local System CA or by the Service Provider CA. Other ancillary certificates
may be added to this standard at a later time.

8.2.3.4.1 Key Distribution Center Certificate

This certificate MUST be verified as part of a certificate chain containing the CableLabs Service Provider Root
Certificate, Service Provider CA Certificate and the Ancillary Device Certificates.

The PKINIT specification in Appendix III requires the KDC certificate to include the subjectAltName v.3 certificate
extension, the value of which must be the Kerberos principal name of the KDC.

Table 33. Key Distribution Center Certificate

Key Distribution Center Certificate

Subject Name Form C=<Country>
O=<Company>
[OU=<Local System Name>]
OU= CableLabs Key Distribution Center
CN=<DNS Name>

Intended Usage To authenticate the identity of the KDC server to the MTA during PKINIT
exchanges. This certificate is passed to the MTA inside the PKINIT replies
and is therefore not included in the MTA MIB and cannot be updated or
queried by the Provisioning Server.

Signed By Service Provider CA Certificate or Local System Certificate
Validity Period 20 years.
Modulus Length 1024, 1536 or 2048

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 139

Key Distribution Center Certificate

Extensions keyUsage[c,o](digitalSignature)
authorityKeyIdentifier[n,m](keyIdentifier=<subjectKeyIdentifier value from
CA certificate>)
subjectAltName[n,m] (See Appendix III)

8.2.3.4.2 Delivery Function (DF)

The text in this section has been removed because it is not within the scope of IPCablecom 1.0.

8.2.3.4.3 IPCablecom Server Certificates

These certificates MUST be verified as part of a certificate chain containing the CableLabs Service Provider Root
Certificate, Service Provider Certificate, Local System Operator Certificate (if used) and the Ancillary Device
Certificates.

These certificates are used to identify various servers in the IPCablecom system. For example, they may be used to
sign phase 1 IKE exchanges or to authenticate a PKINIT exchange. Although the Local System Name is optional, it
is REQUIRED when the Local System CA signs this certificate. 2IP address values MUST be specified in standard
dotted decimal notation: e.g., 245.120.75.22. DNS Name values MUST be specified as a fully qualified domain
name (FQDN): e.g., device.IPCablecom.com.

Table 34. IPCablecom Server Certificates

IPCablecom Server Certificates

Subject Name Form C=<Country>
O=<Company>
OU=IPCablecom
OU=[<Local System Name>]
OU=<Sub-System Name>[&<Sub-System Name>]
CN=[<Server Identifier>]

Or,
CN=[<Element ID>][&<Element ID>]

The CN will contain either a <Server Identifier> or one or more <Element
ID>s. If the CN contains a <Server Identifier>, the value of <Server
Identifier> MUST be the server’s FQDN or its IP address, optionally
followed by a colon (:) and an Element ID with no white space either before
or after the colon.
<Element ID> is the identifier that appears in billing event messages and it
MUST be included in a certificate of every server that is capable of
generating event messages. This includes a CMS, CMTS and MGC. There
MAY be multiple <Element ID> fields, each separated by the character "&".
[6] defines the Element ID as an 5-octet right-justified, space-padded ASCII-
encoded numerical string. When converting the Element ID for use in a
certificate, any spaces MUST be converted to ASCII zeroes (0x30). For
example, a CMTS that has the Element ID " 311" will have a common name
"00311".
The value of <Sub-System Name> MUST be one of the following:

• For Cable Modem Termination System: cmts

• For Call Management Server: cms

• For Media Gateway: mg

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 140

IPCablecom Server Certificates
• For Media Gateway Controller: mgc

• For Provisioning Server: ps

• For Record Keeping Server: rks

• For Signaling Gateway: sg

Components that contain combined elements (such as a CMS with an
integrated MGC) MUST indicate this in the Subject Name by including all
Sub-System Names, joined with the character "&", in the OU field. In the
case of combined elements, a single Element ID or multiple Element IDs may
be used. If multiple Element IDs are used, all Element IDs MUST be included
in the CN, and the order of these Element IDs MUST correspond to the order
of the Sub-System Name fields in the OU. The following is an example OU
and CN for a combined CMS and MGC. The CMS with Element ID " 311"
and a MGC with Element ID " 312".

OU=cms&mgc
CN=00311&00312

The following is an example OU and CN for a combined CMS and MGC. In
this case, the CMS and MGC share a single Element ID of " 311".

OU=cms&mgc
CN=00311&00311

Intended Usage These certificates are used to identify various servers in the IPCablecom
system. For example they may be used to sign phase 1 IKE exchanges or to
authenticate a device in a PKINIT exchange.

Signed By Telephony Service Provider Certificate or Local System Certificate
Validity Period Set by MSO policy
Modulus Length 2048

Extensions keyUsage[c,o](digitalSignature, keyEncipherment)
authorityKeyIdentifier[n,m](keyIdentifier=<subjectKeyIdentifier value from
CA cert>)
subjectAltName[n,m](dNSName=<DNSName> | iPAddress=<IP Address
Name>)
The keyUsage tag is optional. When it is used it MUST be marked as critical.
The subjectAltName extension MUST be included for all servers that are
capable of generating event messages.
For all other servers, the subjectAltName extension MAY be included. If the
subjectAltName extension is included, it MUST include the corresponding
name value as specified in the CN field of the subject.

8.2.4 Certificate Revocation
Certificate Revocation is out of scope for IPCablecom 1.0.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 141

9 CRYPTOGRAPHIC ALGORITHMS
This section describes the cryptographic algorithms used in the IPCablecom security specification. When a
particular algorithm is used, the algorithm MUST follow the corresponding specification.

9.1 AES

AES-128 is a 128-bit block cipher that MUST be implemented according to the AES (Advanced Encryption
Standard) proposed submission specified in [33]. AES-128 is used in CBC mode with a 128-bit block size in
IPCablecom. AES-128 requires 10 rounds of cryptographic operations in encryption or decryption. The Initialization
Vector for CBC mode is specified for each use of AES in IPCablecom.

In 1997, the National Institute of Standards and Technology (NIST) initiated a process to select a symmetric-key
encryption algorithm to be used to protect sensitive (unclassified) Federal information in furtherance of NIST's
statutory responsibilities. In 1998, NIST announced the acceptance of fifteen candidate algorithms and requested the
assistance of the cryptographic research community in analyzing the candidates. This analysis included an initial
examination of the security and efficiency characteristics for each algorithm. NIST reviewed the results of this
preliminary research and selected MARS, RC6(tm), Rijndael, Serpent, and Twofish as finalists. Having reviewed
further public analysis of the finalists, NIST has decided to propose Rijndael as the Advanced Encryption Standard.

9.2 DES

The Data Encryption Standard (DES) is specified in [29] For Media Stream encryption, IPCablecom does not
require error checking on the DES key, and the full 64-bits of key provided to the DES algorithm will be generated
according to section 7.6.2.3.3.1.

9.2.1 XDESX
An option for the encryption of RTP packets is DESX-XEX, XDESX, or DESX, has been proven as a viable method
for overcoming the weaknesses in DES while not greatly adding to the implementation complexity. The strength of
DESX against key search attacks is presented in Informative Reference [3]. The CBC mode of DESX-XEX is
shown a figure below, where DESX-XEX is executed within the block called "block cipher." Inside the block,
DESX-XEX is performed as shown in a figure below using a 192-bit key. K1 is the first 8-bytes of the key, and K2
represents the second 8-bytes of key; and K3 the third 8-bytes of key.

9.2.2 DES-CBC-PAD
This variant of DES is also based on the analysis of DESX presented in Informative Reference [3]. When using
DESX in CBC mode, an optimized architecture is possible. It can be described in terms of the DES-CBC
configuration plus the application of a random pad on the final DES-CBC output blocks. This configuration uses
128-bits of keying material, where 64-bits are applied to the DES block according to [29], and an additional 64-bits
of keying material is applied as the random pad on the final DES-CBC output blocks.

In this case, the same IV used to initialize the CBC mode is used as keying material for the random pad. Each block
of DES-CBC encrypted output is XOR-ed with the 64-bit Initialization Vector that was used to start the CBC
operation. If a short block results from using Residual Block Termination (see section 9.3), the left-most-bits of the
IV are used in the final XOR padding operation. This mode of DES-CBC is shown a figure below, where DES is
executed in the block called "block cipher." A 64-bit key value is used.

9.2.3 3DES-EDE
Another option for the encryption of RTP packets for IPCablecom, is 3DES-EDE-CBC. The CBC mode of 3DES-
EDE is shown in a figure below, where 3DES-EDE is executed within the block called "block cipher." Inside the
block, 3DES-EDE is performed as shown in a figure below using a 128-bit key. K1 is the first 8-bytes of the key,
and K2 represents the second 8-bytes of key; and K3=K1.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 142

9.3 Block Termination

If block ciphers are supported, a short block (n bits < block size depending on the cipher algorithms) MUST be
terminated by residual block termination as shown in the figure below. Residual block termination (RBT) is
executed as follows:

Given a final block having n bits, where n is less than block size, the n bits are padded up to a block by appending
(block size – n) bites of arbitrary value to the right of the n-bits. The resulting block is encrypted using B-bit CFB
mode, with the next-to-last ciphertext block serving as the initialization vector for the CFB operation (see
Informative Reference [1], B. Schneier's Applied Cryptography). Here, B stands for the cipher-specific block size.
The leftmost n bits of the resulting ciphertext are used as the short cipher block. In the special case where the
complete payload is less than the cipher block size, the procedure is the same as for a short final block, with the
provided initialization vector serving as the initialization vector for the operation. Residual block termination is
illustrated in the figure below for both encryption and decryption operations.

Block
Cipher

Block
Cipher

+

Block
Cipher

+ +IV

Pi

Ci Ci+2Ci+1

Pi+2
Pi+1

Block
Cipher

Block
Cipher

+

Block
Cipher

+ +IV

Pi

Ci Ci+2
Ci+1

Pi+2
Pi+1

CBC Encryption Architecture

CBC Decryption Architecture

Figure 21. CBC Mode

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 143

Block
Cipher

Block
Cipher

+
Block
Cipher

+ +IV

Pi

Ci Ci+2Ci+1

Pi+2
Pi+1

Block
Cipher

Block
Cipher

Block
Cipher

IV

Pi

Ci Ci+2Ci+1

Pi+2
Pi+1

CBC-PAD Encryption Architecture

CBC-PAD Decryption Architecture

+ ++Key = IV

+ ++

Key = IVKey = IV

Key = IVKey = IVKey = IV

+ ++

Figure 22. CBC PAD Mode

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 144

DES
Encrypt

Encryption

Decryption

Block
Cipher

K1

K3

K2

DES
Decrypt

Block
Cipher

K1

K3

K2

+

+

+

+

Figure 23. DESX-XEX as Block Cipher

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 145

DES
Encrypt

DES
Encrypt

DES
Decrypt

Encryption

Decryption

Block
Cipher

K1

K3

K2

DES
Decrypt

DES
Decrypt

DES
Encrypt

Block
Cipher

K1

K3

K2

Figure 24. 3DES-EDE as Block Cipher

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 146

Block
Cipher

Block
Cipher

+

Block
Cipher

+

Select
Leftmost

j-bits
+

IV

Pi

Ci Ci+2Ci+1

Pi+2Pi+1

Block
Cipher

Block
Cipher

+

Block
Cipher

+
Select

Leftmost
j-bits

+
IV

Pi

Ci Ci+2
Ci+1

Pi+2Pi+1

Encryption
CBC w/ Residual Block Termination

Decryption
CBC w/ Residual Block Termination

Figure 25. CBC with Residual Block Termination

9.4 RSA Signature

All public key signatures for IPCablecom MUST be generated and verified using the RSA signature algorithm
described in [16] The format for all IPCablecom signatures MUST be compliant with the Cryptographic Message
Syntax [12].

9.5 HMAC-SHA1

The keyed hash employed by the HMAC-Digest Attribute MUST use the HMAC message authentication method
[11] with the SHA-1 hash algorithm [15].

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 147

9.6 Key Derivation

Key derivation sections in this document refer to a function F(S, seed), where S is a shared secret from which keying
material is derived, and seed is a constant string of bytes. Below is the specification of F(S, seed), borrowed from
TLS [17]:

F(S, seed) = HMAC_SHA-1(S, A(1) + seed) +
HMAC_SHA-1(S, A(2) + seed) +
HMAC_SHA-1(S, A(3) + seed) + …

where + indicates concatenation.

A() is defined as:
A(0) = seed
A(i) = HMAC_SHA-1(S, A(i-1))

F(S, seed) is iterated as many times as is necessary to produce required quantity of data. Unused bytes at the end of
the last iteration will be discarded.

9.7 The MMH-MAC

In this section the MMH Function and the MMH Message Authentication Code (MAC) are described. The MMH-
MAC is the message authentication code option for the media flows. As discussed in section 7.6.2, the MMH-MAC
is computed over the RTP header and the payload is generated by the codec. The MMH Function will be described
next, followed by a description of the MMH-MAC.

9.7.1 The MMH Function
The Multilinear Modular Hash (MMH) Function described below is a variant of the MMH Function described in
[18]. Some of the computations described below use signed arithmetic whereas the computations in [18] use
unsigned arithmetic. The signed arithmetic variant described here was selected for its computational efficiency when
implemented on DSPs. All of the properties shown for the MMH function in [18] continue to hold for the signed
variant.

The MMH Function has three parameters: the word size, the number of words of input, and the number of words of
output. MMH[ω,s,t] specifies the hash function with word size ω, s input words and t output words. For IPCablecom
the word size is fixed to 16 bits: ω =16. The number of output words will be either 1 or 2: t ∈{1,2}. The MMH Hash
Function will first be described for t=1, i.e., one output word.

9.7.1.1 MMH[16,s,1]
For the remainder of this section 9.7, MMH[16,s,1] is denoted by H. In addition to s words of input, H also takes as
input a key of s words. When H is used in computing the MMH-MAC, the key is randomly generated and remains
fixed for several inputs as described in section 9.7.2. The key is denoted by k and the ith word of the key by ki:
k=k1,k2,…,ks. Likewise the input message is denoted by m and the ith word of the input message by mi: m = m1,
m2,…, ms.

To describe H, the following definitions are needed. For any even positive integer n, Sn is defined to be the
following set of n integers: {-n/2,…,0,…,(n/2)-1}. For example, = {-215,…,0,…,215-1} is the set of signed 16

bit integers. For any integer z, z smod n is the unique element ω of Sn such that z ≡ ω (mod n). For example, if z is a
32 bit signed integer in 32 bit twos complement representation, then z smod 216 can be computed by taking the 16
least significant bits of z and interpreting those bits in 16 bit twos complement representation.

For any positive integer q, Zq denotes the following set of q integers: {0, 1, …, q-1}.

As described above H takes as input a key of s words. Each of the s words is interpreted as a 16 bit signed integer,
i.e., an element of . H also takes as input a message of s words. Each of the s words is interpreted as a 16 bit

162S

162S

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 148

signed integer, i.e., an element of . The output of H is an unsigned 16-bit integer, i.e., an element of .

Alternatively, the range of H is and the domain is .

H is defined by a series of steps. For k,m ∈ ,

Define H1 as H1(k,m) = .

Define H2 as H2(k,m) = H1(k,m) mod p where p is the prime number p = 216+1.

Define H as H(k,m) = H2(k,m) mod 216.

Equivalently,

Each step is discussed in detail below.

Step1. H1(k,m) is the inner product of two vectors each of s 16 bit signed integers. The result of the inner
product is taken smod 232 to yield an element of .5 That is, if the inner product is in twos complement
representation of 32 or more bits, the 32 least significant bits are retained and the resulting integer is interpreted
in 32 bit twos complement representation.

Step 2. This step consists of taking an element x of and reducing it mod p to yield an element of Zp. If x is
represented in 32 bit twos complement notation then this reduction can be accomplished very simply as follows.
Let a be the unsigned integer given by the 16 most significant bits of x. Let b be the unsigned integer given by
the 16 least significant bits of x. There are two cases depending upon whether x is negative.

Case 1. If x is non-negative then x = a216+b where a ∈{0,…,215-1} and b ∈ {0,…,216-1}. From the modular
equation:

a216+b ≡ a216 + b – a(216+1) (mod (216 + 1))

it follows that x ≡ b – a(mod p). The quantity b-a is in the range {-215+1,…,216 – 1}. Therefore if b-a is non-
negative then x mod p = b – a. If b – a is negative then x mod p = b-a+p.

Case 2. If x is negative then x = a216 + b – 232 where a ∈{215,…,216 – 1}
and b ∈{0,…,216 - 1}. From the modular equation

a216 + b – 232 ≡ b + a216 – a(216+1) - 232 + 216(216 + 1) (mod (216 + 1))

it follows that x ≡ b – a + 216(mod p). The range of the quantity b – a + 216 is given by:

1 ≤ b – a + 216 ≤ 217 – 215 - 1 ≤ 2p – 1

Therefore, if b – a + 216 < p then x mod p = b – a+ 216. If b – a + 216 ≥ p
then x mod p = b – a + 216 – p.

Step 3. This step takes an element of Zp and reduces it mod 216. This is equivalent to taking the 16 least
significant bits.

9.7.1.2 MMH[16,s,2]
This section describes the MMH Function with an output length of two words, which in this case is 32 bits. For
convenience, let H’ = MMH[16,s,2]. H’ takes a key of s+1 words. Let k = k1,…,ks+1. Furthermore, define k(1) to be

5 The entire sum need not be computed before performing the smod 232 operation. The smod 232 operation can be computed on
partial sums since (x + y) smod 232 = (x smod 232 + y smod 232) smod 232.

162S 162Z
ss SS 1616 22 × 162Z

sS 162

32
1 2modsmk ii

s
i ⋅∑ =

1632

1
2modmod2mod),(

⋅= ∑

=

psmkmkH
s

i
ii

322S

322S

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 149

the s words of k starting with k1, i.e., k(1) =k1,…,ks. Define k(2) to be the s words of k, starting with k2, i.e.,
k(2)=k2,…,ks+1. For any and any m, H’(k,m) is computed by first computing H(k(1),m) and then
H(k(2),m) and concatenating the results. That is, H’(k,m) = H(k(1),m) ° H(k(2),m).

9.7.2 The MMH-MAC
This section describes the MMH-MAC. The MMH-MAC has three parameters; the word size, the number of words
of input, and the number of words of output. MMH-MAC[ω,s,t] specifies the message authentication code with
word size ω, s input words and t output words. For IPCablecom the wordsize is fixed to 16 bits: ω = 16. The number
of output words will be either 1 or 2: t ∈{1,2}.

For convenience, let M = MMH-MAC[16,s,t]. When using M, a sender and receiver share a key k of s + t -1 words.
In addition, they share a sequence of key streams of t words each, one one-time pad for each message sent. Let r(i) be
the key stream used for the ith message sent and received. For the ith message, m(i) , the message authentication code
is computed as:

M(k, r(i) , m(i)) = H(k, m(i)) + r(i) .

Here, H = MMH[16,s,t], r(i) is in and addition is mod 216

9.7.2.1 MMH-MAC When Using a Block Cipher
When calculating the MMH-MAC when encryption is performed by one of the available block ciphers, the block
cipher is used to calculate the t words of r (i) key stream (pad) as defined in section 7.6.2.1.2.2.3.

9.7.2.2 Handling Variable-Size Data
In order to handle data of all possible sizes up to a maximum value, the following rules MUST be followed for
computing an MMH function:

• If the data is not a multiple of the word size, pad the data up to a multiple of the word size (16-bits) with zero-
bytes. In other words, if the length of message m is not a multiple of word size w, but rather of length b octets, b
= n * w + r with n >= 0 and 0 < r < w, then pad message m at the end with w–r zero-bytes before passing it as
the input to M.

• It the key is larger than what is needed for a particular message, truncate the key. In other words, if a message m
is not of length s words, but rather of length v < s words, then truncate the value of the key k to v+t-1 words
before it is used to calculate the MMH hash. (For MMH hash with 1 word output, t=1 and k is truncated to v
words. For 2 word output, t=2 and k is truncated to v+1 words.)

9.8 Random Number Generation

Good random number generation is vital to most cryptographic mechanisms. Implementations SHOULD do their
best to produce true-random seeds; they should also use cryptographically strong pseudo-random number generation
algorithms. RFC 1750 (see [2]) gives some suggestions; other possibilities include use of a per-MTA secret installed
at manufacture time and used in the random number generation process.

1
216
+∈ sSk sSm 162∈

162Z

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 150

10 PHYSICAL SECURITY

10.1 Protection for MTA Key Storage

An MTA MUST maintain in permanent write-once memory an RSA key pair. An MTA SHOULD deter
unauthorized physical access to this keying material.

The level of physical protection of keying material required by the IPCablecom security specification for an MTA is
specified in terms of the security levels defined in the FIPS PUBS 140-2, Security Requirements for Cryptographic
Modules, standard. An MTA SHOULD, at a minimum meet FIPS PUBS 140-2 Security Level 1 requirements.

The IPCablecom Security specification’s minimal physical security requirements for an MTA will not, in normal
practice, jeopardize a customer’s data privacy. Assuming the subscriber controls the access to the MTA with the
same diligence they would protect a cellular phone, physical attacks on that MTA to extract keying data are likely to
be detected by the subscriber.

An MTA’s weak physical security requirements, however, could undermine the cryptographic protocol’s ability to
meet its main security objective: to provide a service operator with strong protection from theft of high value
networks.

The IPCablecom Security specification requirements protect against unauthorized access to these network services
by enforcing an end-to-end message integrity and encryption of signaling flows across the network and by
employing an authenticated key management protocol. If an attacker is able to legitimately subscribe to a set of
services and also gain physical access to an MTA containing keying material, then in the absence of strong physical
protection of this information, the attacker can extract keying material from the MTA, and redistribute the keys to
other users running modified illegitimate MTA’s, effectively allowing theft of network services.

There are two distinct variations of "active attacks" involving the extraction and redistribution of cryptographic
keys. These include the following:

• An "RSA active clone" would actively participate in IPCablecom key exchanges. An attacker must have some
means by which to remove the cryptographic keys that enable services, from the clone master, and install these
keys into a clone MTA. An active clone would work in conjunction with an active clone master to passively
obtain the clone master’s keying material and then actively impersonate the clone master. A single active clone
may have numerous active clone master identities from which to select to obtain access to network services.
This attack allows, for example, the theft of non-local voice communications.

A DH active clone would also actively participate in the IPCablecom key exchanges and like the RSA active
clone, would require an attacker to extract the cryptographic keys that enable the service from the clone master
and install these keys into a clone MTA. However, unlike the RSA active clone, the DH active clone must
obtain the clone masters random number through alternate means or perform the key exchange and risk
detection. Like an RSA active clone, an DH active clone may have numerous clone master identities from
which to select to obtain access to the network services.

• An "active black box" MTA, holding another MTA’s session or IPsec keys, would use the keys to obtain access
to network-based services or traffic flows similar to the RSA active clone. Since both session keys and IPsec
keys change frequently, such clones have to be periodically updated with the new keying material, using some
out-of-band means.

An active RSA clone, for example, could operate on a cable access network within whatever geographic region the
cloned parent MTA was authorized to operate in. Depending upon the degree to which a service operator’s
subscriber authorization system restricted the location from which the MTA could operate, the clone’s scope of
operation could extend well beyond a single DOCSIS MAC domain.

An active clone attack may be detectable by implementing the appropriate network controls in the system
infrastructure. Depending on the access fraud detection methods that are in place, a service operator has a good
probability of detecting a clone’s operation should it attempt to operate within the network. The service operator
could then take defensive measures against the detected clone. For example, in the case of an active RSA clone, it
could block the device’s future network access by including the device certificate on the certificate hot list. Also the
service operator’s subscriber authorization system could limit the geographic region over which a subscriber,

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 151

identified by its cryptographic credentials, could operate. Additionally the edge router functionality in the CMTS
could limit any access based upon IP address. These methods would limit the region over which an active RSA
clone could operate and reduce the financial incentive for such an attack.

The architectural guidelines for IPCablecom security are determined by balancing the revenues that could be lost
due to the classes of active attacks against the cost of the methods to prevent the attack. At the extreme side of
preventive methods available to thwart attacks, both physical security equivalent to FIPS PUB 140-2 Level 3 and
network based fraud detection methods could be used to limit the access fraud that allows theft of network based
services. The network based intrusion detection of active attacks allows operators to consider operational defenses
as an alternative to increased physical security. If the revenues threatened by the active attacks increase significantly
to the point where additional protective mechanisms are necessary, the long term costs of operational defenses
would need to be compared with the costs of migrating to MTAs with stronger physical security. The inclusion of
physical security should be an implementation and product differentiation specific decision.

Although the scope of the current IPCablecom specifications do not specifically define requirements for MTAs to
support any requirements other than voice communications, the goal of the IPCablecom effort is to provide for the
eventual inclusion of integrated services. Part of these integrated services may include the "multicast" of high value
content or extremely secure multicast corporate videoconference sessions.

Two additional attacks enabling a compromise of these types of services are defined:

1. An "RSA passive clone" passively monitors the parent MTA’s key exchanges and, having a copy of the parent
MTA’s RSA private key, is able to obtain the same traffic keying material the parent MTA has access to. The
clone then uses the keying material to decrypt downstream traffic flows it receives across the shared medium.
This attack is limited in that it only allows snooping, but if the traffic were of high value, the attack could
facilitate the theft of high value multicast traffic.

2. A "Passive black box" MTA, holding another MTA’s short-term (relative to the RSA key) keys, uses the keying
material to gain access to encrypted traffic flows similar to the RSA passive clone.

The passive attacks, unlike the active attacks, are not detectable using network based intrusion detection techniques
since these units never make themselves known to the network while performing the attack. However, this type of
service theft has unlimited scale since the passive clones and black boxes, even though they operate on different
cable access networks (sometimes referred to as the same DOCSIS MAC domain) as the parent MTA from whom
the keys were extracted, gain access to the protected data the parent MTA is currently receiving since the encryption
of the data most likely occurred at the source. (These are general IP multicast services, not to be confused with the
specific DOCSIS 1.1 / BPI+ multicast implementation, where passive clones would be restricted to a single
downstream CMTS segment.) The snooping of the point-to-point data is limited to the DOCSIS MAC domain of the
parent MTA. Passive attacks may be prevented by ensuring that the cryptographic keys that are used to enable the
services cannot be tampered with in any manner.

In setting goals and guidelines for the IPCablecom security architecture, an assessment has to be made of the value
of the services and content that can be stolen or monitored by key extraction and redistribution to passive MTAs.
The cost of the solution should not be greater that the lost revenue due to theft of the service or subscribers
terminating the service due to lack of privacy. However at this time, there is no clear cost that can be attributed to
either the lost revenue from high value multicast services or the loss of subscribers due to privacy issues unique to
this type of network. Therefore, it was concluded that passive key extraction and redistribution attacks would pose
an indeterminate financial risk to service operators; and that the cost of protection (i.e., incorporation of stronger
physical security into the MTA) should be balanced against the value of the risk. As with the active attacks, the
decision to include additional functionality to implement physical security in the MTA should be left as an
implementation and product differentiation issue and not be mandated as a requirement of the IPCablecom security
specification.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 152

10.2 MTA Key Encapsulation

As stated in the previous section, FIPS PUB 140-2 Security Level 1 specifies very little actual physical security and
that an MTA MUST deter unauthorized "physical" access to its keying material. This restricted access also includes
any ability to directly read the keying material using any of the MTA interfaces.

One of the (many) requirements of FIPS PUB 140-2 Security Level 3 is that "the entry or output of plaintext Critical
Security Parameters (CSPs) be performed using ports that are physically separated from other ports, or interfaces
that are logically separated using a trusted path from other interfaces. Plaintext CSPs may be entered into or output
from the cryptographic module in encrypted form (in which case they may travel through enclosing or intervening
systems)". As also mentioned in the previous section, the IPCablecom security specification is not requiring
compliance with any of the FIPS PUB 140-2 Security Level 3 requirements.

However, it is strongly recommended that any persistent keying material SHOULD be encapsulated such that there
is no way to extract the keying material from the MTA using any of the MTA interfaces (either required in the
IPCablecom specifications or proprietary provided by the vendor) without modifications to the MTA.

In particular, an MTA subscriber may also be connected to the Internet via a Cable Modem (which may be
embedded in the same MTA). In that case, hackers may potentially exploit any weakness in the configuration of the
subscriber’s local network and steal MTA’s secret and private keys over the network. If instead, the MTA subscriber
is connected to a company Intranet, the same threat still exists, although from a smaller group of people.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 153

11 SECURE SOFTWARE DOWNLOAD
IPCablecom 1.0 includes only Embedded MTAs. E-MTAs are embedded with DOCSIS 1.1 cable modems
(including BPI+). E-MTAs MUST have their software upgraded by the Cable Modem according to the DOCSIS 1.1
requirements as specified in [8] and [9].

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 154

Appendix I IPCablecom Admin Guidelines & Best Practices
(Informative)

This section describes various administration guidelines and best practices recommended by IPCablecom. These are
included to help facilitate network administration and/or strengthen overall security in the IPCablecom network.

I.1 Routine CMS Service Key Refresh
IPCablecom recommends that the CMS service keys be routinely changed (refreshed) at least once every 90 days in
order to reduce the risk of key compromises. The refresh period should be a provisioned parameter that can be use in
one the following ways:

In the case of manual key changes, an administrator is prompted or reminded to manually change a CMS service
key.

In the case of autonomous key changes (using Kerberos Set/Change Password) it will define the refresh period.

Note that in the case of autonomous key refreshes, whereby administrative overhead and scalability are not an issue,
it may be desirable to use a refresh period that is less than 90 days (but at least the maximum ticket lifetime). This
may further reduce the risk of key compromise.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 155

Appendix II Kerberos Network Authentication Service (Normative)

The Kerberos Network Authentication Service specification is currently still an IETF draft. This document complies
only with the version of the draft that is included in this section. The IPCablecom security team will continue to
track progress of the Kerberos Network Authentication Service draft through the IETF.

The Kerberos Network Authentication Service

INTERNET-DRAFT Clifford Neuman
 John Kohl
 Theodore Ts'o
 November 24, 2000
 Expires May 24, 2001

The Kerberos Network Authentication Service (V5)

draft-ietf-cat-kerberos-revisions-07.txt.

STATUS OF THIS MEMO

This document is an Internet-Draft and is in full conformance with all
provisions of Section 10 of RFC 2026. Internet-Drafts are working documents
of the Internet Engineering Task Force (IETF), its areas, and its working
groups. Note that other groups may also distribute working documents as
Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and
may be updated, replaced, or obsoleted by other documents at any time. It is
inappropriate to use Internet-Drafts as reference material or to cite them
other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

To learn the current status of any Internet-Draft, please check the
"1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
Directories on ftp.ietf.org (US East Coast), nic.nordu.net (Europe),
ftp.isi.edu (US West Coast), or munnari.oz.au (Pacific Rim).

The distribution of this memo is unlimited. It is filed as
draft-ietf-cat-kerberos-revisions-07.txt, and expires May 24, 2001.
Please send comments to: ietf-krb-wg@anl.gov

ABSTRACT

This document provides an overview and specification of Version 5 of the
Kerberos protocol, and updates RFC1510 to clarify aspects of the protocol
and its intended use that require more detailed or clearer explanation than
was provided in RFC1510. This document is intended to provide a detailed
description of the protocol, suitable for implementation, together with
descriptions of the appropriate use of protocol messages and fields within
those messages.

This document is not intended to describe Kerberos to the end user, system
administrator, or application developer. Higher level papers describing
Version 5 of the Kerberos system [NT94] and documenting version 4 [SNS88],
are available elsewhere.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 156

OVERVIEW

This INTERNET-DRAFT describes the concepts and model upon which the Kerberos
network authentication system is based. It also specifies Version 5 of the
Kerberos protocol.

The motivations, goals, assumptions, and rationale behind most design
decisions are treated cursorily; they are more fully described in a paper
available in IEEE communications [NT94] and earlier in the Kerberos portion
of the Athena Technical Plan [MNSS87]. The protocols have been a proposed
standard and are being considered for advancement for draft standard through
the IETF standard process. Comments are encouraged on the presentation, but
only minor refinements to the protocol as implemented or extensions that fit
within current protocol framework will be considered at this time.

Requests for addition to an electronic mailing list for discussion of
Kerberos, kerberos@MIT.EDU, may be addressed to kerberos-request@MIT.EDU.
This mailing list is gatewayed onto the Usenet as the group
comp.protocols.kerberos. Requests for further information, including
documents and code availability, may be sent to info-kerberos@MIT.EDU.

BACKGROUND

The Kerberos model is based in part on Needham and Schroeder's trusted
third-party authentication protocol [NS78] and on modifications suggested by
Denning and Sacco [DS81]. The original design and implementation of Kerberos
Versions 1 through 4 was the work of two former Project Athena staff
members, Steve Miller of Digital Equipment Corporation and Clifford Neuman
(now at the Information Sciences Institute of the University of Southern
California), along with Jerome Saltzer, Technical Director of Project
Athena, and Jeffrey Schiller, MIT Campus Network Manager. Many other members
of Project Athena have also contributed to the work on Kerberos.

Version 5 of the Kerberos protocol (described in this document) has evolved
from Version 4 based on new requirements and desires for features not
available in Version 4. The design of Version 5 of the Kerberos protocol was
led by Clifford Neuman and John Kohl with much input from the community. The
development of the MIT reference implementation was led at MIT by John Kohl
and Theodore T'so, with help and contributed code from many others. Since
RFC1510 was issued, extensions and revisions to the protocol have been
proposed by many individuals. Some of these proposals are reflected in this
document. Where such changes involved significant effort, the document cites
the contribution of the proposer.

Reference implementations of both version 4 and version 5 of Kerberos are
publicly available and commercial implementations have been developed and
are widely used. Details on the differences between Kerberos Versions 4 and
5 can be found in [KNT92].

1. Introduction

Kerberos provides a means of verifying the identities of principals, (e.g. a
workstation user or a network server) on an open (unprotected) network. This
is accomplished without relying on assertions by the host operating system,
without basing trust on host addresses, without requiring physical security
of all the hosts on the network, and under the assumption that packets
traveling along the network can be read, modified, and inserted at
will[1.1]. Kerberos performs authentication under these conditions as a
trusted third-party authentication service by using conventional (shared
secret key [1.2]) cryptography. Kerberos extensions described in [PKINIT
reference as RFC] provide for the use of public key cryptography during
certain phases of the authentication protocol. These extensions allow
authentication of users registered with public key certification

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 157

authorities, and provide certain benefits of public key cryptography in
situations where they are needed.

The basic Kerberos authentication process proceeds as follows: A client
sends a request to the authentication server (AS) requesting 'credentials'
for a given server. The AS responds with these credentials, encrypted in the
client's key. The credentials consist of 1) a 'ticket' for the server and 2)
a temporary encryption key (often called a "session key"). The client
transmits the ticket (which contains the client's identity and a copy of the
session key, all encrypted in the server's key) to the server. The session
key (now shared by the client and server) is used to authenticate the
client, and may optionally be used to authenticate the server. It may also
be used to encrypt further communication between the two parties or to
exchange a separate sub-session key to be used to encrypt further
communication.

Implementation of the basic protocol consists of one or more authentication
servers running on physically secure hosts. The authentication servers
maintain a database of principals (i.e., users and servers) and their secret
keys. Code libraries provide encryption and implement the Kerberos protocol.
In order to add authentication to its transactions, a typical network
application adds one or two calls to the Kerberos library directly or
through the Generic Security Services Application Programming Interface,
GSSAPI, described in separate document [ref to GSSAPI RFC]. These calls
result in the transmission of the necessary messages to achieve
authentication.

The Kerberos protocol consists of several sub-protocols (or exchanges).
There are two basic methods by which a client can ask a Kerberos server for
credentials. In the first approach, the client sends a cleartext request for
a ticket for the desired server to the AS. The reply is sent encrypted in
the client's secret key. Usually this request is for a ticket-granting
ticket (TGT) which can later be used with the ticket-granting server (TGS).
In the second method, the client sends a request to the TGS. The client uses
the TGT to authenticate itself to the TGS in the same manner as if it were
contacting any other application server that requires Kerberos
authentication. The reply is encrypted in the session key from the TGT.
Though the protocol specification describes the AS and the TGS as separate
servers, they are implemented in practice as different protocol entry points
within a single Kerberos server.

Once obtained, credentials may be used to verify the identity of the
principals in a transaction, to ensure the integrity of messages exchanged
between them, or to preserve privacy of the messages. The application is
free to choose whatever protection may be necessary.

To verify the identities of the principals in a transaction, the client
transmits the ticket to the application server. Since the ticket is sent "in
the clear" (parts of it are encrypted, but this encryption doesn't thwart
replay) and might be intercepted and reused by an attacker, additional
information is sent to prove that the message originated with the principal
to whom the ticket was issued. This information (called the authenticator)
is encrypted in the session key, and includes a timestamp. The timestamp
proves that the message was recently generated and is not a replay.
Encrypting the authenticator in the session key proves that it was generated
by a party possessing the session key. Since no one except the requesting
principal and the server know the session key (it is never sent over the
network in the clear) this guarantees the identity of the client.

The integrity of the messages exchanged between principals can also be
guaranteed using the session key (passed in the ticket and contained in the
credentials). This approach provides detection of both replay attacks and

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 158

message stream modification attacks. It is accomplished by generating and
transmitting a collision-proof checksum (elsewhere called a hash or digest
function) of the client's message, keyed with the session key. Privacy and
integrity of the messages exchanged between principals can be secured by
encrypting the data to be passed using the session key contained in the
ticket or the sub-session key found in the authenticator.

The authentication exchanges mentioned above require read-only access to the
Kerberos database. Sometimes, however, the entries in the database must be
modified, such as when adding new principals or changing a principal's key.
This is done using a protocol between a client and a third Kerberos server,
the Kerberos Administration Server (KADM). There is also a protocol for
maintaining multiple copies of the Kerberos database. Neither of these
protocols are described in this document.

1.1. Cross-realm operation

The Kerberos protocol is designed to operate across organizational
boundaries. A client in one organization can be authenticated to a server in
another. Each organization wishing to run a Kerberos server establishes its
own 'realm'. The name of the realm in which a client is registered is part
of the client's name, and can be used by the end-service to decide whether
to honor a request.

By establishing 'inter-realm' keys, the administrators of two realms can
allow a client authenticated in the local realm to prove its identity to
servers in other realms[1.3]. The exchange of inter-realm keys (a separate
key may be used for each direction) registers the ticket-granting service of
each realm as a principal in the other realm. A client is then able to
obtain a ticket-granting ticket for the remote realm's ticket-granting
service from its local realm. When that ticket-granting ticket is used, the
remote ticket-granting service uses the inter-realm key (which usually
differs from its own normal TGS key) to decrypt the ticket-granting ticket,
and is thus certain that it was issued by the client's own TGS. Tickets
issued by the remote ticket-granting service will indicate to the
end-service that the client was authenticated from another realm.

A realm is said to communicate with another realm if the two realms share an
inter-realm key, or if the local realm shares an inter-realm key with an
intermediate realm that communicates with the remote realm. An
authentication path is the sequence of intermediate realms that are
transited in communicating from one realm to another.

Realms are typically organized hierarchically. Each realm shares a key with
its parent and a different key with each child. If an inter-realm key is not
directly shared by two realms, the hierarchical organization allows an
authentication path to be easily constructed. If a hierarchical organization
is not used, it may be necessary to consult a database in order to construct
an authentication path between realms.

Although realms are typically hierarchical, intermediate realms may be
bypassed to achieve cross-realm authentication through alternate
authentication paths (these might be established to make communication
between two realms more efficient). It is important for the end-service to
know which realms were transited when deciding how much faith to place in
the authentication process. To facilitate this decision, a field in each
ticket contains the names of the realms that were involved in authenticating
the client.

The application server is ultimately responsible for accepting or rejecting
authentication and should check the transited field. The application server
may choose to rely on the KDC for the application server's realm to check

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 159

the transited field. The application server's KDC will set the
TRANSITED-POLICY-CHECKED flag in this case. The KDC's for intermediate
realms may also check the transited field as they issue
ticket-granting-tickets for other realms, but they are encouraged not to do
so. A client may request that the KDC's not check the transited field by
setting the DISABLE-TRANSITED-CHECK flag. KDC's are encouraged but not
required to honor this flag.

1.2. Choosing a principal with which to communicate

The Kerberos protocol provides the means for verifying (subject to the
assumptions in 1.4) that the entity with which one communicates is the same
entity that was registered with the KDC using the claimed identity
(principal name). It is still necessary to determine whether that identity
corresponds to the entity with which one intends to communicate.

When appropriate data has been exchanged in advance, this determination may
be performed syntactically by the application based on the application
protocol specification, information provided by the user, and configuration
files. For example, the server principal name (including realm) for a telnet
server might be derived from the user specified host name (from the telnet
command line), the "host/" prefix specified in the application protocol
specification, and a mapping to a Kerberos realm derived syntactically from
the domain part of the specified hostname and information from the local
Kerberos realms database.

One can also rely on trusted third parties to make this determination, but
only when the data obtained from the third party is suitably integrity
protected wile resident on the third party server and when transmitted.
Thus, for example, one should not rely on an unprotected domain name system
record to map a host alias to the primary name of a server, accepting the
primary name as the party one intends to contact since an attacker can
modify the mapping and impersonate the party with which one intended to
communicate.

If a Kerberos server supports name canonicalization, it may be relied upon
as a third party to aid in this determination. When utilizing the name
canonicalization function provided by the Kerberos server, a client, having
already located the instance of a service it wishes to contact, makes a
request to the KDC using the server's name information as specified by the
user. The Kerberos server will attempt to locate a service principal in its
database that corresponds to the requested name and return a ticket for the
appropriate server principal to the client. If the KDC determines that the
correct server principal is registered in another realm, the KDC will
provide a referral to the Kerberos realm that is known to contain the
requested service principal. The name canonicalization function supports
identity mapping only, and it may not be used as a general name service to
locate service instances. There is no guarantee that the returned server
principal name (identity) will embed the name of the host on which the
server resides.

1.3. Authorization

As an authentication service, Kerberos provides a means of verifying the
identity of principals on a network. Authentication is usually useful
primarily as a first step in the process of authorization, determining
whether a client may use a service, which objects the client is allowed to
access, and the type of access allowed for each. Kerberos does not, by
itself, provide authorization. Possession of a client ticket for a service
provides only for authentication of the client to that service, and in the
absence of a separate authorization procedure, it should not be considered
by an application as authorizing the use of that service.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 160

Such separate authorization methods may be implemented as application
specific access control functions and may utilize files on the application
server, or on separately issued authorization credentials such as those
based on proxies [Neu93], or on other authorization services. Separately
authenticated authorization credentials may be embedded in a tickets
authorization data when encapsulated by the kdc-issued authorization data
element.

Applications should not accept the mere issuance of a service ticket by the
Kerberos server (even by a modified Kerberos server) as granting authority
to use the service, since such applications may become vulnerable to the
bypass of this authorization check in an environment if they interoperate
with other KDCs or where other options for application authentication (e.g.
the PKTAPP proposal) are provided.

1.4. Environmental assumptions

Kerberos imposes a few assumptions on the environment in which it can
properly function:

 * 'Denial of service' attacks are not solved with Kerberos. There are
 places in the protocols where an intruder can prevent an application
 from participating in the proper authentication steps. Detection and
 solution of such attacks (some of which can appear to be not-uncommon
 'normal' failure modes for the system) is usually best left to the
 human administrators and users.
 * Principals must keep their secret keys secret. If an intruder somehow
 steals a principal's key, it will be able to masquerade as that
 principal or impersonate any server to the legitimate principal.

 * 'Password guessing' attacks are not solved by Kerberos. If a user
 chooses a poor password, it is possible for an attacker to successfully
 mount an offline dictionary attack by repeatedly attempting to decrypt,
 with successive entries from a dictionary, messages obtained which are
 encrypted under a key derived from the user's password.
 * Each host on the network must have a clock which is 'loosely
 synchronized' to the time of the other hosts; this synchronization is
 used to reduce the bookkeeping needs of application servers when they
 do replay detection. The degree of "looseness" can be configured on a
 per-server basis, but is typically on the order of 5 minutes. If the
 clocks are synchronized over the network, the clock synchronization
 protocol must itself be secured from network attackers.
 * Principal identifiers are not recycled on a short-term basis. A typical
 mode of access control will use access control lists (ACLs) to grant
 permissions to particular principals. If a stale ACL entry remains for
 a deleted principal and the principal identifier is reused, the new
 principal will inherit rights specified in the stale ACL entry. By not
 re-using principal identifiers, the danger of inadvertent access is
 removed.

1.5. Glossary of terms

Below is a list of terms used throughout this document.

Authentication
 Verifying the claimed identity of a principal.
Authentication header
 A record containing a Ticket and an Authenticator to be presented to a
 server as part of the authentication process.
Authentication path
 A sequence of intermediate realms transited in the authentication

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 161

 process when communicating from one realm to another.
Authenticator
 A record containing information that can be shown to have been recently
 generated using the session key known only by the client and server.
Authorization
 The process of determining whether a client may use a service, which
 objects the client is allowed to access, and the type of access allowed
 for each.
Capability
 A token that grants the bearer permission to access an object or
 service. In Kerberos, this might be a ticket whose use is restricted by
 the contents of the authorization data field, but which lists no
 network addresses, together with the session key necessary to use the
 ticket.
Ciphertext
 The output of an encryption function. Encryption transforms plaintext
 into ciphertext.
Client
 A process that makes use of a network service on behalf of a user. Note
 that in some cases a Server may itself be a client of some other server
 (e.g. a print server may be a client of a file server).
Credentials
 A ticket plus the secret session key necessary to successfully use that
 ticket in an authentication exchange.

KDC
 Key Distribution Center, a network service that supplies tickets and
 temporary session keys; or an instance of that service or the host on
 which it runs. The KDC services both initial ticket and ticket-granting
 ticket requests. The initial ticket portion is sometimes referred to as
 the Authentication Server (or service). The ticket-granting ticket
 portion is sometimes referred to as the ticket-granting server (or
 service).
Kerberos
 Aside from the 3-headed dog guarding Hades, the name given to Project
 Athena's authentication service, the protocol used by that service, or
 the code used to implement the authentication service.
Plaintext
 The input to an encryption function or the output of a decryption
 function. Decryption transforms ciphertext into plaintext.
Principal
 A named client or server entity that participates in a network
 communication, with one name that is considered canonical.
Principal identifier
 The canonical name used to uniquely identify each different principal.
Seal
 To encipher a record containing several fields in such a way that the
 fields cannot be individually replaced without either knowledge of the
 encryption key or leaving evidence of tampering.
Secret key
 An encryption key shared by a principal and the KDC, distributed
 outside the bounds of the system, with a long lifetime. In the case of
 a human user's principal, the secret key may be derived from a
 password.
Server
 A particular Principal which provides a resource to network clients.
 The server is sometimes referred to as the Application Server.
Service
 A resource provided to network clients; often provided by more than one
 server (for example, remote file service).
Session key

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 162

 A temporary encryption key used between two principals, with a lifetime
 limited to the duration of a single login "session".
Sub-session key
 A temporary encryption key used between two principals, selected and
 exchanged by the principals using the session key, and with a lifetime
 limited to the duration of a single association.
Ticket
 A record that helps a client authenticate itself to a server; it
 contains the client's identity, a session key, a timestamp, and other
 information, all sealed using the server's secret key. It only serves
 to authenticate a client when presented along with a fresh
 Authenticator.

2. Ticket flag uses and requests

Each Kerberos ticket contains a set of flags which are used to indicate
attributes of that ticket. Most flags may be requested by a client when the
ticket is obtained; some are automatically turned on and off by a Kerberos
server as required. The following sections explain what the various flags
mean, and gives examples of reasons to use such a flag.

2.1. Initial, pre-authenticated, and hardware authenticated tickets

The INITIAL flag indicates that a ticket was issued using the AS protocol
and not issued based on a ticket-granting ticket. Application servers that
want to require the demonstrated knowledge of a client's secret key (e.g. a
password-changing program) can insist that this flag be set in any tickets
they accept, and thus be assured that the client's key was recently
presented to the application client.

The PRE-AUTHENT and HW-AUTHENT flags provide additional information about
the initial authentication, regardless of whether the current ticket was
issued directly (in which case INITIAL will also be set) or issued on the
basis of a ticket-granting ticket (in which case the INITIAL flag is clear,
but the PRE-AUTHENT and HW-AUTHENT flags are carried forward from the
ticket-granting ticket).

2.2. Invalid tickets

The INVALID flag indicates that a ticket is invalid. Application servers
must reject tickets which have this flag set. A postdated ticket will
usually be issued in this form. Invalid tickets must be validated by the KDC
before use, by presenting them to the KDC in a TGS request with the VALIDATE
option specified. The KDC will only validate tickets after their starttime
has passed. The validation is required so that postdated tickets which have
been stolen before their starttime can be rendered permanently invalid
(through a hot-list mechanism) (see section 3.3.3.1).

2.3. Renewable tickets

Applications may desire to hold tickets which can be valid for long periods
of time. However, this can expose their credentials to potential theft for
equally long periods, and those stolen credentials would be valid until the
expiration time of the ticket(s). Simply using short-lived tickets and
obtaining new ones periodically would require the client to have long-term
access to its secret key, an even greater risk. Renewable tickets can be
used to mitigate the consequences of theft. Renewable tickets have two
"expiration times": the first is when the current instance of the ticket
expires, and the second is the latest permissible value for an individual
expiration time. An application client must periodically (i.e. before it
expires) present a renewable ticket to the KDC, with the RENEW option set in
the KDC request. The KDC will issue a new ticket with a new session key and

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 163

a later expiration time. All other fields of the ticket are left unmodified
by the renewal process. When the latest permissible expiration time arrives,
the ticket expires permanently. At each renewal, the KDC may consult a
hot-list to determine if the ticket had been reported stolen since its last
renewal; it will refuse to renew such stolen tickets, and thus the usable
lifetime of stolen tickets is reduced.

The RENEWABLE flag in a ticket is normally only interpreted by the
ticket-granting service (discussed below in section 3.3). It can usually be
ignored by application servers. However, some particularly careful
application servers may wish to disallow renewable tickets.

If a renewable ticket is not renewed by its expiration time, the KDC will
not renew the ticket. The RENEWABLE flag is reset by default, but a client
may request it be set by setting the RENEWABLE option in the KRB_AS_REQ
message. If it is set, then the renew-till field in the ticket contains the
time after which the ticket may not be renewed.

2.4. Postdated tickets

Applications may occasionally need to obtain tickets for use much later,
e.g. a batch submission system would need tickets to be valid at the time
the batch job is serviced. However, it is dangerous to hold valid tickets in
a batch queue, since they will be on-line longer and more prone to theft.
Postdated tickets provide a way to obtain these tickets from the KDC at job
submission time, but to leave them "dormant" until they are activated and
validated by a further request of the KDC. If a ticket theft were reported
in the interim, the KDC would refuse to validate the ticket, and the thief
would be foiled.

The MAY-POSTDATE flag in a ticket is normally only interpreted by the
ticket-granting service. It can be ignored by application servers. This flag
must be set in a ticket-granting ticket in order to issue a postdated ticket
based on the presented ticket. It is reset by default; it may be requested
by a client by setting the ALLOW-POSTDATE option in the KRB_AS_REQ message.
This flag does not allow a client to obtain a postdated ticket-granting
ticket; postdated ticket-granting tickets can only by obtained by requesting
the postdating in the KRB_AS_REQ message. The life (endtime-starttime) of a
postdated ticket will be the remaining life of the ticket-granting ticket at
the time of the request, unless the RENEWABLE option is also set, in which
case it can be the full life (endtime-starttime) of the ticket-granting
ticket. The KDC may limit how far in the future a ticket may be postdated.

The POSTDATED flag indicates that a ticket has been postdated. The
application server can check the authtime field in the ticket to see when
the original authentication occurred. Some services may choose to reject
postdated tickets, or they may only accept them within a certain period
after the original authentication. When the KDC issues a POSTDATED ticket,
it will also be marked as INVALID, so that the application client must
present the ticket to the KDC to be validated before use.

2.5. Proxiable and proxy tickets

At times it may be necessary for a principal to allow a service to perform
an operation on its behalf. The service must be able to take on the identity
of the client, but only for a particular purpose. A principal can allow a
service to take on the principal's identity for a particular purpose by
granting it a proxy.

The process of granting a proxy using the proxy and proxiable flags is used
to provide credentials for use with specific services. Though conceptually
also a proxy, user's wishing to delegate their identity for ANY purpose must

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 164

use the ticket forwarding mechanism described in the next section to forward
a ticket granting ticket.

The PROXIABLE flag in a ticket is normally only interpreted by the
ticket-granting service. It can be ignored by application servers. When set,
this flag tells the ticket-granting server that it is OK to issue a new
ticket (but not a ticket-granting ticket) with a different network address
based on this ticket. This flag is set if requested by the client on initial
authentication. By default, the client will request that it be set when
requesting a ticket granting ticket, and reset when requesting any other
ticket.

This flag allows a client to pass a proxy to a server to perform a remote
request on its behalf, e.g. a print service client can give the print server
a proxy to access the client's files on a particular file server in order to
satisfy a print request.

In order to complicate the use of stolen credentials, Kerberos tickets are
usually valid from only those network addresses specifically included in the
ticket[2.1]. When granting a proxy, the client must specify the new network
address from which the proxy is to be used, or indicate that the proxy is to
be issued for use from any address.

The PROXY flag is set in a ticket by the TGS when it issues a proxy ticket.
Application servers may check this flag and at their option they may require
additional authentication from the agent presenting the proxy in order to
provide an audit trail.

2.6. Forwardable tickets

Authentication forwarding is an instance of a proxy where the service
granted is complete use of the client's identity. An example where it might
be used is when a user logs in to a remote system and wants authentication
to work from that system as if the login were local.

The FORWARDABLE flag in a ticket is normally only interpreted by the
ticket-granting service. It can be ignored by application servers. The
FORWARDABLE flag has an interpretation similar to that of the PROXIABLE
flag, except ticket-granting tickets may also be issued with different
network addresses. This flag is reset by default, but users may request that
it be set by setting the FORWARDABLE option in the AS request when they
request their initial ticket-granting ticket.

This flag allows for authentication forwarding without requiring the user to
enter a password again. If the flag is not set, then authentication
forwarding is not permitted, but the same result can still be achieved if
the user engages in the AS exchange specifying the requested network
addresses and supplies a password.

The FORWARDED flag is set by the TGS when a client presents a ticket with
the FORWARDABLE flag set and requests a forwarded ticket by specifying the
FORWARDED KDC option and supplying a set of addresses for the new ticket. It
is also set in all tickets issued based on tickets with the FORWARDED flag
set. Application servers may choose to process FORWARDED tickets differently
than non-FORWARDED tickets.

2.7 Transited Policy Checking

While the application server is ultimately responsible for accepting or
rejecting authentication and should check the transited field, a KDC may
apply a realm specific policy for validating the transited field and
accepting credentials for cross-realm authentication. When the KDC applies

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 165

such checks and accepts such cross-realm authentication it will set the
TRANSITED-POLICY-CHECKED flag in the service tickets it issues based on the
cross-realm TGT. A client may request that the KDC's not check the transited
field by setting the DISABLE-TRANSITED-CHECK flag. KDC's are encouraged but
not required to honor this flag.

2.8 Anonymous Tickets

When policy allows, a KDC may issue anonymous tickets for the purpose of
enabling encrypted communication between a client and server without
identifying the client to the server. Such anonymous tickets are issued with
a generic principal name configured on the KDC (e.g. "anonymous@") and will
have the ANONYMOUS flag set. A server accepting such a ticket may assume
that subsequent requests using the same ticket and session key originate
from the same user. Requests with the same username but different tickets
are likely to originate from different users. Users request anonymous ticket
by setting the REQUEST-ANONYMOUS option in an AS or TGS request.

2.9. Other KDC options

There are three additional options which may be set in a client's request of
the KDC.

2.9.1 Name canonicalization [JBrezak]

The NAME-CANONICALIZATION option allows the KDC to replace the name of the
client or server requested by the client with the canonical form of the
principal's name, if known, or to refer the client to a KDC for the realm
with which the requested principal is registered.

Where name canonicalization is supported a client who can identify a
principal but does not know the full principal name can request that the
Kerberos server attempt to lookup the name in its database and use the
canonical name of the requested principal or return a referral to a realm
that has the requested principal in its namespace. Use of name
canonicalization supports the case where a principal has multiple common
names (names typed by a user[2.2]), all of which are known to the KDC, but
only one Kerberos identity (the canonical name is the Kerberos principal
name). Name canonicalization is intended solely to provide a secure mapping
from the name known by a user to its principal identifier. It is not
intended for use as a general purpose nameserver or to identify instances of
a service.

The CANONICALIZE flag in a ticket request is used to indicate to the
Kerberos server that the client will accept an alternative name to the
principal in the request or a referral to another realm. When name
canonicalization is supported in a realm, all instances of the AS and TGS
for the realm must be able to interpret requests with this flag. In realms
where name canonicalization is not supported, this flag may be ignored. By
using this flag, the client can avoid extensive configuration needed to map
specific host names to a particular realm.

2.9.2 Renewable-OK

The RENEWABLE-OK option indicates that the client will accept a renewable
ticket if a ticket with the requested life cannot otherwise be provided. If
a ticket with the requested life cannot be provided, then the KDC may issue
a renewable ticket with a renew-till equal to the requested endtime. The
value of the renew-till field may still be adjusted by site-determined
limits or limits imposed by the individual principal or server.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 166

2.9.3 ENC-TKT-IN-SKEY

The ENC-TKT-IN-SKEY option supports user-to-user authentication. It allows
the KDC to issue a service ticket encrypted using the session key from a
ticket granting ticket issued to another user. This is needed to support
peer-to-peer authentication since the long term key of the user does not
remain on the workstation after initial login. The ENC-TKT-IN-SKEY option is
honored only by the ticket-granting service. It indicates that the ticket to
be issued for the end server is to be encrypted in the session key from the
additional second ticket-granting ticket provided with the request. See
section 3.3.3 for specific details.

3. Message Exchanges

The following sections describe the interactions between network clients and
servers and the messages involved in those exchanges.

3.1. The Authentication Service Exchange

 Summary
 Message direction Message type Section
 1. Client to Kerberos KRB_AS_REQ 5.4.1
 2. Kerberos to client KRB_AS_REP or 5.4.2
 KRB_ERROR 5.9.1

The Authentication Service (AS) Exchange between the client and the Kerberos
Authentication Server is initiated by a client when it wishes to obtain
authentication credentials for a given server but currently holds no
credentials. In its basic form, the client's secret key is used for
encryption and decryption. This exchange is typically used at the initiation
of a login session to obtain credentials for a Ticket-Granting Server which
will subsequently be used to obtain credentials for other servers (see
section 3.3) without requiring further use of the client's secret key. This
exchange is also used to request credentials for services which must not be
mediated through the Ticket-Granting Service, but rather require a
principal's secret key, such as the password-changing service[3.1]. This
exchange does not by itself provide any assurance of the identity of the
user[3.2].

The exchange consists of two messages: KRB_AS_REQ from the client to
Kerberos, and KRB_AS_REP or KRB_ERROR in reply. The formats for these
messages are described in sections 5.4.1, 5.4.2, and 5.9.1.

In the request, the client sends (in cleartext) its own identity and the
identity of the server for which it is requesting credentials. The response,
KRB_AS_REP, contains a ticket for the client to present to the server, and a
session key that will be shared by the client and the server. The session
key and additional information are encrypted in the client's secret key. The
KRB_AS_REP message contains information which can be used to detect replays,
and to associate it with the message to which it replies.

Without pre-authentication, the authentication server does not know whether
the client is actually the principal named in the request. It simply sends a
reply without knowing or caring whether they are the same. This is
acceptable because nobody but the principal whose identity was given in the
request will be able to use the reply. Its critical information is encrypted
in that principal's key. The initial request supports an optional field that
can be used to pass additional information that might be needed for the
initial exchange. This field may be used for pre-authentication as described
in section 3.1.1.

Various errors can occur; these are indicated by an error response

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 167

(KRB_ERROR) instead of the KRB_AS_REP response. The error message is not
encrypted. The KRB_ERROR message contains information which can be used to
associate it with the message to which it replies. If suitable
preauthentication has occurred, an optional checksum may be included in the
KRB_ERROR message to prevent fabrication or modification of the KRB_ERROR
message. When a checksum is not present, the lack of integrity protection
precludes the ability to detect replays, fabrications, or modifications of
the message, and the client must not depend on information in the KRB_ERROR
message for security critical operations.

3.1.1. Generation of KRB_AS_REQ message

The client may specify a number of options in the initial request. Among
these options are whether pre-authentication is to be performed; whether the
requested ticket is to be renewable, proxiable, or forwardable; whether it
should be postdated or allow postdating of derivative tickets; whether the
client requests name-canonicalization or an anonymous ticket; and whether a
renewable ticket will be accepted in lieu of a non-renewable ticket if the
requested ticket expiration date cannot be satisfied by a non-renewable
ticket (due to configuration constraints; see section 4). See section A.1
for pseudocode.

The client prepares the KRB_AS_REQ message and sends it to the KDC.

3.1.2. Receipt of KRB_AS_REQ message

If all goes well, processing the KRB_AS_REQ message will result in the
creation of a ticket for the client to present to the server. The format for
the ticket is described in section 5.3.1. The contents of the ticket are
determined as follows.

3.1.3. Generation of KRB_AS_REP message

The authentication server looks up the client and server principals named in
the KRB_AS_REQ in its database, extracting their respective keys. If the
requested client principal named in the request is not known because it
doesn't exist in the KDC's principal database and if an acceptable canonical
name of the client is not known, then an error message with a
KDC_ERR_C_PRINCIPAL_UNKNOWN is returned.

If the request had the CANONICALIZE option set and if the AS finds the
canonical name for the client and it is in another realm, then an error
message with a KDC_ERR_WRONG_REALM error code and the cname and crealm in
the error message will contain the true client principal name and realm. In
this case, since no key is shared with the client, the response from the KDC
is not integrity protected and the referral can only be considered a hint;
the validity of the referral is validated upon successful completion of
initial authentication with the correct AS using the appropriate user key.

If required, the server pre-authenticates the request, and if the
pre-authentication check fails, an error message with the code
KDC_ERR_PREAUTH_FAILED is returned. If pre-authentication is required, but
was not present in the request, an error message with the code
KDC_ERR_PREAUTH_FAILED is returned and the PA-ETYPE-INFO pre-authentication
field will be included in the KRB-ERROR message. If the server cannot
accommodate an encryption type requested by the client, an error message
with code KDC_ERR_ETYPE_NOSUPP is returned. Otherwise the KDC generates a
'random' session key[3.3].

When responding to an AS request, if there are multiple encryption keys
registered for a client in the Kerberos database (or if the key registered
supports multiple encryption types; e.g. DES3-CBC-SHA1 and

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 168

DES3-CBC-SHA1-KD), then the etype field from the AS request is used by the
KDC to select the encryption method to be used to protect the encrypted part
of the KRB_AS_REP message which is sent to the client. If there is more than
one supported strong encryption type in the etype list, the first valid
etype for which an encryption key is available is used. The encryption
method used to protect the encrypted part of the KRB_TGS_REP message is the
keytype of the session key found in the ticket granting ticket presented in
the KRB_TGS_REQ.

If the user's key was generated using an alternate string to key function
than that used by the selected encryption type, information needed by the
string to key function will be returned to the client in the padata field of
the KRB_AS_REP message using the PA-PW-SALT, PA-AFS3-SALT, or similar
pre-authentication typed values. This does not affect the encryption
performed by the KDC since the key stored in the principal database already
has the string to key transformation applied.

When the etype field is present in a KDC request, whether an AS or TGS
request, the KDC will attempt to assign the type of the random session key
from the list of methods in the etype field. The KDC will select the
appropriate type using the list of methods provided together with
information from the Kerberos database indicating acceptable encryption
methods for the application server. The KDC will not issue tickets with a
weak session key encryption type.

If the requested start time is absent, indicates a time in the past, or is
within the window of acceptable clock skew for the KDC and the POSTDATE
option has not been specified, then the start time of the ticket is set to
the authentication server's current time. If it indicates a time in the
future beyond the acceptable clock skew, but the POSTDATED option has not
been specified then the error KDC_ERR_CANNOT_POSTDATE is returned. Otherwise
the requested start time is checked against the policy of the local realm
(the administrator might decide to prohibit certain types or ranges of
postdated tickets), and if acceptable, the ticket's start time is set as
requested and the INVALID flag is set in the new ticket. The postdated
ticket must be validated before use by presenting it to the KDC after the
start time has been reached.

The expiration time of the ticket will be set to the earlier of the
requested endtime and a time determined by local policy, possibly determined
using realm or principal specific factors. For example, the expiration time
may be set to the minimum of the following:

 * The expiration time (endtime) requested in the KRB_AS_REQ message.
 * The ticket's start time plus the maximum allowable lifetime associated
 with the client principal from the authentication server's database
 (see section 4).
 * The ticket's start time plus the maximum allowable lifetime associated
 with the server principal.
 * The ticket's start time plus the maximum lifetime set by the policy of
 the local realm.

If the requested expiration time minus the start time (as determined above)
is less than a site-determined minimum lifetime, an error message with code
KDC_ERR_NEVER_VALID is returned. If the requested expiration time for the
ticket exceeds what was determined as above, and if the 'RENEWABLE-OK'
option was requested, then the 'RENEWABLE' flag is set in the new ticket,
and the renew-till value is set as if the 'RENEWABLE' option were requested
(the field and option names are described fully in section 5.4.1).

If the RENEWABLE option has been requested or if the RENEWABLE-OK option has
been set and a renewable ticket is to be issued, then the renew-till field
is set to the minimum of:

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 169

 * Its requested value.
 * The start time of the ticket plus the minimum of the two maximum
 renewable lifetimes associated with the principals' database entries.
 * The start time of the ticket plus the maximum renewable lifetime set by
 the policy of the local realm.

The flags field of the new ticket will have the following options set if
they have been requested and if the policy of the local realm allows:
FORWARDABLE, MAY-POSTDATE, POSTDATED, PROXIABLE, RENEWABLE, ANONYMOUS. If
the new ticket is post-dated (the start time is in the future), its INVALID
flag will also be set.

If all of the above succeed, the server will encrypt ciphertext part of the
ticket using the encryption key extracted from the server principal's record
in the Kerberos database using the encryption type associated with the
server principal's key (this choice is NOT affected by the etype field in
the request). It then formats a KRB_AS_REP message (see section 5.4.2),
copying the addresses in the request into the caddr of the response, placing
any required pre-authentication data into the padata of the response, and
encrypts the ciphertext part in the client's key using an acceptable
encryption method requested in the etype field of the request, and sends the
message to the client. See section A.2 for pseudocode.

3.1.4. Generation of KRB_ERROR message

Several errors can occur, and the Authentication Server responds by
returning an error message, KRB_ERROR, to the client, with the error-code,
e-text, and optional e-cksum fields set to appropriate values. The error
message contents and details are described in Section 5.9.1.

3.1.5. Receipt of KRB_AS_REP message

If the reply message type is KRB_AS_REP, then the client verifies that the
cname and crealm fields in the cleartext portion of the reply match what it
requested. If any padata fields are present, they may be used to derive the
proper secret key to decrypt the message. The client decrypts the encrypted
part of the response using its secret key, verifies that the nonce in the
encrypted part matches the nonce it supplied in its request (to detect
replays). It also verifies that the sname and srealm in the response match
those in the request (or are otherwise expected values), and that the host
address field is also correct. It then stores the ticket, session key, start
and expiration times, and other information for later use. The
key-expiration field from the encrypted part of the response may be checked
to notify the user of impending key expiration (the client program could
then suggest remedial action, such as a password change). See section A.3
for pseudocode.

Proper decryption of the KRB_AS_REP message is not sufficient for the host
to verify the identity of the user; the user and an attacker could cooperate
to generate a KRB_AS_REP format message which decrypts properly but is not
from the proper KDC. If the host wishes to verify the identity of the user,
it must require the user to present application credentials which can be
verified using a securely-stored secret key for the host. If those
credentials can be verified, then the identity of the user can be assured.

3.1.6. Receipt of KRB_ERROR message

If the reply message type is KRB_ERROR, then the client interprets it as an
error and performs whatever application-specific tasks are necessary to
recover. If the client set the CANONICALIZE option and a KDC_ERR_WRONG_REALM
error was returned, the AS request should be retried to the realm and client
principal name specified in the error message crealm and cname field

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 170

respectively.

3.2. The Client/Server Authentication Exchange

 Summary
Message direction Message type Section
Client to Application server KRB_AP_REQ 5.5.1
[optional] Application server to client KRB_AP_REP or 5.5.2
 KRB_ERROR 5.9.1

The client/server authentication (CS) exchange is used by network
applications to authenticate the client to the server and vice versa. The
client must have already acquired credentials for the server using the AS or
TGS exchange.

3.2.1. The KRB_AP_REQ message

The KRB_AP_REQ contains authentication information which should be part of
the first message in an authenticated transaction. It contains a ticket, an
authenticator, and some additional bookkeeping information (see section
5.5.1 for the exact format). The ticket by itself is insufficient to
authenticate a client, since tickets are passed across the network in
cleartext[3.4], so the authenticator is used to prevent invalid replay of
tickets by proving to the server that the client knows the session key of
the ticket and thus is entitled to use the ticket. The KRB_AP_REQ message is
referred to elsewhere as the 'authentication header.'

3.2.2. Generation of a KRB_AP_REQ message

When a client wishes to initiate authentication to a server, it obtains
(either through a credentials cache, the AS exchange, or the TGS exchange) a
ticket and session key for the desired service. The client may re-use any
tickets it holds until they expire. To use a ticket the client constructs a
new Authenticator from the system time, its name, and optionally an
application specific checksum, an initial sequence number to be used in
KRB_SAFE or KRB_PRIV messages, and/or a session subkey to be used in
negotiations for a session key unique to this particular session.
Authenticators may not be re-used and will be rejected if replayed to a
server[3.5]. If a sequence number is to be included, it should be randomly
chosen so that even after many messages have been exchanged it is not likely
to collide with other sequence numbers in use.

The client may indicate a requirement of mutual authentication or the use of
a session-key based ticket by setting the appropriate flag(s) in the
ap-options field of the message.

The Authenticator is encrypted in the session key and combined with the
ticket to form the KRB_AP_REQ message which is then sent to the end server
along with any additional application-specific information. See section A.9
for pseudocode.

3.2.3. Receipt of KRB_AP_REQ message

Authentication is based on the server's current time of day (clocks must be
loosely synchronized), the authenticator, and the ticket. Several errors are
possible. If an error occurs, the server is expected to reply to the client
with a KRB_ERROR message. This message may be encapsulated in the
application protocol if its 'raw' form is not acceptable to the protocol.
The format of error messages is described in section 5.9.1.

The algorithm for verifying authentication information is as follows. If the
message type is not KRB_AP_REQ, the server returns the KRB_AP_ERR_MSG_TYPE
error. If the key version indicated by the Ticket in the KRB_AP_REQ is not

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 171

one the server can use (e.g., it indicates an old key, and the server no
longer possesses a copy of the old key), the KRB_AP_ERR_BADKEYVER error is
returned. If the USE-SESSION-KEY flag is set in the ap-options field, it
indicates to the server that the ticket is encrypted in the session key from
the server's ticket-granting ticket rather than its secret key [3.6].

Since it is possible for the server to be registered in multiple realms,
with different keys in each, the srealm field in the unencrypted portion of
the ticket in the KRB_AP_REQ is used to specify which secret key the server
should use to decrypt that ticket. The KRB_AP_ERR_NOKEY error code is
returned if the server doesn't have the proper key to decipher the ticket.

The ticket is decrypted using the version of the server's key specified by
the ticket. If the decryption routines detect a modification of the ticket
(each encryption system must provide safeguards to detect modified
ciphertext; see section 6), the KRB_AP_ERR_BAD_INTEGRITY error is returned
(chances are good that different keys were used to encrypt and decrypt).

The authenticator is decrypted using the session key extracted from the
decrypted ticket. If decryption shows it to have been modified, the
KRB_AP_ERR_BAD_INTEGRITY error is returned. The name and realm of the client
from the ticket are compared against the same fields in the authenticator.
If they don't match, the KRB_AP_ERR_BADMATCH error is returned (they might
not match, for example, if the wrong session key was used to encrypt the
authenticator). The addresses in the ticket (if any) are then searched for
an address matching the operating-system reported address of the client. If
no match is found or the server insists on ticket addresses but none are
present in the ticket, the KRB_AP_ERR_BADADDR error is returned. If the
local (server) time and the client time in the authenticator differ by more
than the allowable clock skew (e.g., 5 minutes), the KRB_AP_ERR_SKEW error
is returned.

Unless the application server provides its own suitable means to protect
against replay (for example, a challenge-response sequence initiated by the
server after authentication, or use of a server-generated encryption
subkey), the server must utilize a replay cache to remember any
authenticator presented within the allowable clock skew. Careful analysis of
the application protocol and implementation is recommended before
eliminating this cache. The replay cache will store the server name, along
with the client name, time and microsecond fields from the recently-seen
authenticators and if a matching tuple is found, the KRB_AP_ERR_REPEAT error
is returned [3.7]. If a server loses track of authenticators presented
within the allowable clock skew, it must reject all requests until the clock
skew interval has passed, providing assurance that any lost or re-played
authenticators will fall outside the allowable clock skew and can no longer
be successfully replayed[3.8].

If a sequence number is provided in the authenticator, the server saves it
for later use in processing KRB_SAFE and/or KRB_PRIV messages. If a subkey
is present, the server either saves it for later use or uses it to help
generate its own choice for a subkey to be returned in a KRB_AP_REP message.

If multiple servers (for example, different services on one machine, or a
single service implemented on multiple machines) share a service principal
(a practice we do not recommend in general, but acknowledge will be used in
some cases), they should also share this replay cache, or the application
protocol should be designed so as to eliminate the need for it. Note that
this applies to all of the services, if any of the application protocols
does not have replay protection built in; an authenticator used with such a
service could later be replayed to a different service with the same service
principal but no replay protection, if the former doesn't record the
authenticator information in the common replay cache.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 172

The server computes the age of the ticket: local (server) time minus the
start time inside the Ticket. If the start time is later than the current
time by more than the allowable clock skew or if the INVALID flag is set in
the ticket, the KRB_AP_ERR_TKT_NYV error is returned. Otherwise, if the
current time is later than end time by more than the allowable clock skew,
the KRB_AP_ERR_TKT_EXPIRED error is returned.

If all these checks succeed without an error, the server is assured that the
client possesses the credentials of the principal named in the ticket and
thus, the client has been authenticated to the server. See section A.10 for
pseudocode.

Passing these checks provides only authentication of the named principal; it
does not imply authorization to use the named service. Applications must
make a separate authorization decisions based upon the authenticated name of
the user, the requested operation, local access control information such as
that contained in a .k5login or .k5users file, and possibly a separate
distributed authorization service.

3.2.4. Generation of a KRB_AP_REP message

Typically, a client's request will include both the authentication
information and its initial request in the same message, and the server need
not explicitly reply to the KRB_AP_REQ. However, if mutual authentication
(not only authenticating the client to the server, but also the server to
the client) is being performed, the KRB_AP_REQ message will have
MUTUAL-REQUIRED set in its ap-options field, and a KRB_AP_REP message is
required in response. As with the error message, this message may be
encapsulated in the application protocol if its "raw" form is not acceptable
to the application's protocol. The timestamp and microsecond field used in
the reply must be the client's timestamp and microsecond field (as provided
in the authenticator)[3.9]. If a sequence number is to be included, it
should be randomly chosen as described above for the authenticator. A subkey
may be included if the server desires to negotiate a different subkey. The
KRB_AP_REP message is encrypted in the session key extracted from the
ticket. See section A.11 for pseudocode.

3.2.5. Receipt of KRB_AP_REP message

If a KRB_AP_REP message is returned, the client uses the session key from
the credentials obtained for the server[3.10] to decrypt the message, and
verifies that the timestamp and microsecond fields match those in the
Authenticator it sent to the server. If they match, then the client is
assured that the server is genuine. The sequence number and subkey (if
present) are retained for later use. See section A.12 for pseudocode.

3.2.6. Using the encryption key

After the KRB_AP_REQ/KRB_AP_REP exchange has occurred, the client and server
share an encryption key which can be used by the application. In some cases,
the use of this session key will be implicit in the protocol; in others the
method of use must be chosen from several alternatives. The 'true session
key' to be used for KRB_PRIV, KRB_SAFE, or other application-specific uses
may be chosen by the application based on the session key from the ticket
and subkeys in the KRB_AP_REP message and the authenticator[3.11]. To
mitigate the effect of failures in random number generation on the client it
is strongly encouraged that any key derived by an application for subsequent
use include the full key entropy derived from the KDC generated session key
carried in the ticket. We leave the protocol negotiations of how to use the
key (e.g. selecting an encryption or checksum type) to the application
programmer; the Kerberos protocol does not constrain the implementation
options, but an example of how this might be done follows.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 173

One way that an application may choose to negotiate a key to be used for
subsequent integrity and privacy protection is for the client to propose a
key in the subkey field of the authenticator. The server can then choose a
key using the proposed key from the client as input, returning the new
subkey in the subkey field of the application reply. This key could then be
used for subsequent communication.

To make this example more concrete, if the communication patterns of an
application dictates the use of encryption modes of operation incompatible
with the encryption system used for the authenticator, then a key compatible
with the required encryption system may be generated by either the client,
the server, or collaboratively by both and exchanged using the subkey field.
This generation might involve the use of a random number as a pre-key,
initially generated by either party, which could then be encrypted using the
session key from the ticket, and the result exchanged and used for
subsequent encryption. By encrypting the pre-key with the session key from
the ticket, randomness from the KDC generated key is assured of being
present in the negotiated key. Application developers must be careful
however, to use a means of introducing this entropy that does not allow an
attacker to learn the session key from the ticket if it learns the key
generated and used for subsequent communication. The reader should note that
this is only an example, and that an analysis of the particular cryptosystem
to be used, must be made before deciding how to generate values for the
subkey fields, and the key to be used for subsequent communication.

With both the one-way and mutual authentication exchanges, the peers should
take care not to send sensitive information to each other without proper
assurances. In particular, applications that require privacy or integrity
should use the KRB_AP_REP response from the server to client to assure both
client and server of their peer's identity. If an application protocol
requires privacy of its messages, it can use the KRB_PRIV message (section
3.5). The KRB_SAFE message (section 3.4) can be used to assure integrity.

3.3. The Ticket-Granting Service (TGS) Exchange

 Summary
 Message direction Message type Section
 1. Client to Kerberos KRB_TGS_REQ 5.4.1
 2. Kerberos to client KRB_TGS_REP or 5.4.2
 KRB_ERROR 5.9.1

The TGS exchange between a client and the Kerberos Ticket-Granting Server is
initiated by a client when it wishes to obtain authentication credentials
for a given server (which might be registered in a remote realm), when it
wishes to renew or validate an existing ticket, or when it wishes to obtain
a proxy ticket. In the first case, the client must already have acquired a
ticket for the Ticket-Granting Service using the AS exchange (the
ticket-granting ticket is usually obtained when a client initially
authenticates to the system, such as when a user logs in). The message
format for the TGS exchange is almost identical to that for the AS exchange.
The primary difference is that encryption and decryption in the TGS exchange
does not take place under the client's key. Instead, the session key from
the ticket-granting ticket or renewable ticket, or sub-session key from an
Authenticator is used. As is the case for all application servers, expired
tickets are not accepted by the TGS, so once a renewable or ticket-granting
ticket expires, the client must use a separate exchange to obtain valid
tickets.

The TGS exchange consists of two messages: A request (KRB_TGS_REQ) from the
client to the Kerberos Ticket-Granting Server, and a reply (KRB_TGS_REP or
KRB_ERROR). The KRB_TGS_REQ message includes information authenticating the
client plus a request for credentials. The authentication information
consists of the authentication header (KRB_AP_REQ) which includes the

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 174

client's previously obtained ticket-granting, renewable, or invalid ticket.
In the ticket-granting ticket and proxy cases, the request may include one
or more of: a list of network addresses, a collection of typed authorization
data to be sealed in the ticket for authorization use by the application
server, or additional tickets (the use of which are described later). The

TGS reply (KRB_TGS_REP) contains the requested credentials, encrypted in the
session key from the ticket-granting ticket or renewable ticket, or if
present, in the sub-session key from the Authenticator (part of the
authentication header). The KRB_ERROR message contains an error code and
text explaining what went wrong. The KRB_ERROR message is not encrypted. The
KRB_TGS_REP message contains information which can be used to detect
replays, and to associate it with the message to which it replies. The
KRB_ERROR message also contains information which can be used to associate
it with the message to which it replies, but except when an optional
checksum is included in the KRB_ERROR message, it is not possible to detect
replays or fabrications of such messages.

3.3.1. Generation of KRB_TGS_REQ message

Before sending a request to the ticket-granting service, the client must
determine in which realm the application server is believed to be
registered[3.12]. If the client knows the service principal name and realm
and it does not already possess a ticket-granting ticket for the appropriate
realm, then one must be obtained. This is first attempted by requesting a
ticket-granting ticket for the destination realm from a Kerberos server for
which the client possesses a ticket-granting ticket (using the KRB_TGS_REQ
message recursively). The Kerberos server may return a TGT for the desired
realm in which case one can proceed. Alternatively, the Kerberos server may
return a TGT for a realm which is 'closer' to the desired realm (further
along the standard hierarchical path between the client's realm and the
requested realm server's realm).

If the client does not know the realm of the service or the true service
principal name, then the CANONICALIZE option must be used in the request.
This will cause the TGS to locate the service principal based on the target
service name in the ticket and return the service principal name in the
response. This function allows the KDC to inform the user of the registered
Kerberos principal name and registered KDC for a server that may have more
than one host name or whose registered realm cannot be determined from the
name of the host, but it is not to be used to locate the application server.

If the server name determined by a TGS supporting name canonicalization is
with a remote KDC, then the response will include the principal name
determined by the KDC, and will include a TGT for the remote realm or a
realm 'closer' to the realm with which the server principal is registered.
In this case, the canonicalization request must be repeated with a Kerberos
server in the realm specified in the returned TGT. If neither are returned,
then the request may be retried with a Kerberos server for a realm higher in
the hierarchy. This request will itself require a ticket-granting ticket for
the higher realm which must be obtained by recursively applying these
directions.

Once the client obtains a ticket-granting ticket for the appropriate realm,
it determines which Kerberos servers serve that realm, and contacts one. The
list might be obtained through a configuration file or network service or it
may be generated from the name of the realm; as long as the secret keys
exchanged by realms are kept secret, only denial of service results from
using a false Kerberos server.

As in the AS exchange, the client may specify a number of options in the
KRB_TGS_REQ message. The client prepares the KRB_TGS_REQ message, providing

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 175

an authentication header as an element of the padata field, and including
the same fields as used in the KRB_AS_REQ message along with several
optional fields: the enc-authorization-data field for application server use
and additional tickets required by some options.

In preparing the authentication header, the client can select a sub-session
key under which the response from the Kerberos server will be
encrypted[3.13]. If the sub-session key is not specified, the session key
from the ticket-granting ticket will be used. If the enc-authorization-data
is present, it must be encrypted in the sub-session key, if present, from
the authenticator portion of the authentication header, or if not present,
using the session key from the ticket-granting ticket.

Once prepared, the message is sent to a Kerberos server for the destination
realm. See section A.5 for pseudocode.

3.3.2. Receipt of KRB_TGS_REQ message

The KRB_TGS_REQ message is processed in a manner similar to the KRB_AS_REQ
message, but there are many additional checks to be performed. First, the
Kerberos server must determine which server the accompanying ticket is for
and it must select the appropriate key to decrypt it. For a normal
KRB_TGS_REQ message, it will be for the ticket granting service, and the
TGS's key will be used. If the TGT was issued by another realm, then the
appropriate inter-realm key must be used. If the accompanying ticket is not
a ticket granting ticket for the current realm, but is for an application
server in the current realm, the RENEW, VALIDATE, or PROXY options are
specified in the request, and the server for which a ticket is requested is
the server named in the accompanying ticket, then the KDC will decrypt the
ticket in the authentication header using the key of the server for which it
was issued. If no ticket can be found in the padata field, the
KDC_ERR_PADATA_TYPE_NOSUPP error is returned.

Once the accompanying ticket has been decrypted, the user-supplied checksum
in the Authenticator must be verified against the contents of the request,
and the message rejected if the checksums do not match (with an error code
of KRB_AP_ERR_MODIFIED) or if the checksum is not keyed or not
collision-proof (with an error code of KRB_AP_ERR_INAPP_CKSUM). If the
checksum type is not supported, the KDC_ERR_SUMTYPE_NOSUPP error is
returned. If the authorization-data are present, they are decrypted using
the sub-session key from the Authenticator.

If any of the decryptions indicate failed integrity checks, the
KRB_AP_ERR_BAD_INTEGRITY error is returned. If the CANONICALIZE option is
set in the KRB_TGS_REQ, then the requested service name might not be the
true principal name or the service might not be in the TGS realm and the
correct name must be determined.

3.3.3. Generation of KRB_TGS_REP message

The KRB_TGS_REP message shares its format with the KRB_AS_REP (KRB_KDC_REP),
but with its type field set to KRB_TGS_REP. The detailed specification is in
section 5.4.2.

The response will include a ticket for the requested server or for a ticket
granting server of an intermediate KDC to be contacted to obtain the
requested ticket. The Kerberos database is queried to retrieve the record
for the appropriate server (including the key with which the ticket will be
encrypted). If the request is for a ticket granting ticket for a remote
realm, and if no key is shared with the requested realm, then the Kerberos
server will select the realm 'closest' to the requested realm with which it
does share a key, and use that realm instead. If the CANONICALIZE option is
set, the TGS may return a ticket containing the server name of the true

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 176

service principal. If the requested server cannot be found in the TGS
database, then a TGT for another trusted realm may be returned instead of a
ticket for the service. This TGT is a referral mechanism to cause the client
to retry the request to the realm of the TGT. These are the only cases where
the response for the KDC will be for a different server than that requested
by the client.

By default, the address field, the client's name and realm, the list of
transited realms, the time of initial authentication, the expiration time,
and the authorization data of the newly-issued ticket will be copied from
the ticket-granting ticket (TGT) or renewable ticket. If the transited field
needs to be updated, but the transited type is not supported, the
KDC_ERR_TRTYPE_NOSUPP error is returned.

If the request specifies an endtime, then the endtime of the new ticket is
set to the minimum of (a) that request, (b) the endtime from the TGT, and
(c) the starttime of the TGT plus the minimum of the maximum life for the
application server and the maximum life for the local realm (the maximum
life for the requesting principal was already applied when the TGT was
issued). If the new ticket is to be a renewal, then the endtime above is
replaced by the minimum of (a) the value of the renew_till field of the
ticket and (b) the starttime for the new ticket plus the life
(endtime-starttime) of the old ticket.

If the FORWARDED option has been requested, then the resulting ticket will
contain the addresses specified by the client. This option will only be
honored if the FORWARDABLE flag is set in the TGT. The PROXY option is
similar; the resulting ticket will contain the addresses specified by the
client. It will be honored only if the PROXIABLE flag in the TGT is set. The
PROXY option will not be honored on requests for additional ticket-granting
tickets.

If the requested start time is absent, indicates a time in the past, or is
within the window of acceptable clock skew for the KDC and the POSTDATE
option has not been specified, then the start time of the ticket is set to
the authentication server's current time. If it indicates a time in the
future beyond the acceptable clock skew, but the POSTDATED option has not
been specified or the MAY-POSTDATE flag is not set in the TGT, then the
error KDC_ERR_CANNOT_POSTDATE is returned. Otherwise, if the ticket-granting
ticket has the MAY-POSTDATE flag set, then the resulting ticket will be
postdated and the requested starttime is checked against the policy of the
local realm. If acceptable, the ticket's start time is set as requested, and
the INVALID flag is set. The postdated ticket must be validated before use
by presenting it to the KDC after the starttime has been reached. However,
in no case may the starttime, endtime, or renew-till time of a newly-issued
postdated ticket extend beyond the renew-till time of the ticket-granting
ticket.

If the ENC-TKT-IN-SKEY option has been specified and an additional ticket
has been included in the request, the KDC will decrypt the additional ticket
using the key for the server to which the additional ticket was issued and
verify that it is a ticket-granting ticket. If the name of the requested
server is missing from the request, the name of the client in the additional
ticket will be used. Otherwise the name of the requested server will be
compared to the name of the client in the additional ticket and if
different, the request will be rejected. If the request succeeds, the
session key from the additional ticket will be used to encrypt the new
ticket that is issued instead of using the key of the server for which the
new ticket will be used.

If the name of the server in the ticket that is presented to the KDC as part
of the authentication header is not that of the ticket-granting server
itself, the server is registered in the realm of the KDC, and the RENEW

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 177

option is requested, then the KDC will verify that the RENEWABLE flag is set
in the ticket, that the INVALID flag is not set in the ticket, and that the
renew_till time is still in the future. If the VALIDATE option is requested,
the KDC will check that the starttime has passed and the INVALID flag is
set. If the PROXY option is requested, then the KDC will check that the
PROXIABLE flag is set in the ticket. If the tests succeed, and the ticket
passes the hotlist check described in the next section, the KDC will issue
the appropriate new ticket.

The ciphertext part of the response in the KRB_TGS_REP message is encrypted
in the sub-session key from the Authenticator, if present, or the session
key from the ticket-granting ticket. It is not encrypted using the
client's secret key. Furthermore, the client's key's expiration date and the
key version number fields are left out since these values are stored along
with the client's database record, and that record is not needed to satisfy
a request based on a ticket-granting ticket. See section A.6 for pseudocode.

3.3.3.1. Checking for revoked tickets

Whenever a request is made to the ticket-granting server, the presented
ticket(s) is(are) checked against a hot-list of tickets which have been
canceled. This hot-list might be implemented by storing a range of issue
timestamps for 'suspect tickets'; if a presented ticket had an authtime in
that range, it would be rejected. In this way, a stolen ticket-granting
ticket or renewable ticket cannot be used to gain additional tickets
(renewals or otherwise) once the theft has been reported to the KDC for the
realm in which the server resides. Any normal ticket obtained before it was
reported stolen will still be valid (because they require no interaction
with the KDC), but only until their normal expiration time. If TGT's have
been issued for cross-realm authentication, use of the cross-realm TGT will
not be affected unless the hot-list is propagated to the KDC's for the
realms for which such cross-realm tickets were issued.

3.3.3.2. Encoding the transited field

If the identity of the server in the TGT that is presented to the KDC as
part of the authentication header is that of the ticket-granting service,
but the TGT was issued from another realm, the KDC will look up the
inter-realm key shared with that realm and use that key to decrypt the
ticket. If the ticket is valid, then the KDC will honor the request, subject
to the constraints outlined above in the section describing the AS exchange.
The realm part of the client's identity will be taken from the
ticket-granting ticket. The name of the realm that issued the
ticket-granting ticket will be added to the transited field of the ticket to
be issued. This is accomplished by reading the transited field from the
ticket-granting ticket (which is treated as an unordered set of realm
names), adding the new realm to the set, then constructing and writing out
its encoded (shorthand) form (this may involve a rearrangement of the
existing encoding).

Note that the ticket-granting service does not add the name of its own
realm. Instead, its responsibility is to add the name of the previous realm.
This prevents a malicious Kerberos server from intentionally leaving out its
own name (it could, however, omit other realms' names).

The names of neither the local realm nor the principal's realm are to be
included in the transited field. They appear elsewhere in the ticket and
both are known to have taken part in authenticating the principal. Since the
endpoints are not included, both local and single-hop inter-realm
authentication result in a transited field that is empty.

Because the name of each realm transited is added to this field, it might
potentially be very long. To decrease the length of this field, its contents

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 178

are encoded. The initially supported encoding is optimized for the normal
case of inter-realm communication: a hierarchical arrangement of realms
using either domain or X.500 style realm names. This encoding (called
DOMAIN-X500-COMPRESS) is now described.

Realm names in the transited field are separated by a ",". The ",", "\",
trailing "."s, and leading spaces (" ") are special characters, and if they
are part of a realm name, they must be quoted in the transited field by
preceding them with a "\".

A realm name ending with a "." is interpreted as being prepended to the
previous realm. For example, we can encode traversal of EDU, MIT.EDU,
ATHENA.MIT.EDU, WASHINGTON.EDU, and CS.WASHINGTON.EDU as:

 "EDU,MIT.,ATHENA.,WASHINGTON.EDU,CS.".

Note that if ATHENA.MIT.EDU, or CS.WASHINGTON.EDU were end-points, that they
would not be included in this field, and we would have:

 "EDU,MIT.,WASHINGTON.EDU"

A realm name beginning with a "/" is interpreted as being appended to the
previous realm[18]. If it is to stand by itself, then it should be preceded
by a space (" "). For example, we can encode traversal of /COM/HP/APOLLO,
/COM/HP, /COM, and /COM/DEC as:

 "/COM,/HP,/APOLLO, /COM/DEC".

Like the example above, if /COM/HP/APOLLO and /COM/DEC are endpoints, they
they would not be included in this field, and we would have:

 "/COM,/HP"

A null subfield preceding or following a "," indicates that all realms
between the previous realm and the next realm have been traversed[19]. Thus,
"," means that all realms along the path between the client and the server

have been traversed. ",EDU, /COM," means that that all realms from the
client's realm up to EDU (in a domain style hierarchy) have been traversed,
and that everything from /COM down to the server's realm in an X.500 style
has also been traversed. This could occur if the EDU realm in one hierarchy
shares an inter-realm key directly with the /COM realm in another hierarchy.

3.3.4. Receipt of KRB_TGS_REP message

When the KRB_TGS_REP is received by the client, it is processed in the same
manner as the KRB_AS_REP processing described above. The primary difference
is that the ciphertext part of the response must be decrypted using the
session key from the ticket-granting ticket rather than the client's secret
key. The server name returned in the reply is the true principal name of the
service. See section A.7 for pseudocode.

3.4. The KRB_SAFE Exchange

The KRB_SAFE message may be used by clients requiring the ability to detect
modifications of messages they exchange. It achieves this by including a
keyed collision-proof checksum of the user data and some control
information. The checksum is keyed with an encryption key (usually the last
key negotiated via subkeys, or the session key if no negotiation has
occurred).

3.4.1. Generation of a KRB_SAFE message

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 179

When an application wishes to send a KRB_SAFE message, it collects its data
and the appropriate control information and computes a checksum over them.
The checksum algorithm should be a keyed one-way hash function (such as the
RSA- MD5-DES checksum algorithm specified in section 6.4.5, or the DES MAC),
generated using the sub-session key if present, or the session key.
Different algorithms may be selected by changing the checksum type in the
message. Unkeyed or non-collision-proof checksums are not suitable for this
use.

The control information for the KRB_SAFE message includes both a timestamp
and a sequence number. The designer of an application using the KRB_SAFE
message must choose at least one of the two mechanisms. This choice should
be based on the needs of the application protocol.

Sequence numbers are useful when all messages sent will be received by one's
peer. Connection state is presently required to maintain the session key, so
maintaining the next sequence number should not present an additional
problem.

If the application protocol is expected to tolerate lost messages without
them being resent, the use of the timestamp is the appropriate replay
detection mechanism. Using timestamps is also the appropriate mechanism for
multi-cast protocols where all of one's peers share a common sub-session
key, but some messages will be sent to a subset of one's peers.

After computing the checksum, the client then transmits the information and
checksum to the recipient in the message format specified in section 5.6.1.

3.4.2. Receipt of KRB_SAFE message

When an application receives a KRB_SAFE message, it verifies it as follows.
If any error occurs, an error code is reported for use by the application.

The message is first checked by verifying that the protocol version and type
fields match the current version and KRB_SAFE, respectively. A mismatch
generates a KRB_AP_ERR_BADVERSION or KRB_AP_ERR_MSG_TYPE error. The
application verifies that the checksum used is a collision-proof keyed
checksum, and if it is not, a KRB_AP_ERR_INAPP_CKSUM error is generated. If
the sender's address was included in the control information, the recipient
verifies that the operating system's report of the sender's address matches
the sender's address in the message, and (if a recipient address is
specified or the recipient requires an address) that one of the recipient's
addresses appears as the recipient's address in the message. A failed match
for either case generates a KRB_AP_ERR_BADADDR error. Then the timestamp and
usec and/or the sequence number fields are checked. If timestamp and usec
are expected and not present, or they are present but not current, the
KRB_AP_ERR_SKEW error is generated. If the server name, along with the
client name, time and microsecond fields from the Authenticator match any
recently-seen (sent or received[20]) such tuples, the KRB_AP_ERR_REPEAT
error is generated. If an incorrect sequence number is included, or a
sequence number is expected but not present, the KRB_AP_ERR_BADORDER error
is generated. If neither a time-stamp and usec or a sequence number is
present, a KRB_AP_ERR_MODIFIED error is generated. Finally, the checksum is
computed over the data and control information, and if it doesn't match the
received checksum, a KRB_AP_ERR_MODIFIED error is generated.

If all the checks succeed, the application is assured that the message was
generated by its peer and was not modified in transit.

3.5. The KRB_PRIV Exchange

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 180

The KRB_PRIV message may be used by clients requiring confidentiality and
the ability to detect modifications of exchanged messages. It achieves this
by encrypting the messages and adding control information.

3.5.1. Generation of a KRB_PRIV message

When an application wishes to send a KRB_PRIV message, it collects its data
and the appropriate control information (specified in section 5.7.1) and
encrypts them under an encryption key (usually the last key negotiated via
subkeys, or the session key if no negotiation has occurred). As part of the
control information, the client must choose to use either a timestamp or a
sequence number (or both); see the discussion in section 3.4.1 for
guidelines on which to use. After the user data and control information are
encrypted, the client transmits the ciphertext and some 'envelope'
information to the recipient.

3.5.2. Receipt of KRB_PRIV message

When an application receives a KRB_PRIV message, it verifies it as follows.
If any error occurs, an error code is reported for use by the application.

The message is first checked by verifying that the protocol version and type
fields match the current version and KRB_PRIV, respectively. A mismatch
generates a KRB_AP_ERR_BADVERSION or KRB_AP_ERR_MSG_TYPE error. The

application then decrypts the ciphertext and processes the resultant
plaintext. If decryption shows the data to have been modified, a
KRB_AP_ERR_BAD_INTEGRITY error is generated. If the sender's address was
included in the control information, the recipient verifies that the
operating system's report of the sender's address matches the sender's
address in the message, and (if a recipient address is specified or the
recipient requires an address) that one of the recipient's addresses appears
as the recipient's address in the message. A failed match for either case
generates a KRB_AP_ERR_BADADDR error. Then the timestamp and usec and/or the
sequence number fields are checked. If timestamp and usec are expected and
not present, or they are present but not current, the KRB_AP_ERR_SKEW error
is generated. If the server name, along with the client name, time and
microsecond fields from the Authenticator match any recently-seen such
tuples, the KRB_AP_ERR_REPEAT error is generated. If an incorrect sequence
number is included, or a sequence number is expected but not present, the
KRB_AP_ERR_BADORDER error is generated. If neither a time-stamp and usec or
a sequence number is present, a KRB_AP_ERR_MODIFIED error is generated.

If all the checks succeed, the application can assume the message was
generated by its peer, and was securely transmitted (without intruders able
to see the unencrypted contents).

3.6. The KRB_CRED Exchange

The KRB_CRED message may be used by clients requiring the ability to send
Kerberos credentials from one host to another. It achieves this by sending
the tickets together with encrypted data containing the session keys and
other information associated with the tickets.

3.6.1. Generation of a KRB_CRED message

When an application wishes to send a KRB_CRED message it first (using the
KRB_TGS exchange) obtains credentials to be sent to the remote host. It then
constructs a KRB_CRED message using the ticket or tickets so obtained,
placing the session key needed to use each ticket in the key field of the
corresponding KrbCredInfo sequence of the encrypted part of the KRB_CRED
message.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 181

Other information associated with each ticket and obtained during the
KRB_TGS exchange is also placed in the corresponding KrbCredInfo sequence in
the encrypted part of the KRB_CRED message. The current time and, if
specifically required by the application the nonce, s-address, and r-address
fields, are placed in the encrypted part of the KRB_CRED message which is
then encrypted under an encryption key previously exchanged in the KRB_AP
exchange (usually the last key negotiated via subkeys, or the session key if
no negotiation has occurred).

3.6.2. Receipt of KRB_CRED message

When an application receives a KRB_CRED message, it verifies it. If any
error occurs, an error code is reported for use by the application. The
message is verified by checking that the protocol version and type fields
match the current version and KRB_CRED, respectively. A mismatch generates a
KRB_AP_ERR_BADVERSION or KRB_AP_ERR_MSG_TYPE error. The application then
decrypts the ciphertext and processes the resultant plaintext. If decryption
shows the data to have been modified, a KRB_AP_ERR_BAD_INTEGRITY error is
generated.

If present or required, the recipient verifies that the operating system's
report of the sender's address matches the sender's address in the message,
and that one of the recipient's addresses appears as the recipient's address
in the message. A failed match for either case generates a
KRB_AP_ERR_BADADDR error. The timestamp and usec fields (and the nonce field
if required) are checked next. If the timestamp and usec are not present, or
they are present but not current, the KRB_AP_ERR_SKEW error is generated.

If all the checks succeed, the application stores each of the new tickets in
its ticket cache together with the session key and other information in the
corresponding KrbCredInfo sequence from the encrypted part of the KRB_CRED
message.

4. The Kerberos Database

The Kerberos server must have access to a database containing the principal
identifiers and secret keys of any principals to be authenticated[4.1] using
such secret keys. The keying material in the database must be protected so
that they are only accessible to the Kerberos server and administrative
functions specifically authorized to access such material. Specific
implementations may handle the storage of keying material separate from the
Kerberos database (e.g. in hardware) or by encrypting the keying material
before placing it in the Kerberos database. Some implementations might
provide a means for using long term secret keys, but not for retrieving them
from the Kerberos database.

4.1. Database contents

A database entry will typically contain the following fields, though in some
instances a KDC may obtain these values through other means:

Field Value

name Principal's identifier
key Principal's secret key
p_kvno Principal's key version
max_life Maximum lifetime for Tickets
max_renewable_life Maximum total lifetime for renewable Tickets

The name field is an encoding of the principal's identifier. The key field
contains an encryption key. This key is the principal's secret key. (The key

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 182

can be encrypted before storage under a Kerberos "master key" to protect it
in case the database is compromised but the master key is not. In that case,
an extra field must be added to indicate the master key version used, see
below.) The p_kvno field is the key version number of the principal's secret
key. The max_life field contains the maximum allowable lifetime (endtime -
starttime) for any Ticket issued for this principal. The max_renewable_life
field contains the maximum allowable total lifetime for any renewable Ticket
issued for this principal. (See section 3.1 for a description of how these
lifetimes are used in determining the lifetime of a given Ticket.)

A server may provide KDC service to several realms, as long as the database
representation provides a mechanism to distinguish between principal records
with identifiers which differ only in the realm name.

When an application server's key changes, if the change is routine (i.e. not
the result of disclosure of the old key), the old key should be retained by
the server until all tickets that had been issued using that key have
expired. Because of this, it is possible for several keys to be active for a
single principal. Ciphertext encrypted in a principal's key is always tagged
with the version of the key that was used for encryption, to help the
recipient find the proper key for decryption.

When more than one key is active for a particular principal, the principal
will have more than one record in the Kerberos database. The keys and key
version numbers will differ between the records (the rest of the fields may
or may not be the same). Whenever Kerberos issues a ticket, or responds to a
request for initial authentication, the most recent key (known by the
Kerberos server) will be used for encryption. This is the key with the
highest key version number.

4.2. Additional fields

Project Athena's KDC implementation uses additional fields in its database:

Field Value

K_kvno Kerberos' key version
expiration Expiration date for entry
attributes Bit field of attributes
mod_date Timestamp of last modification
mod_name Modifying principal's identifier

The K_kvno field indicates the key version of the Kerberos master key under
which the principal's secret key is encrypted.

After an entry's expiration date has passed, the KDC will return an error to
any client attempting to gain tickets as or for the principal. (A database
may want to maintain two expiration dates: one for the principal, and one
for the principal's current key. This allows password aging to work
independently of the principal's expiration date. However, due to the
limited space in the responses, the KDC combines the key expiration and
principal expiration date into a single value called 'key_exp', which is
used as a hint to the user to take administrative action.)

The attributes field is a bitfield used to govern the operations involving
the principal. This field might be useful in conjunction with user
registration procedures, for site-specific policy implementations (Project
Athena currently uses it for their user registration process controlled by
the system-wide database service, Moira [LGDSR87]), to identify whether a
principal can play the role of a client or server or both, to note whether a
server is appropriately trusted to receive credentials delegated by a
client, or to identify the 'string to key' conversion algorithm used for a
principal's key[4.2]. Other bits are used to indicate that certain ticket

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 183

options should not be allowed in tickets encrypted under a principal's key
(one bit each): Disallow issuing postdated tickets, disallow issuing
forwardable tickets, disallow issuing tickets based on TGT authentication,
disallow issuing renewable tickets, disallow issuing proxiable tickets, and
disallow issuing tickets for which the principal is the server.

The mod_date field contains the time of last modification of the entry, and
the mod_name field contains the name of the principal which last modified
the entry.

4.3. Frequently Changing Fields

Some KDC implementations may wish to maintain the last time that a request
was made by a particular principal. Information that might be maintained
includes the time of the last request, the time of the last request for a
ticket-granting ticket, the time of the last use of a ticket-granting
ticket, or other times. This information can then be returned to the user in
the last-req field (see section 5.2).

Other frequently changing information that can be maintained is the latest
expiration time for any tickets that have been issued using each key. This
field would be used to indicate how long old keys must remain valid to allow
the continued use of outstanding tickets.

4.4. Site Constants

The KDC implementation should have the following configurable constants or
options, to allow an administrator to make and enforce policy decisions:

 * The minimum supported lifetime (used to determine whether the
 KDC_ERR_NEVER_VALID error should be returned). This constant should
 reflect reasonable expectations of round-trip time to the KDC,
 encryption/decryption time, and processing time by the client and
 target server, and it should allow for a minimum 'useful' lifetime.
 * The maximum allowable total (renewable) lifetime of a ticket
 (renew_till - starttime).
 * The maximum allowable lifetime of a ticket (endtime - starttime).
 * Whether to allow the issue of tickets with empty address fields
 (including the ability to specify that such tickets may only be issued
 if the request specifies some authorization_data).
 * Whether proxiable, forwardable, renewable or post-datable tickets are
 to be issued.

5. Message Specifications

This section (5) still has revisions that are pending based on comments by
Tom Yu. Please see http://www.isi.edu/people/bcn/krb-revisions for the
latest versions. There will be additional updates prior to the San Diego
IETF meeting.

The following sections describe the exact contents and encoding of protocol
messages and objects. The ASN.1 base definitions are presented in the first
subsection. The remaining subsections specify the protocol objects (tickets
and authenticators) and messages. Specification of encryption and checksum
techniques, and the fields related to them, appear in section 6.

Optional field in ASN.1 sequences

For optional integer value and date fields in ASN.1 sequences where a
default value has been specified, certain default values will not be allowed
in the encoding because these values will always be represented through
defaulting by the absence of the optional field. For example, one will not
send a microsecond zero value because one must make sure that there is only

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 184

one way to encode this value.

Additional fields in ASN.1 sequences

Implementations receiving Kerberos messages with additional fields present
in ASN.1 sequences should carry those fields through, unmodified, when the
message is forwarded. Implementations should not drop such fields if the
sequence is re-encoded.

5.1. ASN.1 Distinguished Encoding Representation

All uses of ASN.1 in Kerberos shall use the Distinguished Encoding
Representation of the data elements as described in the X.509 specification,
section 8.7 [X509-88].

5.2. ASN.1 Base Definitions

The following ASN.1 base definitions are used in the rest of this section.
Note that since the underscore character (_) is not permitted in ASN.1
names, the hyphen (-) is used in its place for the purposes of ASN.1 names.

Realm ::= GeneralString
PrincipalName ::= SEQUENCE {
 name-type[0] INTEGER,
 name-string[1] SEQUENCE OF GeneralString
}

Kerberos realms are encoded as GeneralStrings. Realms shall not contain a
character with the code 0 (the ASCII NUL). Most realms will usually consist
of several components separated by periods (.), in the style of Internet
Domain Names, or separated by slashes (/) in the style of X.500 names.
Acceptable forms for realm names are specified in section 7. A PrincipalName
is a typed sequence of components consisting of the following sub-fields:

name-type
 This field specifies the type of name that follows. Pre-defined values
 for this field are specified in section 7.2. The name-type should be
 treated as a hint. Ignoring the name type, no two names can be the same
 (i.e. at least one of the components, or the realm, must be different).
 This constraint may be eliminated in the future.
name-string
 This field encodes a sequence of components that form a name, each
 component encoded as a GeneralString. Taken together, a PrincipalName
 and a Realm form a principal identifier. Most PrincipalNames will have
 only a few components (typically one or two).

KerberosTime ::= GeneralizedTime
 -- Specifying UTC time zone (Z)

The timestamps used in Kerberos are encoded as GeneralizedTimes. An encoding
shall specify the UTC time zone (Z) and shall not include any fractional
portions of the seconds. It further shall not include any separators.
Example: The only valid format for UTC time 6 minutes, 27 seconds after 9 pm
on 6 November 1985 is 19851106210627Z.

HostAddress ::= SEQUENCE {
 addr-type[0] INTEGER,
 address[1] OCTET STRING
}

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 185

HostAddresses ::= SEQUENCE OF HostAddress

The host address encodings consists of two fields:

addr-type
 This field specifies the type of address that follows. Pre-defined
 values for this field are specified in section 8.1.
address
 This field encodes a single address of type addr-type.

The two forms differ slightly. HostAddress contains exactly one address;
HostAddresses contains a sequence of possibly many addresses.

AuthorizationData ::= SEQUENCE OF SEQUENCE {
 ad-type[0] INTEGER,
 ad-data[1] OCTET STRING
}

ad-data
 This field contains authorization data to be interpreted according to
 the value of the corresponding ad-type field.
ad-type
 This field specifies the format for the ad-data subfield. All negative
 values are reserved for local use. Non-negative values are reserved for
 registered use.

Each sequence of type and data is referred to as an authorization element.
Elements may be application specific, however, there is a common set of
recursive elements that should be understood by all implementations. These
elements contain other elements embedded within them, and the interpretation
of the encapsulating element determines which of the embedded elements must
be interpreted, and which may be ignored. Definitions for these common
elements may be found in Appendix B.

TicketExtensions ::= SEQUENCE OF SEQUENCE {
 te-type[0] INTEGER,
 te-data[1] OCTET STRING
}

te-data
 This field contains opaque data that must be carried with the ticket to
 support extensions to the Kerberos protocol including but not limited
 to some forms of inter-realm key exchange and plaintext authorization
 data. See appendix C for some common uses of this field.

te-type
 This field specifies the format for the te-data subfield. All negative
 values are reserved for local use. Non-negative values are reserved for
 registered use.

APOptions ::= BIT STRING
 -- reserved(0),
 -- use-session-key(1),
 -- mutual-required(2)

TicketFlags ::= BIT STRING
 -- reserved(0),
 -- forwardable(1),
 -- forwarded(2),
 -- proxiable(3),
 -- proxy(4),

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 186

 -- may-postdate(5),
 -- postdated(6),
 -- invalid(7),
 -- renewable(8),
 -- initial(9),
 -- pre-authent(10),
 -- hw-authent(11),
 -- transited-policy-checked(12),
 -- ok-as-delegate(13)

KDCOptions ::= BIT STRING io
 -- reserved(0),
 -- forwardable(1),
 -- forwarded(2),
 -- proxiable(3),
 -- proxy(4),
 -- allow-postdate(5),
 -- postdated(6),
 -- unused7(7),
 -- renewable(8),
 -- unused9(9),
 -- unused10(10),
 -- unused11(11),
 -- unused12(12),
 -- unused13(13),
 -- requestanonymous(14),
 -- canonicalize(15),
 -- disable-transited-check(26),
 -- renewable-ok(27),
 -- enc-tkt-in-skey(28),
 -- renew(30),
 -- validate(31)

ASN.1 Bit strings have a length and a value. When used in Kerberos for the
APOptions, TicketFlags, and KDCOptions, the length of the bit string on
generated values should be the smallest number of bits needed to include the
highest order bit that is set (1), but in no case less than 32 bits. The
ASN.1 representation of the bit strings uses unnamed bits, with the meaning
of the individual bits defined by the comments in the specification above.
Implementations should accept values of bit strings of any length and treat
the value of flags corresponding to bits beyond the end of the bit string as
if the bit were reset (0). Comparison of bit strings of different length
should treat the smaller string as if it were padded with zeros beyond the
high order bits to the length of the longer string[23].

LastReq ::= SEQUENCE OF SEQUENCE {
 lr-type[0] INTEGER,
 lr-value[1] KerberosTime
}

lr-type
 This field indicates how the following lr-value field is to be
 interpreted. Negative values indicate that the information pertains
 only to the responding server. Non-negative values pertain to all
 servers for the realm. If the lr-type field is zero (0), then no
 information is conveyed by the lr-value subfield. If the absolute value
 of the lr-type field is one (1), then the lr-value subfield is the time
 of last initial request for a TGT. If it is two (2), then the lr-value
 subfield is the time of last initial request. If it is three (3), then
 the lr-value subfield is the time of issue for the newest
 ticket-granting ticket used. If it is four (4), then the lr-value
 subfield is the time of the last renewal. If it is five (5), then the
 lr-value subfield is the time of last request (of any type). If it is

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 187

 (6), then the lr-value subfield is the time when the password will
 expire.
lr-value
 This field contains the time of the last request. the time must be
 interpreted according to the contents of the accompanying lr-type
 subfield.

See section 6 for the definitions of Checksum, ChecksumType, EncryptedData,
EncryptionKey, EncryptionType, and KeyType.

5.3. Tickets and Authenticators

This section describes the format and encryption parameters for tickets and
authenticators. When a ticket or authenticator is included in a protocol
message it is treated as an opaque object.

5.3.1. Tickets

A ticket is a record that helps a client authenticate to a service. A Ticket
contains the following information:

Ticket ::= [APPLICATION 1] SEQUENCE {
 tkt-vno[0] INTEGER,
 realm[1] Realm,
 sname[2] PrincipalName,
 enc-part[3] EncryptedData, -- EncTicketPart
 extensions[4] TicketExtensions OPTIONAL
}

-- Encrypted part of ticket
EncTicketPart ::= [APPLICATION 3] SEQUENCE {
 flags[0] TicketFlags,
 key[1] EncryptionKey,
 crealm[2] Realm,
 cname[3] PrincipalName,
 transited[4] TransitedEncoding,
 authtime[5] KerberosTime,
 starttime[6] KerberosTime OPTIONAL,
 endtime[7] KerberosTime,
 renew-till[8] KerberosTime OPTIONAL,
 caddr[9] HostAddresses OPTIONAL,
 authorization-data[10] AuthorizationData OPTIONAL
}
-- encoded Transited field
TransitedEncoding ::= SEQUENCE {
 tr-type[0] INTEGER, -- must be registered
 contents[1] OCTET STRING
}

The encoding of EncTicketPart is encrypted in the key shared by Kerberos and
the end server (the server's secret key). See section 6 for the format of
the ciphertext.

tkt-vno
 This field specifies the version number for the ticket format. This
 document describes version number 5.
realm
 This field specifies the realm that issued a ticket. It also serves to
 identify the realm part of the server's principal identifier. Since a
 Kerberos server can only issue tickets for servers within its realm,
 the two will always be identical.
sname
 This field specifies all components of the name part of the server's

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 188

 identity, including those parts that identify a specific instance of a
 service.
enc-part
 This field holds the encrypted encoding of the EncTicketPart sequence.
extensions
 This optional field contains a sequence of extensions that may be used
 to carry information that must be carried with the ticket to support
 several extensions, including but not limited to plaintext
 authorization data, tokens for exchanging inter-realm keys, and other
 information that must be associated with a ticket for use by the
 application server. See Appendix C for definitions of common
 extensions.

 Note that some older versions of Kerberos did not support this field.
 Because this is an optional field it will not break older clients, but
 older clients might strip this field from the ticket before sending it
 to the application server. This limits the usefulness of this ticket
 field to environments where the ticket will not be parsed and
 reconstructed by these older Kerberos clients.

 If it is known that the client will strip this field from the ticket,
 as an interim measure the KDC may append this field to the end of the
 enc-part of the ticket and append a trailer indicating the length of
 the appended extensions field.
flags
 This field indicates which of various options were used or requested
 when the ticket was issued. It is a bit-field, where the selected
 options are indicated by the bit being set (1), and the unselected
 options and reserved fields being reset (0). Bit 0 is the most
 significant bit. The encoding of the bits is specified in section 5.2.
 The flags are described in more detail above in section 2. The meanings
 of the flags are:
 Bits Name Description

 0 RESERVED Reserved for future expansion of this
 field.

 The FORWARDABLE flag is normally only
 interpreted by the TGS, and can be
 ignored by end servers. When set, this
 1 FORWARDABLE flag tells the ticket-granting server
 that it is OK to issue a new
 ticket-granting ticket with a
 different network address based on the
 presented ticket.

 When set, this flag indicates that the
 ticket has either been forwarded or
 2 FORWARDED was issued based on authentication
 involving a forwarded ticket-granting
 ticket.

 The PROXIABLE flag is normally only
 interpreted by the TGS, and can be
 ignored by end servers. The PROXIABLE
 flag has an interpretation identical
 3 PROXIABLE to that of the FORWARDABLE flag,
 except that the PROXIABLE flag tells
 the ticket-granting server that only
 non-ticket-granting tickets may be
 issued with different network
 addresses.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 189

 4 PROXY When set, this flag indicates that a
 ticket is a proxy.

 The MAY-POSTDATE flag is normally only
 interpreted by the TGS, and can be

 5 MAY-POSTDATE ignored by end servers. This flag
 tells the ticket-granting server that
 a post-dated ticket may be issued
 based on this ticket-granting ticket.

 This flag indicates that this ticket
 has been postdated. The end-service
 6 POSTDATED can check the authtime field to see
 when the original authentication
 occurred.

 This flag indicates that a ticket is
 invalid, and it must be validated by
 7 INVALID the KDC before use. Application
 servers must reject tickets which have
 this flag set.

 The RENEWABLE flag is normally only
 interpreted by the TGS, and can
 usually be ignored by end servers
 8 RENEWABLE (some particularly careful servers may
 wish to disallow renewable tickets). A
 renewable ticket can be used to obtain
 a replacement ticket that expires at a
 later date.

 This flag indicates that this ticket
 9 INITIAL was issued using the AS protocol, and
 not issued based on a ticket-granting
 ticket.

 This flag indicates that during
 initial authentication, the client was
 authenticated by the KDC before a
 10 PRE-AUTHENT ticket was issued. The strength of the
 preauthentication method is not
 indicated, but is acceptable to the
 KDC.

 This flag indicates that the protocol
 employed for initial authentication
 required the use of hardware expected
 11 HW-AUTHENT to be possessed solely by the named
 client. The hardware authentication
 method is selected by the KDC and the
 strength of the method is not
 indicated.

 This flag indicates that the KDC for
 the realm has checked the transited
 field against a realm defined policy
 for trusted certifiers. If this flag
 is reset (0), then the application
 server must check the transited field
 itself, and if unable to do so it must

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 190

 12 TRANSITED- reject the authentication. If the flag
 POLICY-CHECKED
 is set (1) then the application server
 may skip its own validation of the
 transited field, relying on the
 validation performed by the KDC. At
 its option the application server may
 still apply its own validation based
 on a separate policy for acceptance.

 This flag indicates that the server
 (not the client) specified in the
 ticket has been determined by policy
 of the realm to be a suitable
 recipient of delegation. A client can
 use the presence of this flag to help
 it make a decision whether to delegate
 credentials (either grant a proxy or a
 13 OK-AS-DELEGATE forwarded ticket granting ticket) to
 this server. The client is free to
 ignore the value of this flag. When
 setting this flag, an administrator
 should consider the Security and
 placement of the server on which the
 service will run, as well as whether
 the service requires the use of
 delegated credentials.

 This flag indicates that the principal
 named in the ticket is a generic
 principal for the realm and does not
 identify the individual using the
 ticket. The purpose of the ticket is
 only to securely distribute a session
 14 ANONYMOUS key, and not to identify the user.
 Subsequent requests using the same
 ticket and session may be considered
 as originating from the same user, but
 requests with the same username but a
 different ticket are likely to
 originate from different users.

 15-31 RESERVED Reserved for future use.
key
 This field exists in the ticket and the KDC response and is used to
 pass the session key from Kerberos to the application server and the
 client. The field's encoding is described in section 6.2.
crealm
 This field contains the name of the realm in which the client is
 registered and in which initial authentication took place.
cname
 This field contains the name part of the client's principal identifier.

transited
 This field lists the names of the Kerberos realms that took part in
 authenticating the user to whom this ticket was issued. It does not
 specify the order in which the realms were transited. See section
 3.3.3.2 for details on how this field encodes the traversed realms.
 When the names of CA's are to be embedded in the transited field (as
 specified for some extensions to the protocol), the X.500 names of the
 CA's should be mapped into items in the transited field using the
 mapping defined by RFC2253.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 191

authtime
 This field indicates the time of initial authentication for the named
 principal. It is the time of issue for the original ticket on which
 this ticket is based. It is included in the ticket to provide
 additional information to the end service, and to provide the necessary
 information for implementation of a `hot list' service at the KDC. An
 end service that is particularly paranoid could refuse to accept
 tickets for which the initial authentication occurred "too far" in the
 past. This field is also returned as part of the response from the KDC.
 When returned as part of the response to initial authentication
 (KRB_AS_REP), this is the current time on the Kerberos server[24].
starttime
 This field in the ticket specifies the time after which the ticket is
 valid. Together with endtime, this field specifies the life of the
 ticket. If it is absent from the ticket, its value should be treated as
 that of the authtime field.
endtime
 This field contains the time after which the ticket will not be honored
 (its expiration time). Note that individual services may place their
 own limits on the life of a ticket and may reject tickets which have
 not yet expired. As such, this is really an upper bound on the
 expiration time for the ticket.
renew-till
 This field is only present in tickets that have the RENEWABLE flag set
 in the flags field. It indicates the maximum endtime that may be
 included in a renewal. It can be thought of as the absolute expiration
 time for the ticket, including all renewals.
caddr
 This field in a ticket contains zero (if omitted) or more (if present)
 host addresses. These are the addresses from which the ticket can be
 used. If there are no addresses, the ticket can be used from any
 location. The decision by the KDC to issue or by the end server to
 accept zero-address tickets is a policy decision and is left to the
 Kerberos and end-service administrators; they may refuse to issue or
 accept such tickets. The suggested and default policy, however, is that
 such tickets will only be issued or accepted when additional
 information that can be used to restrict the use of the ticket is
 included in the authorization_data field. Such a ticket is a
 capability.

 Network addresses are included in the ticket to make it harder for an
 attacker to use stolen credentials. Because the session key is not sent
 over the network in cleartext, credentials can't be stolen simply by
 listening to the network; an attacker has to gain access to the session
 key (perhaps through operating system security breaches or a careless
 user's unattended session) to make use of stolen tickets.

 It is important to note that the network address from which a
 connection is received cannot be reliably determined. Even if it could
 be, an attacker who has compromised the client's workstation could use
 the credentials from there. Including the network addresses only makes
 it more difficult, not impossible, for an attacker to walk off with
 stolen credentials and then use them from a "safe" location.
authorization-data
 The authorization-data field is used to pass authorization data from
 the principal on whose behalf a ticket was issued to the application
 service. If no authorization data is included, this field will be left
 out. Experience has shown that the name of this field is confusing, and
 that a better name for this field would be restrictions. Unfortunately,
 it is not possible to change the name of this field at this time.

 This field contains restrictions on any authority obtained on the basis

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 192

 of authentication using the ticket. It is possible for any principal in
 possession of credentials to add entries to the authorization data field
 since these entries further restrict what can be done with the ticket.
 Such additions can be made by specifying the additional entries when a
 new ticket is obtained during the TGS exchange, or they may be added
 during chained delegation using the authorization data field of the
 authenticator.

 Because entries may be added to this field by the holder of
 credentials, except when an entry is separately authenticated by
 encapsulation in the kdc-issued element, it is not allowable for the
 presence of an entry in the authorization data field of a ticket to
 amplify the privileges one would obtain from using a ticket.

 The data in this field may be specific to the end service; the field
 will contain the names of service specific objects, and the rights to
 those objects. The format for this field is described in section 5.2.
 Although Kerberos is not concerned with the format of the contents of
 the sub-fields, it does carry type information (ad-type).

 By using the authorization_data field, a principal is able to issue a
 proxy that is valid for a specific purpose. For example, a client
 wishing to print a file can obtain a file server proxy to be passed to
 the print server. By specifying the name of the file in the
 authorization_data field, the file server knows that the print server
 can only use the client's rights when accessing the particular file to
 be printed.

 A separate service providing authorization or certifying group
 membership may be built using the authorization-data field. In this
 case, the entity granting authorization (not the authorized entity),
 may obtain a ticket in its own name (e.g. the ticket is issued in the
 name of a privilege server), and this entity adds restrictions on its
 own authority and delegates the restricted authority through a proxy to
 the client. The client would then present this authorization credential
 to the application server separately from the authentication exchange.
 Alternatively, such authorization credentials may be embedded in the
 ticket authenticating the authorized entity, when the authorization is
 separately authenticated using the kdc-issued authorization data
 element (see B.4).

 Similarly, if one specifies the authorization-data field of a proxy and
 leaves the host addresses blank, the resulting ticket and session key
 can be treated as a capability. See [Neu93] for some suggested uses of
 this field.

 The authorization-data field is optional and does not have to be
 included in a ticket.

5.3.2. Authenticators

An authenticator is a record sent with a ticket to a server to certify the
client's knowledge of the encryption key in the ticket, to help the server
detect replays, and to help choose a "true session key" to use with the
particular session. The encoding is encrypted in the ticket's session key
shared by the client and the server:

-- Unencrypted authenticator
Authenticator ::= [APPLICATION 2] SEQUENCE {
 authenticator-vno[0] INTEGER,
 crealm[1] Realm,
 cname[2] PrincipalName,

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 193

 cksum[3] Checksum OPTIONAL,
 cusec[4] INTEGER,
 ctime[5] KerberosTime,
 subkey[6] EncryptionKey OPTIONAL,
 seq-number[7] INTEGER OPTIONAL,
 authorization-data[8] AuthorizationData OPTIONAL
}

authenticator-vno
 This field specifies the version number for the format of the
 authenticator. This document specifies version 5.
crealm and cname
 These fields are the same as those described for the ticket in section
 5.3.1.
cksum
 This field contains a checksum of the application data that
 accompanies the KRB_AP_REQ.
cusec
 This field contains the microsecond part of the client's timestamp. Its
 value (before encryption) ranges from 0 to 999999. It often appears
 along with ctime. The two fields are used together to specify a
 reasonably accurate timestamp.
ctime
 This field contains the current time on the client's host.
subkey
 This field contains the client's choice for an encryption key which is
 to be used to protect this specific application session. Unless an
 application specifies otherwise, if this field is left out the session
 key from the ticket will be used.
seq-number
 This optional field includes the initial sequence number to be used by
 the KRB_PRIV or KRB_SAFE messages when sequence numbers are used to
 detect replays (It may also be used by application specific messages).
 When included in the authenticator this field specifies the initial
 sequence number for messages from the client to the server. When
 included in the AP-REP message, the initial sequence number is that for
 messages from the server to the client. When used in KRB_PRIV or
 KRB_SAFE messages, it is incremented by one after each message is sent.
 Sequence numbers fall in the range of 0 through 2^32 - 1 and wrap to
 zero following the value 2^32 - 1.

 For sequence numbers to adequately support the detection of replays
 they should be non-repeating, even across connection boundaries. The
 initial sequence number should be random and uniformly distributed
 across the full space of possible sequence numbers, so that it cannot
 be guessed by an attacker and so that it and the successive sequence
 numbers do not repeat other sequences.
authorization-data
 This field is the same as described for the ticket in section 5.3.1. It
 is optional and will only appear when additional restrictions are to be
 placed on the use of a ticket, beyond those carried in the ticket
 itself.

5.4. Specifications for the AS and TGS exchanges

This section specifies the format of the messages used in the exchange
between the client and the Kerberos server. The format of possible error
messages appears in section 5.9.1.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 194

5.4.1. KRB_KDC_REQ definition

The KRB_KDC_REQ message has no type of its own. Instead, its type is one of
KRB_AS_REQ or KRB_TGS_REQ depending on whether the request is for an initial
ticket or an additional ticket. In either case, the message is sent from the
client to the Authentication Server to request credentials for a service.

The message fields are:

AS-REQ ::= [APPLICATION 10] KDC-REQ
TGS-REQ ::= [APPLICATION 12] KDC-REQ

KDC-REQ ::= SEQUENCE {
 pvno[1] INTEGER,
 msg-type[2] INTEGER,
 padata[3] SEQUENCE OF PA-DATA OPTIONAL,
 req-body[4] KDC-REQ-BODY
}

PA-DATA ::= SEQUENCE {
 padata-type[1] INTEGER,
 padata-value[2] OCTET STRING,
 -- might be encoded AP-REQ
}

KDC-REQ-BODY ::= SEQUENCE {
 kdc-options[0] KDCOptions,
 cname[1] PrincipalName OPTIONAL,
 -- Used only in AS-REQ
 realm[2] Realm, -- Server's realm
 -- Also client's in AS-REQ
 sname[3] PrincipalName OPTIONAL,
 from[4] KerberosTime OPTIONAL,
 till[5] KerberosTime OPTIONAL,
 rtime[6] KerberosTime OPTIONAL,
 nonce[7] INTEGER,
 etype[8] SEQUENCE OF INTEGER,
 -- EncryptionType,
 -- in preference order
 addresses[9] HostAddresses OPTIONAL,
 enc-authorization-data[10] EncryptedData OPTIONAL,
 -- Encrypted AuthorizationData
 -- encoding
 additional-tickets[11] SEQUENCE OF Ticket OPTIONAL
}

The fields in this message are:

pvno
 This field is included in each message, and specifies the protocol
 version number. This document specifies protocol version 5.
msg-type
 This field indicates the type of a protocol message. It will almost
 always be the same as the application identifier associated with a
 message. It is included to make the identifier more readily accessible
 to the application. For the KDC-REQ message, this type will be
 KRB_AS_REQ or KRB_TGS_REQ.

padata
 The padata (pre-authentication data) field contains a sequence of
 authentication information which may be needed before credentials can

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 195

 be issued or decrypted. In the case of requests for additional tickets
 (KRB_TGS_REQ), this field will include an element with padata-type of
 PA-TGS-REQ and data of an authentication header (ticket-granting ticket
 and authenticator). The checksum in the authenticator (which must be
 collision-proof) is to be computed over the KDC-REQ-BODY encoding. In
 most requests for initial authentication (KRB_AS_REQ) and most replies
 (KDC-REP), the padata field will be left out.

 This field may also contain information needed by certain extensions to
 the Kerberos protocol. For example, it might be used to initially
 verify the identity of a client before any response is returned. When
 this field is used to authenticate or pre-authenticate a request, it
 should contain a keyed checksum over the KDC-REQ-BODY to bind the
 pre-authentication data to rest of the request. The KDC, as a matter of
 policy, may decide whether to honor a KDC-REQ which includes any
 pre-authentication data that does not contain the checksum field.

 PA-ENC-TIMESTAMP defines a pre-authentication data type that is used
 for authenticating a client by way of an encrypted timestamp. This is
 accomplished with a padata field with padata-type equal to
 PA-ENC-TIMESTAMP and padata-value defined as follows (query: the
 checksum is new in this definition. If the optional field will break
 things we can keep the old PA-ENC-TS-ENC, and define a new alternate
 form that includes the checksum). :

 padata-type ::= PA-ENC-TIMESTAMP
 padata-value ::= EncryptedData -- PA-ENC-TS-ENC

 PA-ENC-TS-ENC ::= SEQUENCE {
 patimestamp[0] KerberosTime, -- client's time
 pausec[1] INTEGER OPTIONAL,
 pachecksum[2] checksum OPTIONAL
 -- keyed checksum of KDC-REQ-BODY
 }

 with patimestamp containing the client's time and pausec containing the
 microseconds which may be omitted if a client will not generate more
 than one request per second. The ciphertext (padata-value) consists of
 the PA-ENC-TS-ENC sequence, encrypted using the client's secret key.

 It may also be used by the client to specify the version of a key that
 is being used for accompanying preauthentication, and/or which should
 be used to encrypt the reply from the KDC.

 padata-type ::= PA-USE-SPECIFIED-KVNO
 padata-value ::= Integer
 }

 The KDC should only accept and abide by the value of the
 use-specified-kvno preauthentication data field when the specified key
 is still valid and until use of a new key is confirmed. This situation
 is likely to occur primarily during the period during which an updated
 key is propagating to other KDC's in a realm.

 The padata field can also contain information needed to help the KDC or
 the client select the key needed for generating or decrypting the
 response. This form of the padata is useful for supporting the use of
 certain token cards with Kerberos. The details of such extensions are
 specified in separate documents. See [Pat92] for additional uses of
 this field.
padata-type
 The padata-type element of the padata field indicates the way that the
 padata-value element is to be interpreted. Negative values of

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 196

 padata-type are reserved for unregistered use; non-negative values are
 used for a registered interpretation of the element type.
req-body
 This field is a placeholder delimiting the extent of the remaining
 fields. If a checksum is to be calculated over the request, it is
 calculated over an encoding of the KDC-REQ-BODY sequence which is
 enclosed within the req-body field.
kdc-options
 This field appears in the KRB_AS_REQ and KRB_TGS_REQ requests to the
 KDC and indicates the flags that the client wants set on the tickets as
 well as other information that is to modify the behavior of the KDC.
 Where appropriate, the name of an option may be the same as the flag
 that is set by that option. Although in most case, the bit in the
 options field will be the same as that in the flags field, this is not
 guaranteed, so it is not acceptable to simply copy the options field to
 the flags field. There are various checks that must be made before
 honoring an option anyway.

 The kdc_options field is a bit-field, where the selected options are
 indicated by the bit being set (1), and the unselected options and
 reserved fields being reset (0). The encoding of the bits is specified
 in section 5.2. The options are described in more detail above in
 section 2. The meanings of the options are:
 Bits Name Description

 0 RESERVED Reserved for future expansion of
 this field.

 The FORWARDABLE option indicates
 that the ticket to be issued is to
 have its forwardable flag set. It
 1 FORWARDABLE may only be set on the initial
 request, or in a subsequent request
 if the ticket-granting ticket on
 which it is based is also
 forwardable.

 The FORWARDED option is only
 specified in a request to the
 ticket-granting server and will only
 be honored if the ticket-granting
 ticket in the request has its

 2 FORWARDED FORWARDABLE bit set. This option
 indicates that this is a request for
 forwarding. The address(es) of the
 host from which the resulting ticket
 is to be valid are included in the
 addresses field of the request.

 The PROXIABLE option indicates that
 the ticket to be issued is to have
 its proxiable flag set. It may only
 3 PROXIABLE be set on the initial request, or in
 a subsequent request if the
 ticket-granting ticket on which it
 is based is also proxiable.

 The PROXY option indicates that this
 is a request for a proxy. This
 option will only be honored if the
 ticket-granting ticket in the

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 197

 4 PROXY request has its PROXIABLE bit set.
 The address(es) of the host from
 which the resulting ticket is to be
 valid are included in the addresses
 field of the request.

 The ALLOW-POSTDATE option indicates
 that the ticket to be issued is to
 have its MAY-POSTDATE flag set. It
 5 ALLOW-POSTDATE may only be set on the initial
 request, or in a subsequent request
 if the ticket-granting ticket on
 which it is based also has its
 MAY-POSTDATE flag set.

 The POSTDATED option indicates that
 this is a request for a postdated
 ticket. This option will only be
 honored if the ticket-granting
 ticket on which it is based has its
 6 POSTDATED MAY-POSTDATE flag set. The resulting
 ticket will also have its INVALID
 flag set, and that flag may be reset
 by a subsequent request to the KDC
 after the starttime in the ticket
 has been reached.

 7 UNUSED This option is presently unused.

 The RENEWABLE option indicates that
 the ticket to be issued is to have
 its RENEWABLE flag set. It may only
 be set on the initial request, or
 when the ticket-granting ticket on

 8 RENEWABLE which the request is based is also
 renewable. If this option is
 requested, then the rtime field in
 the request contains the desired
 absolute expiration time for the
 ticket.

 9 RESERVED Reserved for PK-Cross

 10-13 UNUSED These options are presently unused.

 The REQUEST-ANONYMOUS option
 indicates that the ticket to be
 issued is not to identify the user
 to which it was issued. Instead, the
 principal identifier is to be
 generic, as specified by the policy
 of the realm (e.g. usually
 14 REQUEST-ANONYMOUS anonymous@realm). The purpose of the
 ticket is only to securely
 distribute a session key, and not to
 identify the user. The ANONYMOUS
 flag on the ticket to be returned
 should be set. If the local realms
 policy does not permit anonymous
 credentials, the request is to be
 rejected.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 198

 The CANONICALIZE option indicates
 that the client will accept the
 return of a true server name instead
 of the name specified in the
 request. In addition the client will
 be able to process any TGT referrals
 that will direct the client to
 15 CANONICALIZE another realm to locate the
 requested server. If a KDC does not
 support name- canonicalization, the
 option is ignored and the
 appropriate
 KDC_ERR_C_PRINCIPAL_UNKNOWN or
 KDC_ERR_S_PRINCIPAL_UNKNOWN error is
 returned. [JBrezak]

 16-25 RESERVED Reserved for future use.

 By default the KDC will check the
 transited field of a
 ticket-granting-ticket against the
 policy of the local realm before it
 will issue derivative tickets based
 on the ticket granting ticket. If
 this flag is set in the request,
 checking of the transited field is

 26 DISABLE-TRANSITED-CHECK disabled. Tickets issued without the
 performance of this check will be
 noted by the reset (0) value of the
 TRANSITED-POLICY-CHECKED flag,
 indicating to the application server
 that the transited field must be
 checked locally. KDC's are
 encouraged but not required to honor
 the DISABLE-TRANSITED-CHECK option.

 The RENEWABLE-OK option indicates
 that a renewable ticket will be
 acceptable if a ticket with the
 requested life cannot otherwise be
 provided. If a ticket with the
 requested life cannot be provided,
 27 RENEWABLE-OK then a renewable ticket may be
 issued with a renew-till equal to
 the requested endtime. The value
 of the renew-till field may still be
 limited by local limits, or limits
 selected by the individual principal
 or server.

 This option is used only by the
 ticket-granting service. The
 ENC-TKT-IN-SKEY option indicates
 28 ENC-TKT-IN-SKEY that the ticket for the end server
 is to be encrypted in the session
 key from the additional
 ticket-granting ticket provided.

 29 RESERVED Reserved for future use.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 199

 This option is used only by the
 ticket-granting service. The RENEW
 option indicates that the present
 request is for a renewal. The ticket
 provided is encrypted in the secret
 key for the server on which it is
 30 RENEW valid. This option will only be
 honored if the ticket to be renewed
 has its RENEWABLE flag set and if
 the time in its renew-till field has
 not passed. The ticket to be renewed
 is passed in the padata field as
 part of the authentication header.

 This option is used only by the
 ticket-granting service. The
 VALIDATE option indicates that the
 request is to validate a postdated
 ticket. It will only be honored if
 the ticket presented is postdated,
 presently has its INVALID flag set,

 31 VALIDATE and would be otherwise usable at
 this time. A ticket cannot be
 validated before its starttime. The
 ticket presented for validation is
 encrypted in the key of the server
 for which it is valid and is passed
 in the padata field as part of the
 authentication header.
cname and sname
 These fields are the same as those described for the ticket in section
 5.3.1. sname may only be absent when the ENC-TKT-IN-SKEY option is
 specified. If absent, the name of the server is taken from the name of
 the client in the ticket passed as additional-tickets.
enc-authorization-data
 The enc-authorization-data, if present (and it can only be present in
 the TGS_REQ form), is an encoding of the desired authorization-data
 encrypted under the sub-session key if present in the Authenticator, or
 alternatively from the session key in the ticket-granting ticket, both
 from the padata field in the KRB_AP_REQ.
realm
 This field specifies the realm part of the server's principal
 identifier. In the AS exchange, this is also the realm part of the
 client's principal identifier. If the CANONICALIZE option is set, the
 realm is used as a hint to the KDC for its database lookup.
from
 This field is included in the KRB_AS_REQ and KRB_TGS_REQ ticket
 requests when the requested ticket is to be postdated. It specifies the
 desired start time for the requested ticket. If this field is omitted
 then the KDC should use the current time instead.
till
 This field contains the expiration date requested by the client in a
 ticket request. It is optional and if omitted the requested ticket is
 to have the maximum endtime permitted according to KDC policy for the
 parties to the authentication exchange as limited by expiration date of
 the ticket granting ticket or other preauthentication credentials.
rtime
 This field is the requested renew-till time sent from a client to the
 KDC in a ticket request. It is optional.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 200

nonce
 This field is part of the KDC request and response. It intended to
 hold a random number generated by the client. If the same number is
 included in the encrypted response from the KDC, it provides evidence
 that the response is fresh and has not been replayed by an attacker.
 Nonces must never be re-used. Ideally, it should be generated randomly,
 but if the correct time is known, it may suffice[25].
etype
 This field specifies the desired encryption algorithm to be used in the
 response.
addresses
 This field is included in the initial request for tickets, and
 optionally included in requests for additional tickets from the
 ticket-granting server. It specifies the addresses from which the
 requested ticket is to be valid. Normally it includes the addresses for
 the client's host. If a proxy is requested, this field will contain
 other addresses. The contents of this field are usually copied by the
 KDC into the caddr field of the resulting ticket.

additional-tickets
 Additional tickets may be optionally included in a request to the
 ticket-granting server. If the ENC-TKT-IN-SKEY option has been
 specified, then the session key from the additional ticket will be used
 in place of the server's key to encrypt the new ticket. When he
 ENC-TKT-IN-SKEY option is used for user-to-user authentication, this
 additional ticket may be a TGT issued by the local realm or an
 inter-realm TGT issued for the current KDC's realm by a remote KDC. If
 more than one option which requires additional tickets has been
 specified, then the additional tickets are used in the order specified
 by the ordering of the options bits (see kdc-options, above).

The application code will be either ten (10) or twelve (12) depending on
whether the request is for an initial ticket (AS-REQ) or for an additional
ticket (TGS-REQ).

The optional fields (addresses, authorization-data and additional-tickets)
are only included if necessary to perform the operation specified in the
kdc-options field.

It should be noted that in KRB_TGS_REQ, the protocol version number appears
twice and two different message types appear: the KRB_TGS_REQ message
contains these fields as does the authentication header (KRB_AP_REQ) that is
passed in the padata field.

5.4.2. KRB_KDC_REP definition

The KRB_KDC_REP message format is used for the reply from the KDC for either
an initial (AS) request or a subsequent (TGS) request. There is no message
type for KRB_KDC_REP. Instead, the type will be either KRB_AS_REP or
KRB_TGS_REP. The key used to encrypt the ciphertext part of the reply
depends on the message type. For KRB_AS_REP, the ciphertext is encrypted in
the client's secret key, and the client's key version number is included in
the key version number for the encrypted data. For KRB_TGS_REP, the
ciphertext is encrypted in the sub-session key from the Authenticator, or if
absent, the session key from the ticket-granting ticket used in the request.
In that case, no version number will be present in the EncryptedData
sequence.

The KRB_KDC_REP message contains the following fields:

AS-REP ::= [APPLICATION 11] KDC-REP

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 201

TGS-REP ::= [APPLICATION 13] KDC-REP

KDC-REP ::= SEQUENCE {
 pvno[0] INTEGER,
 msg-type[1] INTEGER,
 padata[2] SEQUENCE OF PA-DATA OPTIONAL,
 crealm[3] Realm,
 cname[4] PrincipalName,
 ticket[5] Ticket,
 enc-part[6] EncryptedData
 -- EncASREpPart or EncTGSReoOart
}

EncASRepPart ::= [APPLICATION 25[27]] EncKDCRepPart
EncTGSRepPart ::= [APPLICATION 26] EncKDCRepPart

EncKDCRepPart ::= SEQUENCE {
 key[0] EncryptionKey,
 last-req[1] LastReq,
 nonce[2] INTEGER,
 key-expiration[3] KerberosTime OPTIONAL,
 flags[4] TicketFlags,
 authtime[5] KerberosTime,
 starttime[6] KerberosTime OPTIONAL,
 endtime[7] KerberosTime,
 renew-till[8] KerberosTime OPTIONAL,
 srealm[9] Realm,
 sname[10] PrincipalName,
 caddr[11] HostAddresses OPTIONAL
}

pvno and msg-type
 These fields are described above in section 5.4.1. msg-type is either
 KRB_AS_REP or KRB_TGS_REP.
padata
 This field is described in detail in section 5.4.1. One possible use
 for this field is to encode an alternate "mix-in" string to be used
 with a string-to-key algorithm (such as is described in section 6.3.2).
 This ability is useful to ease transitions if a realm name needs to
 change (e.g. when a company is acquired); in such a case all existing
 password-derived entries in the KDC database would be flagged as
 needing a special mix-in string until the next password change.
crealm, cname, srealm and sname
 These fields are the same as those described for the ticket in section
 5.3.1.
ticket
 The newly-issued ticket, from section 5.3.1.
enc-part
 This field is a place holder for the ciphertext and related information
 that forms the encrypted part of a message. The description of the
 encrypted part of the message follows each appearance of this field.
 The encrypted part is encoded as described in section 6.1.
key
 This field is the same as described for the ticket in section 5.3.1.

last-req
 This field is returned by the KDC and specifies the time(s) of the last
 request by a principal. Depending on what information is available,
 this might be the last time that a request for a ticket-granting ticket
 was made, or the last time that a request based on a ticket-granting
 ticket was successful. It also might cover all servers for a realm, or

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 202

 just the particular server. Some implementations may display this
 information to the user to aid in discovering unauthorized use of one's
 identity. It is similar in spirit to the last login time displayed when
 logging into timesharing systems.
nonce
 This field is described above in section 5.4.1.
key-expiration
 The key-expiration field is part of the response from the KDC and
 specifies the time that the client's secret key is due to expire. The
 expiration might be the result of password aging or an account
 expiration. This field will usually be left out of the TGS reply since
 the response to the TGS request is encrypted in a session key and no
 client information need be retrieved from the KDC database. It is up to
 the application client (usually the login program) to take appropriate
 action (such as notifying the user) if the expiration time is imminent.
flags, authtime, starttime, endtime, renew-till and caddr
 These fields are duplicates of those found in the encrypted portion of
 the attached ticket (see section 5.3.1), provided so the client may
 verify they match the intended request and to assist in proper ticket
 caching. If the message is of type KRB_TGS_REP, the caddr field will
 only be filled in if the request was for a proxy or forwarded ticket,
 or if the user is substituting a subset of the addresses from the
 ticket granting ticket. If the client-requested addresses are not
 present or not used, then the addresses contained in the ticket will be
 the same as those included in the ticket-granting ticket.

5.5. Client/Server (CS) message specifications

This section specifies the format of the messages used for the
authentication of the client to the application server.

5.5.1. KRB_AP_REQ definition

The KRB_AP_REQ message contains the Kerberos protocol version number, the
message type KRB_AP_REQ, an options field to indicate any options in use,
and the ticket and authenticator themselves. The KRB_AP_REQ message is often
referred to as the 'authentication header'.

AP-REQ ::= [APPLICATION 14] SEQUENCE {
 pvno[0] INTEGER,
 msg-type[1] INTEGER,
 ap-options[2] APOptions,
 ticket[3] Ticket,
 authenticator[4] EncryptedData
 -- Authenticator from 5.3.2
}

APOptions ::= BIT STRING {
 reserved(0),
 use-session-key(1),
 mutual-required(2)
}

pvno and msg-type
 These fields are described above in section 5.4.1. msg-type is
 KRB_AP_REQ.
ap-options
 This field appears in the application request (KRB_AP_REQ) and affects
 the way the request is processed. It is a bit-field, where the selected
 options are indicated by the bit being set (1), and the unselected
 options and reserved fields being reset (0). The encoding of the bits
 is specified in section 5.2. The meanings of the options are:

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 203

 Bit(s) Name Description

 0 RESERVED
 Reserved for future expansion of this
 field.

 1 USE-SESSION-KEY
 The USE-SESSION-KEY option indicates
 that the ticket the client is presenting
 to a server is encrypted in the session
 key from the server's ticket-granting
 ticket. When this option is not speci-
 fied, the ticket is encrypted in the
 server's secret key.

 2 MUTUAL-REQUIRED
 The MUTUAL-REQUIRED option tells the
 server that the client requires mutual
 authentication, and that it must respond
 with a KRB_AP_REP message.

 3-31 RESERVED
 Reserved for future use.

ticket
 This field is a ticket authenticating the client to the server.
authenticator
 This contains the authenticator, which includes the client's choice of
 a subkey. Its encoding is described in section 5.3.2.

5.5.2. KRB_AP_REP definition

The KRB_AP_REP message contains the Kerberos protocol version number, the
message type, and an encrypted time- stamp. The message is sent in
response to an application request (KRB_AP_REQ) where the mutual
authentication option has been selected in the ap-options field.

AP-REP ::= [APPLICATION 15] SEQUENCE {
 pvno[0] INTEGER,
 msg-type[1] INTEGER,
 enc-part[2] EncryptedData
 -- EncAPRepPart
}

EncAPRepPart ::= [APPLICATION 27[29]] SEQUENCE {
 ctime[0] KerberosTime,
 cusec[1] INTEGER,
 subkey[2] EncryptionKey OPTIONAL,
 seq-number[3] INTEGER OPTIONAL
}

The encoded EncAPRepPart is encrypted in the shared session key of the
ticket. The optional subkey field can be used in an application-arranged
negotiation to choose a per association session key.

pvno and msg-type
 These fields are described above in section 5.4.1. msg-type is
 KRB_AP_REP.
enc-part
 This field is described above in section 5.4.2.
ctime

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 204

 This field contains the current time on the client's host.
cusec
 This field contains the microsecond part of the client's timestamp.
subkey
 This field contains an encryption key which is to be used to protect
 this specific application session. See section 3.2.6 for specifics on
 how this field is used to negotiate a key. Unless an application
 specifies otherwise, if this field is left out, the sub-session key
 from the authenticator, or if also left out, the session key from the
 ticket will be used.
seq-number
 This field is described above in section 5.3.2.

5.5.3. Error message reply

If an error occurs while processing the application request, the KRB_ERROR
message will be sent in response. See section 5.9.1 for the format of the
error message. The cname and crealm fields may be left out if the server
cannot determine their appropriate values from the corresponding KRB_AP_REQ
message. If the authenticator was decipherable, the ctime and cusec fields
will contain the values from it.

5.6. KRB_SAFE message specification

This section specifies the format of a message that can be used by either
side (client or server) of an application to send a tamper-proof message to
its peer. It presumes that a session key has previously been exchanged (for
example, by using the KRB_AP_REQ/KRB_AP_REP messages).

5.6.1. KRB_SAFE definition

The KRB_SAFE message contains user data along with a collision-proof
checksum keyed with the last encryption key negotiated via subkeys, or the
session key if no negotiation has occurred. The message fields are:

KRB-SAFE ::= [APPLICATION 20] SEQUENCE {
 pvno[0] INTEGER,
 msg-type[1] INTEGER,
 safe-body[2] KRB-SAFE-BODY,
 cksum[3] Checksum
}

KRB-SAFE-BODY ::= SEQUENCE {
 user-data[0] OCTET STRING,
 timestamp[1] KerberosTime OPTIONAL,
 usec[2] INTEGER OPTIONAL,
 seq-number[3] INTEGER OPTIONAL,
 s-address[4] HostAddress OPTIONAL,
 r-address[5] HostAddress OPTIONAL
}

pvno and msg-type
 These fields are described above in section 5.4.1. msg-type is
 KRB_SAFE.
safe-body
 This field is a placeholder for the body of the KRB-SAFE message.
cksum
 This field contains the checksum of the application data. Checksum
 details are described in section 6.4. The checksum is computed over the
 encoding of the KRB-SAFE sequence. First, the cksum is zeroed and the
 checksum is computed over the encoding of the KRB-SAFE sequence, then
 the checksum is set to the result of that computation, and finally the
 KRB-SAFE sequence is encoded again.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 205

user-data
 This field is part of the KRB_SAFE and KRB_PRIV messages and contain
 the application specific data that is being passed from the sender to
 the recipient.
timestamp
 This field is part of the KRB_SAFE and KRB_PRIV messages. Its contents
 are the current time as known by the sender of the message. By checking
 the timestamp, the recipient of the message is able to make sure that
 it was recently generated, and is not a replay.
usec
 This field is part of the KRB_SAFE and KRB_PRIV headers. It contains
 the microsecond part of the timestamp.
seq-number
 This field is described above in section 5.3.2.
s-address
 This field specifies the address in use by the sender of the message.
 It may be omitted if not required by the application protocol. The
 application designer considering omission of this field is warned, that
 the inclusion of this address prevents some kinds of replay attacks
 (e.g., reflection attacks) and that it is only acceptable to omit this
 address if there is sufficient information in the integrity protected
 part of the application message for the recipient to unambiguously
 determine if it was the intended recipient.
r-address
 This field specifies the address in use by the recipient of the
 message. It may be omitted for some uses (such as broadcast protocols),
 but the recipient may arbitrarily reject such messages. This field
 along with s-address can be used to help detect messages which have
 been incorrectly or maliciously delivered to the wrong recipient.

5.7. KRB_PRIV message specification

This section specifies the format of a message that can be used by either
side (client or server) of an application to securely and privately send a
message to its peer. It presumes that a session key has previously been
exchanged (for example, by using the KRB_AP_REQ/KRB_AP_REP messages).

5.7.1. KRB_PRIV definition

The KRB_PRIV message contains user data encrypted in the Session Key. The
message fields are:

KRB-PRIV ::= [APPLICATION 21] SEQUENCE {
 pvno[0] INTEGER,
 msg-type[1] INTEGER,
 enc-part[3] EncryptedData
 -- EncKrbPrivPart
}

EncKrbPrivPart ::= [APPLICATION 28[31]] SEQUENCE {
 user-data[0] OCTET STRING,
 timestamp[1] KerberosTime OPTIONAL,
 usec[2] INTEGER OPTIONAL,
 seq-number[3] INTEGER OPTIONAL,
 s-address[4] HostAddress OPTIONAL, -- sender's
 addr
 r-address[5] HostAddress OPTIONAL -- recip's
 addr
}

pvno and msg-type
 These fields are described above in section 5.4.1. msg-type is
 KRB_PRIV.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 206

enc-part
 This field holds an encoding of the EncKrbPrivPart sequence encrypted
 under the session key[32]. This encrypted encoding is used for the
 enc-part field of the KRB-PRIV message. See section 6 for the format of
 the ciphertext.
user-data, timestamp, usec, s-address and r-address
 These fields are described above in section 5.6.1.
seq-number
 This field is described above in section 5.3.2.

5.8. KRB_CRED message specification

This section specifies the format of a message that can be used to send
Kerberos credentials from one principal to another. It is presented here to
encourage a common mechanism to be used by applications when forwarding
tickets or providing proxies to subordinate servers. It presumes that a
session key has already been exchanged perhaps by using the
KRB_AP_REQ/KRB_AP_REP messages.

5.8.1. KRB_CRED definition

The KRB_CRED message contains a sequence of tickets to be sent and
information needed to use the tickets, including the session key from each.
The information needed to use the tickets is encrypted under an encryption
key previously exchanged or transferred alongside the KRB_CRED message. The
message fields are:

KRB-CRED ::= [APPLICATION 22] SEQUENCE {
 pvno[0] INTEGER,
 msg-type[1] INTEGER, -- KRB_CRED
 tickets[2] SEQUENCE OF Ticket,
 enc-part[3] EncryptedData -- EncKrbCredPart
}

EncKrbCredPart ::= [APPLICATION 29] SEQUENCE {
 ticket-info[0] SEQUENCE OF KrbCredInfo,
 nonce[1] INTEGER OPTIONAL,
 timestamp[2] KerberosTime OPTIONAL,
 usec[3] INTEGER OPTIONAL,
 s-address[4] HostAddress OPTIONAL,
 r-address[5] HostAddress OPTIONAL
}

KrbCredInfo ::= SEQUENCE {
 key[0] EncryptionKey,
 prealm[1] Realm OPTIONAL,
 pname[2] PrincipalName OPTIONAL,
 flags[3] TicketFlags OPTIONAL,
 authtime[4] KerberosTime OPTIONAL,
 starttime[5] KerberosTime OPTIONAL,
 endtime[6] KerberosTime OPTIONAL
 renew-till[7] KerberosTime OPTIONAL,
 srealm[8] Realm OPTIONAL,
 sname[9] PrincipalName OPTIONAL,
 caddr[10] HostAddresses OPTIONAL
}

pvno and msg-type
 These fields are described above in section 5.4.1. msg-type is
 KRB_CRED.
tickets
 These are the tickets obtained from the KDC specifically for use by the
 intended recipient. Successive tickets are paired with the

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 207

 corresponding KrbCredInfo sequence from the enc-part of the KRB-CRED
 message.
enc-part
 This field holds an encoding of the EncKrbCredPart sequence encrypted
 under the session key shared between the sender and the intended
 recipient. This encrypted encoding is used for the enc-part field of
 the KRB-CRED message. See section 6 for the format of the ciphertext.
nonce
 If practical, an application may require the inclusion of a nonce
 generated by the recipient of the message. If the same value is
 included as the nonce in the message, it provides evidence that the
 message is fresh and has not been replayed by an attacker. A nonce must
 never be re-used; it should be generated randomly by the recipient of
 the message and provided to the sender of the message in an application
 specific manner.
timestamp and usec
 These fields specify the time that the KRB-CRED message was generated.
 The time is used to provide assurance that the message is fresh.
s-address and r-address
 These fields are described above in section 5.6.1. They are used
 optionally to provide additional assurance of the integrity of the
 KRB-CRED message.
key
 This field exists in the corresponding ticket passed by the KRB-CRED
 message and is used to pass the session key from the sender to the
 intended recipient. The field's encoding is described in section 6.2.

The following fields are optional. If present, they can be associated with
the credentials in the remote ticket file. If left out, then it is assumed
that the recipient of the credentials already knows their value.

prealm and pname
 The name and realm of the delegated principal identity.
flags, authtime, starttime, endtime, renew-till, srealm, sname, and caddr
 These fields contain the values of the corresponding fields from the
 ticket found in the ticket field. Descriptions of the fields are
 identical to the descriptions in the KDC-REP message.

5.9. Error message specification

This section specifies the format for the KRB_ERROR message. The fields
included in the message are intended to return as much information as
possible about an error. It is not expected that all the information
required by the fields will be available for all types of errors. If the
appropriate information is not available when the message is composed, the
corresponding field will be left out of the message.

Note that since the KRB_ERROR message is only optionally integrity
protected, it is quite possible for an intruder to synthesize or modify such
a message. In particular, this means that unless appropriate integrity
protection mechanisms have been applied to the KRB_ERROR message, the client
should not use any fields in this message for security-critical purposes,
such as setting a system clock or generating a fresh authenticator. The
message can be useful, however, for advising a user on the reason for some
failure.

5.9.1. KRB_ERROR definition

The KRB_ERROR message consists of the following fields:

KRB-ERROR ::= [APPLICATION 30] SEQUENCE {
 pvno[0] INTEGER,
 msg-type[1] INTEGER,

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 208

 ctime[2] KerberosTime OPTIONAL,
 cusec[3] INTEGER OPTIONAL,
 stime[4] KerberosTime,
 susec[5] INTEGER,
 error-code[6] INTEGER,
 crealm[7] Realm OPTIONAL,
 cname[8] PrincipalName OPTIONAL,
 realm[9] Realm, -- Correct realm
 sname[10] PrincipalName, -- Correct name
 e-text[11] GeneralString OPTIONAL,
 e-data[12] OCTET STRING OPTIONAL,
 e-cksum[13] Checksum OPTIONAL,
}

pvno and msg-type
 These fields are described above in section 5.4.1. msg-type is
 KRB_ERROR.
ctime
 This field is described above in section 5.4.1.

cusec
 This field is described above in section 5.5.2.
stime
 This field contains the current time on the server. It is of type
 KerberosTime.
susec
 This field contains the microsecond part of the server's timestamp. Its
 value ranges from 0 to 999999. It appears along with stime. The two
 fields are used in conjunction to specify a reasonably accurate
 timestamp.
error-code
 This field contains the error code returned by Kerberos or the server
 when a request fails. To interpret the value of this field see the list
 of error codes in section 8. Implementations are encouraged to provide
 for national language support in the display of error messages.
crealm, cname, srealm and sname
 These fields are described above in section 5.3.1.
e-text
 This field contains additional text to help explain the error code
 associated with the failed request (for example, it might include a
 principal name which was unknown).
e-data
 This field contains additional data about the error for use by the
 application to help it recover from or handle the error. If present,
 this field will contain the encoding of a sequence of TypedData
 (TYPED-DATA below), unless the errorcode is KDC_ERR_PREAUTH_REQUIRED,
 in which case it will contain the encoding of a sequence of padata
 fields (METHOD-DATA below), each corresponding to an acceptable
 pre-authentication method and optionally containing data for the
 method:

 TYPED-DATA ::= SEQUENCE of TypedData
 METHOD-DATA ::= SEQUENCE of PA-DATA

 TypedData ::= SEQUENCE {
 data-type[0] INTEGER,
 data-value[1] OCTET STRING OPTIONAL
 }

 Note that the padata-type field in the PA-DATA structure and the
 data-type field in the TypedData structure share a common range of

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 209

 allocated values which are coordinated to avoid conflicts. One Kerberos
 error message, KDC_ERR_PREAUTH_REQUIRED, embeds elements of type
 PA-DATA, while all other error messages embed TypedData.

 While preauthentication methods of type PA-DATA should be encapsulated
 within a TypedData element of type TD-PADATA, for compatibility with
 old clients, the KDC should include PA-DATA types below 22 directly as
 method-data. All new implementations interpreting the METHOD-DATA field
 for the KDC_ERR_PREAUTH_REQUIRED message must accept a type of
 TD-PADATA, extract the typed data field and interpret the use any
 elements encapsulated in the TD-PADATA elements as if they were present
 in the METHOD-DATA sequence.

 Unless otherwise specified, unrecognized TypedData elements within the
 KRB-ERROR message MAY be ignored by implementations that do not support
 them. Note that all TypedData MAY be bound to the KRB-ERROR message via
 the checksum field.

 An application may use the TD-APP-DEFINED-ERROR typed data type for
 data carried in a Kerberos error message that is specific to the
 application. TD-APP-SPECIFIC must set the data-type value of TypedData
 to TD-APP-SPECIFIC and the data-value field to

 AppSpecificTypedData as follows:
 AppSpecificTypedData ::= SEQUENCE {
 oid[0] OPTIONAL OBJECT IDENTIFIER,
 -- identifies the application
 data-value[1] OCTET STRING
 -- application
 -- specific data
 }

 The TD-REQ-NONCE TypedData MAY be used to bind a KRB-ERROR to a
 KDC-REQ. The data-value is an INTEGER that is equivalent to the
 nonce in a KDC-REQ.

 The TD-REQ-SEQ TypedData MAY be used for binding a KRB-ERROR to
 the sequence number from an authenticator. The data-value is an
 INTEGER, and it is identical to sequence number sent in the
 authenticator.

 The data-value for TD-KRB-PRINCIPAL is the Kerberos-defined
 PrincipalName. The data-value for TD-KRB-REALM is the
 Kerberos-defined Realm. These TypedData types MAY be used to
 indicate principal and realm name when appropriate.
e-cksum
 This field contains an optional checksum for the KRB-ERROR message. The
 checksum is calculated over the Kerberos ASN.1 encoding of the
 KRB-ERROR message with the checksum absent. The checksum is then added
 to the KRB-ERROR structure and the message is re-encoded. The Checksum
 should be calculated using the session key from the ticket granting
 ticket or service ticket, where available. If the error is in response
 to a TGS or AP request, the checksum should be calculated using the
 session key from the client's ticket. If the error is in response to an
 AS request, then the checksum should be calculated using the client's
 secret key ONLY if there has been suitable preauthentication to prove
 knowledge of the secret key by the client[33]. If a checksum can not be
 computed because the key to be used is not available, no checksum will
 be included.

6. Encryption and Checksum Specifications

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 210

This section is undergoing major revision to include rijndael support based
on the Internet Draft by Ken Raeburn
(draft-raeburn-krb-rijndael-krb-00.txt). The discussions of 3DES are also
undergoing revision. Please see http://www.isi.edu/people/bcn/krb-revisions
for the latest versions of this section when it becomes available.

7. Naming Constraints

7.1. Realm Names

Although realm names are encoded as GeneralStrings and although a realm can
technically select any name it chooses, interoperability across realm
boundaries requires agreement on how realm names are to be assigned, and
what information they imply.

To enforce these conventions, each realm must conform to the conventions
itself, and it must require that any realms with which inter-realm keys are
shared also conform to the conventions and require the same from its
neighbors.

Kerberos realm names are case sensitive. Realm names that differ only in the
case of the characters are not equivalent. There are presently four styles
of realm names: domain, X500, other, and reserved. Examples of each style
follow:

 domain: ATHENA.MIT.EDU (example)
 X500: C=US/O=OSF (example)
 other: NAMETYPE:rest/of.name=without-restrictions (example)
 reserved: reserved, but will not conflict with above

Domain names must look like domain names: they consist of components
separated by periods (.) and they contain neither colons (:) nor slashes
(/). Though domain names themselves are case insensitive, in order for
realms to match, the case must match as well. When establishing a new realm
name based on an internet domain name it is recommended by convention that
the characters be converted to upper case.

X.500 names contain an equal (=) and cannot contain a colon (:) before the
equal. The realm names for X.500 names will be string representations of the
names with components separated by slashes. Leading and trailing slashes
will not be included. Note that the slash separator is consistent with
Kerberos implementations based on RFC1510, but it is different from the
separator recommended in RFC2253.

Names that fall into the other category must begin with a prefix that
contains no equal (=) or period (.) and the prefix must be followed by a
colon (:) and the rest of the name. All prefixes must be assigned before
they may be used. Presently none are assigned.

The reserved category includes strings which do not fall into the first
three categories. All names in this category are reserved. It is unlikely
that names will be assigned to this category unless there is a very strong
argument for not using the 'other' category.

These rules guarantee that there will be no conflicts between the various
name styles. The following additional constraints apply to the assignment of
realm names in the domain and X.500 categories: the name of a realm for the
domain or X.500 formats must either be used by the organization owning (to
whom it was assigned) an Internet domain name or X.500 name, or in the case
that no such names are registered, authority to use a realm name may be
derived from the authority of the parent realm. For example, if there is no
domain name for E40.MIT.EDU, then the administrator of the MIT.EDU realm can
authorize the creation of a realm with that name.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 211

This is acceptable because the organization to which the parent is assigned
is presumably the organization authorized to assign names to its children in
the X.500 and domain name systems as well. If the parent assigns a realm
name without also registering it in the domain name or X.500 hierarchy, it
is the parent's responsibility to make sure that there will not in the
future exist a name identical to the realm name of the child unless it is
assigned to the same entity as the realm name.

7.2. Principal Names

As was the case for realm names, conventions are needed to ensure that all
agree on what information is implied by a principal name. The name-type
field that is part of the principal name indicates the kind of information
implied by the name. The name-type should be treated as a hint. Ignoring the
name type, no two names can be the same (i.e. at least one of the
components, or the realm, must be different). The following name types are
defined:

 name-type value meaning

 NT-UNKNOWN 0 Name type not known
 NT-PRINCIPAL 1 General principal name (e.g. username, or DCE principal)
 NT-SRV-INST 2 Service and other unique instance (krbtgt)
 NT-SRV-HST 3 Service with host name as instance (telnet, rcommands)
 NT-SRV-XHST 4 Service with slash-separated host name components
 NT-UID 5 Unique ID
 NT-X500-PRINCIPAL 6 Encoded X.509 Distingished name [RFC 1779]
 NT-SMTP-NAME 7 Name in form of SMTP email name (e.g. user@foo.com)

When a name implies no information other than its uniqueness at a particular
time the name type PRINCIPAL should be used. The principal name type should
be used for users, and it might also be used for a unique server. If the
name is a unique machine generated ID that is guaranteed never to be
reassigned then the name type of UID should be used (note that it is
generally a bad idea to reassign names of any type since stale entries might
remain in access control lists).

If the first component of a name identifies a service and the remaining
components identify an instance of the service in a server specified manner,
then the name type of SRV-INST should be used. An example of this name type
is the Kerberos ticket-granting service whose name has a first component of
krbtgt and a second component identifying the realm for which the ticket is
valid.

If instance is a single component following the service name and the
instance identifies the host on which the server is running, then the name
type SRV-HST should be used. This type is typically used for Internet
services such as telnet and the Berkeley R commands. If the separate
components of the host name appear as successive components following the
name of the service, then the name type SRV-XHST should be used. This type
might be used to identify servers on hosts with X.500 names where the slash
(/) might otherwise be ambiguous.

A name type of NT-X500-PRINCIPAL should be used when a name from an X.509
certificate is translated into a Kerberos name. The encoding of the X.509
name as a Kerberos principal shall conform to the encoding rules specified
in RFC 2253.

A name type of SMTP allows a name to be of a form that resembles a SMTP
email name. This name, including an "@" and a domain name, is used as the
one component of the principal name. This name type can be used in
conjunction with name-canonicalization to allow a free-form of email address

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 212

to be specified as a client name and allow the KDC to determine the Kerberos
principal name for the requested name. [JBrezak, Raeburn]

A name type of UNKNOWN should be used when the form of the name is not
known. When comparing names, a name of type UNKNOWN will match principals
authenticated with names of any type. A principal authenticated with a name
of type UNKNOWN, however, will only match other names of type UNKNOWN.

Names of any type with an initial component of 'krbtgt' are reserved for the
Kerberos ticket granting service. See section 8.2.3 for the form of such
names.

7.2.1. Name of server principals

The principal identifier for a server on a host will generally be composed
of two parts: (1) the realm of the KDC with which the server is registered,
and (2) a two-component name of type NT-SRV-HST if the host name is an
Internet domain name or a multi-component name of type NT-SRV-XHST if the
name of the host is of a form such as X.500 that allows slash (/)
separators. The first component of the two- or multi-component name will
identify the service and the latter components will identify the host. Where
the name of the host is not case sensitive (for example, with Internet
domain names) the name of the host must be lower case. If specified by the
application protocol for services such as telnet and the Berkeley R commands
which run with system privileges, the first component may be the string
'host' instead of a service specific identifier. When a host has an official
name and one or more aliases and the official name can be reliably
determined, the official name of the host should be used when constructing
the name of the server principal.

8. Constants and other defined values

8.1. Host address types

All negative values for the host address type are reserved for local use.
All non-negative values are reserved for officially assigned type fields and
interpretations.

The values of the types for the following addresses are chosen to match the
defined address family constants in the Berkeley Standard Distributions of
Unix. They can be found in with symbolic names AF_xxx (where xxx is an
abbreviation of the address family name).

Internet (IPv4) Addresses

Internet (IPv4) addresses are 32-bit (4-octet) quantities, encoded in MSB
order. The IPv4 loopback address should not appear in a Kerberos packet. The
type of IPv4 addresses is two (2).

Internet (IPv6) Addresses [Westerlund]

IPv6 addresses are 128-bit (16-octet) quantities, encoded in MSB order. The
type of IPv6 addresses is twenty-four (24). [RFC1883] [RFC1884]. The
following addresses (see [RFC1884]) MUST not appear in any Kerberos packet:

 * the Unspecified Address
 * the Loopback Address
 * Link-Local addresses

IPv4-mapped IPv6 addresses MUST be represented as addresses of type 2.

CHAOSnet addresses

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 213

CHAOSnet addresses are 16-bit (2-octet) quantities, encoded in MSB order.
The type of CHAOSnet addresses is five (5).

ISO addresses

ISO addresses are variable-length. The type of ISO addresses is seven (7).

Xerox Network Services (XNS) addresses

XNS addresses are 48-bit (6-octet) quantities, encoded in MSB order. The
type of XNS addresses is six (6).

AppleTalk Datagram Delivery Protocol (DDP) addresses

AppleTalk DDP addresses consist of an 8-bit node number and a 16-bit network
number. The first octet of the address is the node number; the remaining two
octets encode the network number in MSB order. The type of AppleTalk DDP
addresses is sixteen (16).

DECnet Phase IV addresses

DECnet Phase IV addresses are 16-bit addresses, encoded in LSB order. The
type of DECnet Phase IV addresses is twelve (12).

Netbios addresses

Netbios addresses are 16-octet addresses typically composed of 1 to 15
characters, trailing blank (ascii char 20) filled, with a 16th octet of 0x0.
The type of Netbios addresses is 20 (0x14).

8.2. KDC messages

8.2.1. UDP/IP transport

When contacting a Kerberos server (KDC) for a KRB_KDC_REQ request using UDP
IP transport, the client shall send a UDP datagram containing only an
encoding of the request to port 88 (decimal) at the KDC's IP address; the
KDC will respond with a reply datagram containing only an encoding of the
reply message (either a KRB_ERROR or a KRB_KDC_REP) to the sending port at
the sender's IP address. Kerberos servers supporting IP transport must
accept UDP requests on port 88 (decimal). The response to a request made
through UDP/IP transport must also use UDP/IP transport.

8.2.2. TCP/IP transport [Westerlund,Danielsson]

Kerberos servers (KDC's) should accept TCP requests on port 88 (decimal) and
clients should support the sending of TCP requests on port 88 (decimal).
When the KRB_KDC_REQ message is sent to the KDC over a TCP stream, a new
connection will be established for each authentication exchange (request and
response). The KRB_KDC_REP or KRB_ERROR message will be returned to the
client on the same TCP stream that was established for the request. The
response to a request made through TCP/IP transport must also use TCP/IP
transport. Implementors should note that some extensions to the Kerberos
protocol will not work if any implementation not supporting the TCP
transport is involved (client or KDC). Implementors are strongly urged to
support the TCP transport on both the client and server and are advised that
the current notation of "should" support will likely change in the future to
must support. The KDC may close the TCP stream after sending a response, but
may leave the stream open if it expects a followup - in which case it may
close the stream at any time if resource constraints or other factors make
it desirable to do so. Care must be taken in managing TCP/IP connections

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 214

with the KDC to prevent denial of service attacks based on the number of
TCP/IP connections with the KDC that remain open. If multiple exchanges with
the KDC are needed for certain forms of preauthentication, multiple TCP
connections may be required. A client may close the stream after receiving
response, and should close the stream if it does not expect to send followup
messages. The client must be prepared to have the stream closed by the KDC
at anytime, in which case it must simply connect again when it is ready to
send subsequent messages.

The first four octets of the TCP stream used to transmit the request
will encode in network byte order the length of the request (KRB_KDC_REQ),
and the length will be followed by the request itself. The response will
similarly be preceded by a 4 octet encoding in network byte order of the
length of the KRB_KDC_REP or the KRB_ERROR message and will be followed by
the KRB_KDC_REP or the KRB_ERROR response. If the sign bit is set on the
integer represented by the first 4 octets, then the next 4 octets will be
read, extending the length of the field by another 4 octets (less the sign
bit of the additional four octets which is reserved for future expansion and
which at present must be zero).

8.2.3. OSI transport

During authentication of an OSI client to an OSI server, the mutual
authentication of an OSI server to an OSI client, the transfer of
credentials from an OSI client to an OSI server, or during exchange of
private or integrity checked messages, Kerberos protocol messages may be
treated as opaque objects and the type of the authentication mechanism will
be:

OBJECT IDENTIFIER ::= {iso (1), org(3), dod(6),internet(1), security(5),kerberosv5(2)}

Depending on the situation, the opaque object will be an authentication
header (KRB_AP_REQ), an authentication reply (KRB_AP_REP), a safe message
(KRB_SAFE), a private message (KRB_PRIV), or a credentials message
(KRB_CRED). The opaque data contains an application code as specified in the
ASN.1 description for each message. The application code may be used by
Kerberos to determine the message type.

8.2.3. Name of the TGS

The principal identifier of the ticket-granting service shall be composed of
three parts: (1) the realm of the KDC issuing the TGS ticket (2) a two-part
name of type NT-SRV-INST, with the first part "krbtgt" and the second part
the name of the realm which will accept the ticket-granting ticket. For
example, a ticket-granting ticket issued by the ATHENA.MIT.EDU realm to be
used to get tickets from the ATHENA.MIT.EDU KDC has a principal identifier
of "ATHENA.MIT.EDU" (realm), ("krbtgt", "ATHENA.MIT.EDU") (name). A
ticket-granting ticket issued by the ATHENA.MIT.EDU realm to be used to get
tickets from the MIT.EDU realm has a principal identifier of
"ATHENA.MIT.EDU" (realm), ("krbtgt", "MIT.EDU") (name).

8.3. Protocol constants and associated values

The following tables list constants used in the protocol and define their
meanings. Ranges are specified in the "specification" section that limit the
values of constants for which values are defined here. This allows
implementations to make assumptions about the maximum values that will be
received for these constants. Implementation receiving values outside the
range specified in the "specification" section may reject the request, but
they must recover cleanly.

Encryption type etype value block size minimum pad size confounder size
NULL 0 1 0 0

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 215

des-cbc-crc 1 8 4 8
des-cbc-md4 2 8 0 8
des-cbc-md5 3 8 0 8
[reserved] 4
des3-cbc-md5 5 8 0 8
[reserved] 6
des3-cbc-sha1 7 8 0 8
dsaWithSHA1-CmsOID 9 (pkinit)
md5WithRSAEncryption-CmsOID 10 (pkinit)
sha1WithRSAEncryption-CmsOID 11 (pkinit)
rc2CBC-EnvOID 12 (pkinit)
rsaEncryption-EnvOID 13 (pkinit from PKCS#1 v1.5)
rsaES-OAEP-ENV-OID 14 (pkinit from PKCS#1 v2.0)
des-ede3-cbc-Env-OID 15 (pkinit)
des3-cbc-sha1-kd 16 (Tom Yu)
rc4-hmac 23 (swift)
rc4-hmac-exp 24 (swift)
subkey-keynaterial 65 (opaque mhur)

[reserved] 0x8003

Checksum type sumtype value checksum size
CRC32 1 4
rsa-md4 2 16
rsa-md4-des 3 24
des-mac 4 16
des-mac-k 5 8
rsa-md4-des-k 6 16 (drop rsa ?)
rsa-md5 7 16 (drop rsa ?)
rsa-md5-des 8 24 (drop rsa ?)
rsa-md5-des3 9 24 (drop rsa ?)
hmac-sha1-des3-kd 12 20
hmac-sha1-des3 13 20
sha1 (unkeyed) 14 20

padata and data types padata-type value comment

PA-TGS-REQ 1
PA-ENC-TIMESTAMP 2
PA-PW-SALT 3
[reserved] 4
PA-ENC-UNIX-TIME 5 (depricated)
PA-SANDIA-SECUREID 6
PA-SESAME 7
PA-OSF-DCE 8
PA-CYBERSAFE-SECUREID 9
PA-AFS3-SALT 10
PA-ETYPE-INFO 11
PA-SAM-CHALLENGE 12 (sam/otp)
PA-SAM-RESPONSE 13 (sam/otp)
PA-PK-AS-REQ 14 (pkinit)
PA-PK-AS-REP 15 (pkinit)
PA-USE-SPECIFIED-KVNO 20
PA-SAM-REDIRECT 21 (sam/otp)
PA-GET-FROM-TYPED-DATA 22 (embedded in typed data)
TD-PADATA 22 (embeds padata)
PA-SAM-ETYPE-INFO 23 (sam/otp)
TD-PKINIT-CMS-CERTIFICATES 101 CertificateSet from CMS
TD-KRB-PRINCIPAL 102 PrincipalName (see Sec.5.9.1)
TD-KRB-REALM 103 Realm (see Sec.5.9.1)
TD-TRUSTED-CERTIFIERS 104 from PKINIT
TD-CERTIFICATE-INDEX 105 from PKINIT

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 216

TD-APP-DEFINED-ERROR 106 application specific (see Sec.5.9.1)
TD-REQ-NONCE 107 INTEGER (see Sec.5.9.1)
TD-REQ-SEQ 108 INTEGER (see Sec.5.9.1)

authorization data type ad-type value
AD-IF-RELEVANT 1
AD-INTENDED-FOR-SERVER 2
AD-INTENDED-FOR-APPLICATION-CLASS 3
AD-KDC-ISSUED 4
AD-OR 5
AD-MANDATORY-TICKET-EXTENSIONS 6
AD-IN-TICKET-EXTENSIONS 7
reserved values 8-63
OSF-DCE 64
SESAME 65
AD-OSF-DCE-PKI-CERTID 66 (hemsath@us.ibm.com)
AD-WIN200-PAC 128 (jbrezak@exchange.microsoft.com)

Ticket Extension Types

TE-TYPE-NULL 0 Null ticket extension
TE-TYPE-EXTERNAL-ADATA 1 Integrity protected authorization data
[reserved] 2 TE-TYPE-PKCROSS-KDC (I have reservations)
TE-TYPE-PKCROSS-CLIENT 3 PKCROSS cross realm key ticket
TE-TYPE-CYBERSAFE-EXT 4 Assigned to CyberSafe Corp
[reserved] 5 TE-TYPE-DEST-HOST (I have reservations)

alternate authentication type method-type value
reserved values 0-63
ATT-CHALLENGE-RESPONSE 64

transited encoding type tr-type value
DOMAIN-X500-COMPRESS 1
reserved values all others

Label Value Meaning or MIT code

pvno 5 current Kerberos protocol version number

message types

KRB_AS_REQ 10 Request for initial authentication
KRB_AS_REP 11 Response to KRB_AS_REQ request
KRB_TGS_REQ 12 Request for authentication based on TGT
KRB_TGS_REP 13 Response to KRB_TGS_REQ request
KRB_AP_REQ 14 application request to server
KRB_AP_REP 15 Response to KRB_AP_REQ_MUTUAL
KRB_SAFE 20 Safe (checksummed) application message
KRB_PRIV 21 Private (encrypted) application message
KRB_CRED 22 Private (encrypted) message to forward credentials
KRB_ERROR 30 Error response

name types

KRB_NT_UNKNOWN 0 Name type not known
KRB_NT_PRINCIPAL 1 Just the name of the principal as in DCE, or for users
KRB_NT_SRV_INST 2 Service and other unique instance (krbtgt)
KRB_NT_SRV_HST 3 Service with host name as instance (telnet, rcommands)
KRB_NT_SRV_XHST 4 Service with host as remaining components
KRB_NT_UID 5 Unique ID
KRB_NT_X500_PRINCIPAL 6 Encoded X.509 Distingished name [RFC 2253]

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 217

error codes

KDC_ERR_NONE 0 No error
KDC_ERR_NAME_EXP 1 Client's entry in database has expired
KDC_ERR_SERVICE_EXP 2 Server's entry in database has expired
KDC_ERR_BAD_PVNO 3 Requested protocol version number not supported
KDC_ERR_C_OLD_MAST_KVNO 4 Client's key encrypted in old master key
KDC_ERR_S_OLD_MAST_KVNO 5 Server's key encrypted in old master key
KDC_ERR_C_PRINCIPAL_UNKNOWN 6 Client not found in Kerberos database
KDC_ERR_S_PRINCIPAL_UNKNOWN 7 Server not found in Kerberos database
KDC_ERR_PRINCIPAL_NOT_UNIQUE 8 Multiple principal entries in database
KDC_ERR_NULL_KEY 9 The client or server has a null key
KDC_ERR_CANNOT_POSTDATE 10 Ticket not eligible for postdating
KDC_ERR_NEVER_VALID 11 Requested start time is later than end time
KDC_ERR_POLICY 12 KDC policy rejects request
KDC_ERR_BADOPTION 13 KDC cannot accommodate requested option
KDC_ERR_ETYPE_NOSUPP 14 KDC has no support for encryption type
KDC_ERR_SUMTYPE_NOSUPP 15 KDC has no support for checksum type
KDC_ERR_PADATA_TYPE_NOSUPP 16 KDC has no support for padata type
KDC_ERR_TRTYPE_NOSUPP 17 KDC has no support for transited type
KDC_ERR_CLIENT_REVOKED 18 Clients credentials have been revoked
KDC_ERR_SERVICE_REVOKED 19 Credentials for server have been revoked
KDC_ERR_TGT_REVOKED 20 TGT has been revoked
KDC_ERR_CLIENT_NOTYET 21 Client not yet valid - try again later
KDC_ERR_SERVICE_NOTYET 22 Server not yet valid - try again later
KDC_ERR_KEY_EXPIRED 23 Password has expired - change password to reset
KDC_ERR_PREAUTH_FAILED 24 Pre-authentication information was invalid
KDC_ERR_PREAUTH_REQUIRED 25 Additional pre-authenticationrequired [40]
KDC_ERR_SERVER_NOMATCH 26 Requested server and ticket don't match
KDC_ERR_MUST_USE_USER2USER 27 Server principal valid for user2user only
KDC_ERR_PATH_NOT_ACCPETED 28 KDC Policy rejects transited path
KDC_ERR_SVC_UNAVAILABLE 29 A service is not available
KRB_AP_ERR_BAD_INTEGRITY 31 Integrity check on decrypted field failed
KRB_AP_ERR_TKT_EXPIRED 32 Ticket expired
KRB_AP_ERR_TKT_NYV 33 Ticket not yet valid
KRB_AP_ERR_REPEAT 34 Request is a replay
KRB_AP_ERR_NOT_US 35 The ticket isn't for us
KRB_AP_ERR_BADMATCH 36 Ticket and authenticator don't match
KRB_AP_ERR_SKEW 37 Clock skew too great
KRB_AP_ERR_BADADDR 38 Incorrect net address
KRB_AP_ERR_BADVERSION 39 Protocol version mismatch
KRB_AP_ERR_MSG_TYPE 40 Invalid msg type
KRB_AP_ERR_MODIFIED 41 Message stream modified
KRB_AP_ERR_BADORDER 42 Message out of order
KRB_AP_ERR_BADKEYVER 44 Specified version of key is not available
KRB_AP_ERR_NOKEY 45 Service key not available
KRB_AP_ERR_MUT_FAIL 46 Mutual authentication failed
KRB_AP_ERR_BADDIRECTION 47 Incorrect message direction
KRB_AP_ERR_METHOD 48 Alternative authentication method required
KRB_AP_ERR_BADSEQ 49 Incorrect sequence number in message
KRB_AP_ERR_INAPP_CKSUM 50 Inappropriate type of checksum in message
KRB_AP_PATH_NOT_ACCEPTED 51 Policy rejects transited path
KRB_ERR_RESPONSE_TOO_BIG 52 Response too big for UDP, retry with TCP
KRB_ERR_GENERIC 60 Generic error (description in e-text)
KRB_ERR_FIELD_TOOLONG 61 Field is too long for this implementation
KDC_ERROR_CLIENT_NOT_TRUSTED 62 (pkinit)
KDC_ERROR_KDC_NOT_TRUSTED 63 (pkinit)

KDC_ERROR_INVALID_SIG 64 (pkinit)
KDC_ERR_KEY_TOO_WEAK 65 (pkinit)
KDC_ERR_CERTIFICATE_MISMATCH 66 (pkinit)

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 218

KRB_AP_ERR_NO_TGT 67 (user-to-user)
KDC_ERR_WRONG_REALM 68 (user-to-user)
KRB_AP_ERR_USER_TO_USER_REQUIRED 69 (user-to-user)
KDC_ERR_CANT_VERIFY_CERTIFICATE 70 (pkinit)
KDC_ERR_INVALID_CERTIFICATE 71 (pkinit)
KDC_ERR_REVOKED_CERTIFICATE 72 (pkinit)
KDC_ERR_REVOCATION_STATUS_UNKNOWN 73 (pkinit)
KDC_ERR_REVOCATION_STATUS_UNAVAILABLE 74 (pkinit)
KDC_ERR_CLIENT_NAME_MISMATCH 75 (pkinit)
KDC_ERR_KDC_NAME_MISMATCH 76 (pkinit)

9. Interoperability requirements

Version 5 of the Kerberos protocol supports a myriad of options. Among these
are multiple encryption and checksum types, alternative encoding schemes for
the transited field, optional mechanisms for pre-authentication, the
handling of tickets with no addresses, options for mutual authentication,
user to user authentication, support for proxies, forwarding, postdating,
and renewing tickets, the format of realm names, and the handling of
authorization data.

In order to ensure the interoperability of realms, it is necessary to define
a minimal configuration which must be supported by all implementations. This
minimal configuration is subject to change as technology does. For example,
if at some later date it is discovered that one of the required encryption
or checksum algorithms is not secure, it will be replaced.

9.1. Specification 2

This section defines the second specification of these options.
Implementations which are configured in this way can be said to support
Kerberos Version 5 Specification 2 (5.1). Specification 1 (deprecated) may
be found in RFC1510.

Transport

TCP/IP and UDP/IP transport must be supported by KDCs claiming conformance
to specification 2. Kerberos clients claiming conformance to specification 2
must support UDP/IP transport for messages with the KDC and should support
TCP/IP transport.

Encryption and checksum methods

The following encryption and checksum mechanisms must be supported.
Implementations may support other mechanisms as well, but the additional
mechanisms may only be used when communicating with principals known to also
support them: This list is to be determined.

Encryption: DES-CBC-MD5, DES3-CBC-SHA1-KD, RIJNDAEL(decide identifier)
Checksums: CRC-32, DES-MAC, DES-MAC-K, DES-MD5, HMAC-SHA1-DES3-KD

Realm Names

All implementations must understand hierarchical realms in both the Internet
Domain and the X.500 style. When a ticket granting ticket for an unknown
realm is requested, the KDC must be able to determine the names of the
intermediate realms between the KDCs realm and the requested realm.

Transited field encoding

DOMAIN-X500-COMPRESS (described in section 3.3.3.2) must be supported.
Alternative encodings may be supported, but they may be used only when that

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 219

encoding is supported by ALL intermediate realms.

Pre-authentication methods

The TGS-REQ method must be supported. The TGS-REQ method is not used on the
initial request. The PA-ENC-TIMESTAMP method must be supported by clients
but whether it is enabled by default may be determined on a realm by realm
basis. If not used in the initial request and the error
KDC_ERR_PREAUTH_REQUIRED is returned specifying PA-ENC-TIMESTAMP as an
acceptable method, the client should retry the initial request using the
PA-ENC-TIMESTAMP preauthentication method. Servers need not support the
PA-ENC-TIMESTAMP method, but if not supported the server should ignore the
presence of PA-ENC-TIMESTAMP pre-authentication in a request.

Mutual authentication

Mutual authentication (via the KRB_AP_REP message) must be supported.

Ticket addresses and flags

All KDC's must pass through tickets that carry no addresses (i.e. if a TGT
contains no addresses, the KDC will return derivative tickets), but each
realm may set its own policy for issuing such tickets, and each application
server will set its own policy with respect to accepting them.

Proxies and forwarded tickets must be supported. Individual realms and
application servers can set their own policy on when such tickets will be
accepted.

All implementations must recognize renewable and postdated tickets, but need
not actually implement them. If these options are not supported, the
starttime and endtime in the ticket shall specify a ticket's entire useful
life. When a postdated ticket is decoded by a server, all implementations
shall make the presence of the postdated flag visible to the calling server.

User-to-user authentication

Support for user to user authentication (via the ENC-TKT-IN-SKEY KDC option)
must be provided by implementations, but individual realms may decide as a
matter of policy to reject such requests on a per-principal or realm-wide
basis.

Authorization data

Implementations must pass all authorization data subfields from
ticket-granting tickets to any derivative tickets unless directed to
suppress a subfield as part of the definition of that registered subfield
type (it is never incorrect to pass on a subfield, and no registered
subfield types presently specify suppression at the KDC).

Implementations must make the contents of any authorization data subfields
available to the server when a ticket is used. Implementations are not
required to allow clients to specify the contents of the authorization data
fields.

Constant ranges

All protocol constants are constrained to 32 bit (signed) values unless
further constrained by the protocol definition. This limit is provided to
allow implementations to make assumptions about the maximum values that will
be received for these constants. Implementation receiving values outside
this range may reject the request, but they must recover cleanly.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 220

9.2. Recommended KDC values

Following is a list of recommended values for a KDC implementation, based on
the list of suggested configuration constants (see section 4.4).

minimum lifetime 5 minutes
maximum renewable lifetime 1 week
maximum ticket lifetime 1 day
empty addresses only when suitable restrictions appear
 in authorization data
proxiable, etc. Allowed.

10. REFERENCES

[NT94] B. Clifford Neuman and Theodore Y. Ts'o, "An Authenti-
 cation Service for Computer Networks," IEEE Communica-
 tions Magazine, Vol. 32(9), pp. 33-38 (September 1994).

[MNSS87] S. P. Miller, B. C. Neuman, J. I. Schiller, and J. H.
 Saltzer, Section E.2.1: Kerberos Authentication and
 Authorization System, M.I.T. Project Athena, Cambridge,
 Massachusetts (December 21, 1987).

[SNS88] J. G. Steiner, B. C. Neuman, and J. I. Schiller, "Ker-
 beros: An Authentication Service for Open Network Sys-
 tems," pp. 191-202 in Usenix Conference Proceedings,
 Dallas, Texas (February, 1988).

[NS78] Roger M. Needham and Michael D. Schroeder, "Using
 Encryption for Authentication in Large Networks of Com-
 puters," Communications of the ACM, Vol. 21(12),
 pp. 993-999 (December, 1978).

[DS81] Dorothy E. Denning and Giovanni Maria Sacco, "Time-
 stamps in Key Distribution Protocols," Communications
 of the ACM, Vol. 24(8), pp. 533-536 (August 1981).

[KNT92] John T. Kohl, B. Clifford Neuman, and Theodore Y. Ts'o,
 "The Evolution of the Kerberos Authentication Service,"
 in an IEEE Computer Society Text soon to be published
 (June 1992).

[Neu93] B. Clifford Neuman, "Proxy-Based Authorization and
 Accounting for Distributed Systems," in Proceedings of
 the 13th International Conference on Distributed Com-
 puting Systems, Pittsburgh, PA (May, 1993).

[DS90] Don Davis and Ralph Swick, "Workstation Services and
 Kerberos Authentication at Project Athena," Technical
 Memorandum TM-424, MIT Laboratory for Computer Science
 (February 1990).

[LGDSR87] P. J. Levine, M. R. Gretzinger, J. M. Diaz, W. E. Som-
 merfeld, and K. Raeburn, Section E.1: Service Manage-
 ment System, M.I.T. Project Athena, Cambridge, Mas-
 sachusetts (1987).

[X509-88] CCITT, Recommendation X.509: The Directory Authentica-
 tion Framework, December 1988.

[Pat92]. J. Pato, Using Pre-Authentication to Avoid Password
 Guessing Attacks, Open Software Foundation DCE Request

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 221

 for Comments 26 (December 1992).

[DES77] National Bureau of Standards, U.S. Department of Com-
 merce, "Data Encryption Standard," Federal Information
 Processing Standards Publication 46, Washington, DC
 (1977).

[DESM80] National Bureau of Standards, U.S. Department of Com-
 merce, "DES Modes of Operation," Federal Information
 Processing Standards Publication 81, Springfield, VA
 (December 1980).

[SG92] Stuart G. Stubblebine and Virgil D. Gligor, "On Message
 Integrity in Cryptographic Protocols," in Proceedings
 of the IEEE Symposium on Research in Security and
 Privacy, Oakland, California (May 1992).

[IS3309] International Organization for Standardization, "ISO
 Information Processing Systems - Data Communication -
 High-Level Data Link Control Procedure - Frame Struc-
 ture," IS 3309 (October 1984). 3rd Edition.

[MD4-92] R. Rivest, "The MD4 Message Digest Algorithm," RFC
 1320, MIT Laboratory for Computer Science (April
 1992).

[MD5-92] R. Rivest, "The MD5 Message Digest Algorithm," RFC
 1321, MIT Laboratory for Computer Science (April
 1992).

[KBC96] H. Krawczyk, M. Bellare, and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication," Working Draft
 draft-ietf-ipsec-hmac-md5-01.txt, (August 1996).

[Horowitz96] Horowitz, M., "Key Derivation for Authentication,
 Integrity, and Privacy", draft-horowitz-key-derivation-02.txt,
 August 1998.

[HorowitzB96] Horowitz, M., "Key Derivation for Kerberos V5", draft-
 horowitz-kerb-key-derivation-01.txt, September 1998.

[Krawczyk96] Krawczyk, H., Bellare, and M., Canetti, R., "HMAC:
 Keyed-Hashing for Message Authentication", =
draft-ietf-ipsec-hmac-
 md5-01.txt, August, 1996.

A. Pseudo-code for protocol processing

This appendix provides pseudo-code describing how the messages are to be
constructed and interpreted by clients and servers.

A.1. KRB_AS_REQ generation

 request.pvno :=3D protocol version; /* pvno =3D 5 */
 request.msg-type :=3D message type; /* type =3D KRB_AS_REQ */

 if(pa_enc_timestamp_required) then
 request.padata.padata-type =3D PA-ENC-TIMESTAMP;
 get system_time;
 padata-body.patimestamp,pausec =3D system_time;
 encrypt padata-body into request.padata.padata-value
 using client.key; /* derived from password */
 endif

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 222

 body.kdc-options :=3D users's preferences;
 body.cname :=3D user's name;
 body.realm :=3D user's realm;
 body.sname :=3D service's name; /* usually "krbtgt", =
"localrealm" */
 if (body.kdc-options.POSTDATED is set) then
 body.from :=3D requested starting time;
 else
 omit body.from;
 endif
 body.till :=3D requested end time;
 if (body.kdc-options.RENEWABLE is set) then
 body.rtime :=3D requested final renewal time;
 endif
 body.nonce :=3D random_nonce();
 body.etype :=3D requested etypes;
 if (user supplied addresses) then
 body.addresses :=3D user's addresses;
 else
 omit body.addresses;
 endif
 omit body.enc-authorization-data;
 request.req-body :=3D body;

 kerberos :=3D lookup(name of local kerberos server (or =
servers));
 send(packet,kerberos);

 wait(for response);
 if (timed_out) then
 retry or use alternate server;
 endif

A.2. KRB_AS_REQ verification and KRB_AS_REP generation

 decode message into req;

 client :=3D lookup(req.cname,req.realm);
 server :=3D lookup(req.sname,req.realm);

 get system_time;
 kdc_time :=3D system_time.seconds;

 if (!client) then
 /* no client in Database */
 error_out(KDC_ERR_C_PRINCIPAL_UNKNOWN);
 endif
 if (!server) then
 /* no server in Database */
 error_out(KDC_ERR_S_PRINCIPAL_UNKNOWN);
 endif

 if(client.pa_enc_timestamp_required and
 pa_enc_timestamp not present) then
 error_out(KDC_ERR_PREAUTH_REQUIRED(PA_ENC_TIMESTAMP));
 endif

 if(pa_enc_timestamp present) then
 decrypt req.padata-value into decrypted_enc_timestamp
 using client.key;
 using auth_hdr.authenticator.subkey;

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 223

 if (decrypt_error()) then
 error_out(KRB_AP_ERR_BAD_INTEGRITY);
 if(decrypted_enc_timestamp is not within allowable skew) =
then
 error_out(KDC_ERR_PREAUTH_FAILED);
 endif
 if(decrypted_enc_timestamp and usec is replay)
 error_out(KDC_ERR_PREAUTH_FAILED);
 endif
 add decrypted_enc_timestamp and usec to replay cache;
 endif

 use_etype :=3D first supported etype in req.etypes;

 if (no support for req.etypes) then
 error_out(KDC_ERR_ETYPE_NOSUPP);
 endif

 new_tkt.vno :=3D ticket version; /* =3D 5 */
 new_tkt.sname :=3D req.sname;
 new_tkt.srealm :=3D req.srealm;
 reset all flags in new_tkt.flags;

 /* It should be noted that local policy may affect the */
 /* processing of any of these flags. For example, some */
 /* realms may refuse to issue renewable tickets */

 if (req.kdc-options.FORWARDABLE is set) then
 set new_tkt.flags.FORWARDABLE;
 endif
 if (req.kdc-options.PROXIABLE is set) then
 set new_tkt.flags.PROXIABLE;
 endif

 if (req.kdc-options.ALLOW-POSTDATE is set) then
 set new_tkt.flags.MAY-POSTDATE;
 endif

 if ((req.kdc-options.RENEW is set) or
 (req.kdc-options.VALIDATE is set) or
 (req.kdc-options.PROXY is set) or
 (req.kdc-options.FORWARDED is set) or
 (req.kdc-options.ENC-TKT-IN-SKEY is set)) then
 error_out(KDC_ERR_BADOPTION);
 endif

 new_tkt.session :=3D random_session_key();
 new_tkt.cname :=3D req.cname;
 new_tkt.crealm :=3D req.crealm;
 new_tkt.transited :=3D empty_transited_field();

 new_tkt.authtime :=3D kdc_time;

 if (req.kdc-options.POSTDATED is set) then
 if (against_postdate_policy(req.from)) then
 error_out(KDC_ERR_POLICY);
 endif
 set new_tkt.flags.POSTDATED;
 set new_tkt.flags.INVALID;
 new_tkt.starttime :=3D req.from;
 else
 omit new_tkt.starttime; /* treated as authtime when omitted =

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 224

*/
 endif
 if (req.till =3D 0) then
 till :=3D infinity;
 else
 till :=3D req.till;
 endif

 new_tkt.endtime :=3D min(till,
 new_tkt.starttime+client.max_life,
 new_tkt.starttime+server.max_life,
 new_tkt.starttime+max_life_for_realm);

 if ((req.kdc-options.RENEWABLE-OK is set) and
 (new_tkt.endtime < req.till)) then
 /* we set the RENEWABLE option for later processing */
 set req.kdc-options.RENEWABLE;
 req.rtime :=3D req.till;
 endif

 if (req.rtime =3D 0) then
 rtime :=3D infinity;
 else
 rtime :=3D req.rtime;
 endif

 if (req.kdc-options.RENEWABLE is set) then
 set new_tkt.flags.RENEWABLE;
 new_tkt.renew-till :=3D min(rtime,
 new_tkt.starttime+client.max_rlife,
 new_tkt.starttime+server.max_rlife,
 new_tkt.starttime+max_rlife_for_realm);

 else
 omit new_tkt.renew-till; /* only present if RENEWABLE */
 endif

 if (req.addresses) then
 new_tkt.caddr :=3D req.addresses;
 else
 omit new_tkt.caddr;
 endif

 new_tkt.authorization_data :=3D empty_authorization_data();

 encode to-be-encrypted part of ticket into OCTET STRING;
 new_tkt.enc-part :=3D encrypt OCTET STRING
 using etype_for_key(server.key), server.key, =
server.p_kvno;

 /* Start processing the response */

 resp.pvno :=3D 5;
 resp.msg-type :=3D KRB_AS_REP;
 resp.cname :=3D req.cname;
 resp.crealm :=3D req.realm;
 resp.ticket :=3D new_tkt;

 resp.key :=3D new_tkt.session;
 resp.last-req :=3D fetch_last_request_info(client);
 resp.nonce :=3D req.nonce;
 resp.key-expiration :=3D client.expiration;

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 225

 resp.flags :=3D new_tkt.flags;

 resp.authtime :=3D new_tkt.authtime;
 resp.starttime :=3D new_tkt.starttime;
 resp.endtime :=3D new_tkt.endtime;

 if (new_tkt.flags.RENEWABLE) then
 resp.renew-till :=3D new_tkt.renew-till;
 endif

 resp.realm :=3D new_tkt.realm;
 resp.sname :=3D new_tkt.sname;

 resp.caddr :=3D new_tkt.caddr;

 encode body of reply into OCTET STRING;

 resp.enc-part :=3D encrypt OCTET STRING
 using use_etype, client.key, client.p_kvno;
 send(resp);

A.3. KRB_AS_REP verification

 decode response into resp;

 if (resp.msg-type =3D KRB_ERROR) then
 if(error =3D KDC_ERR_PREAUTH_REQUIRED(PA_ENC_TIMESTAMP)) =
then
 set pa_enc_timestamp_required;
 goto KRB_AS_REQ;
 endif
 process_error(resp);
 return;
 endif

 /* On error, discard the response, and zero the session key */
 /* from the response immediately */

 key =3D get_decryption_key(resp.enc-part.kvno, =
resp.enc-part.etype,
 resp.padata);
 unencrypted part of resp :=3D decode of decrypt of resp.enc-part
 using resp.enc-part.etype and key;
 zero(key);

 if (common_as_rep_tgs_rep_checks fail) then
 destroy resp.key;
 return error;
 endif

 if near(resp.princ_exp) then
 print(warning message);
 endif
 save_for_later(ticket,session,client,server,times,flags);

A.4. KRB_AS_REP and KRB_TGS_REP common checks

 if (decryption_error() or
 (req.cname !=3D resp.cname) or
 (req.realm !=3D resp.crealm) or
 (req.sname !=3D resp.sname) or
 (req.realm !=3D resp.realm) or

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 226

 (req.nonce !=3D resp.nonce) or
 (req.addresses !=3D resp.caddr)) then
 destroy resp.key;
 return KRB_AP_ERR_MODIFIED;
 endif

 /* make sure no flags are set that shouldn't be, and that all =
that */
 /* should be are set =
 */
 if (!check_flags_for_compatability(req.kdc-options,resp.flags)) =
then
 destroy resp.key;
 return KRB_AP_ERR_MODIFIED;
 endif

 if ((req.from =3D 0) and
 (resp.starttime is not within allowable skew)) then
 destroy resp.key;
 return KRB_AP_ERR_SKEW;
 endif
 if ((req.from !=3D 0) and (req.from !=3D resp.starttime)) then
 destroy resp.key;
 return KRB_AP_ERR_MODIFIED;
 endif
 if ((req.till !=3D 0) and (resp.endtime > req.till)) then
 destroy resp.key;
 return KRB_AP_ERR_MODIFIED;
 endif

 if ((req.kdc-options.RENEWABLE is set) and
 (req.rtime !=3D 0) and (resp.renew-till > req.rtime)) then
 destroy resp.key;
 return KRB_AP_ERR_MODIFIED;
 endif
 if ((req.kdc-options.RENEWABLE-OK is set) and
 (resp.flags.RENEWABLE) and
 (req.till !=3D 0) and
 (resp.renew-till > req.till)) then
 destroy resp.key;
 return KRB_AP_ERR_MODIFIED;
 endif

A.5. KRB_TGS_REQ generation

 /* Note that make_application_request might have to recursivly =
 */
 /* call this routine to get the appropriate ticket-granting =
ticket */

 request.pvno :=3D protocol version; /* pvno =3D 5 */
 request.msg-type :=3D message type; /* type =3D KRB_TGS_REQ */

 body.kdc-options :=3D users's preferences;
 /* If the TGT is not for the realm of the end-server */
 /* then the sname will be for a TGT for the end-realm */
 /* and the realm of the requested ticket (body.realm) */
 /* will be that of the TGS to which the TGT we are */
 /* sending applies */
 body.sname :=3D service's name;
 body.realm :=3D service's realm;

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 227

 if (body.kdc-options.POSTDATED is set) then
 body.from :=3D requested starting time;
 else
 omit body.from;
 endif
 body.till :=3D requested end time;
 if (body.kdc-options.RENEWABLE is set) then
 body.rtime :=3D requested final renewal time;
 endif

 body.nonce :=3D random_nonce();
 body.etype :=3D requested etypes;
 if (user supplied addresses) then
 body.addresses :=3D user's addresses;
 else
 omit body.addresses;
 endif

 body.enc-authorization-data :=3D user-supplied data;
 if (body.kdc-options.ENC-TKT-IN-SKEY) then
 body.additional-tickets_ticket :=3D second TGT;
 endif

 request.req-body :=3D body;
 check :=3D generate_checksum (req.body,checksumtype);

 request.padata[0].padata-type :=3D PA-TGS-REQ;
 request.padata[0].padata-value :=3D create a KRB_AP_REQ using
 the TGT and checksum

 /* add in any other padata as required/supplied */

 kerberos :=3D lookup(name of local kerberose server (or =
servers));
 send(packet,kerberos);

 wait(for response);
 if (timed_out) then
 retry or use alternate server;
 endif

A.6. KRB_TGS_REQ verification and KRB_TGS_REP generation

 /* note that reading the application request requires first
 determining the server for which a ticket was issued, and =
choosing the
 correct key for decryption. The name of the server appears in =
the
 plaintext part of the ticket. */

 if (no KRB_AP_REQ in req.padata) then
 error_out(KDC_ERR_PADATA_TYPE_NOSUPP);
 endif
 verify KRB_AP_REQ in req.padata;

 /* Note that the realm in which the Kerberos server is operating =
is
 determined by the instance from the ticket-granting ticket. The =
realm
 in the ticket-granting ticket is the realm under which the =
ticket
 granting ticket was issued. It is possible for a single =

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 228

Kerberos
 server to support more than one realm. */

 auth_hdr :=3D KRB_AP_REQ;
 tgt :=3D auth_hdr.ticket;

 if (tgt.sname is not a TGT for local realm and is not req.sname) =
then
 error_out(KRB_AP_ERR_NOT_US);

 realm :=3D realm_tgt_is_for(tgt);

 decode remainder of request;

 if (auth_hdr.authenticator.cksum is missing) then
 error_out(KRB_AP_ERR_INAPP_CKSUM);
 endif

 if (auth_hdr.authenticator.cksum type is not supported) then
 error_out(KDC_ERR_SUMTYPE_NOSUPP);
 endif
 if (auth_hdr.authenticator.cksum is not both collision-proof and =
keyed) then
 error_out(KRB_AP_ERR_INAPP_CKSUM);
 endif

 set computed_checksum :=3D checksum(req);
 if (computed_checksum !=3D auth_hdr.authenticatory.cksum) then
 error_out(KRB_AP_ERR_MODIFIED);
 endif

 server :=3D lookup(req.sname,realm);

 if (!server) then
 if (is_foreign_tgt_name(req.sname)) then
 server :=3D best_intermediate_tgs(req.sname);
 else
 /* no server in Database */
 error_out(KDC_ERR_S_PRINCIPAL_UNKNOWN);
 endif
 endif

 session :=3D generate_random_session_key();

 use_etype :=3D first supported etype in req.etypes;

 if (no support for req.etypes) then
 error_out(KDC_ERR_ETYPE_NOSUPP);
 endif

 new_tkt.vno :=3D ticket version; /* =3D 5 */
 new_tkt.sname :=3D req.sname;
 new_tkt.srealm :=3D realm;
 reset all flags in new_tkt.flags;

 /* It should be noted that local policy may affect the */
 /* processing of any of these flags. For example, some */
 /* realms may refuse to issue renewable tickets */

 new_tkt.caddr :=3D tgt.caddr;
 resp.caddr :=3D NULL; /* We only include this if they change */

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 229

 if (req.kdc-options.FORWARDABLE is set) then
 if (tgt.flags.FORWARDABLE is reset) then
 error_out(KDC_ERR_BADOPTION);
 endif
 set new_tkt.flags.FORWARDABLE;
 endif
 if (req.kdc-options.FORWARDED is set) then
 if (tgt.flags.FORWARDABLE is reset) then
 error_out(KDC_ERR_BADOPTION);
 endif
 set new_tkt.flags.FORWARDED;
 new_tkt.caddr :=3D req.addresses;
 resp.caddr :=3D req.addresses;
 endif
 if (tgt.flags.FORWARDED is set) then
 set new_tkt.flags.FORWARDED;
 endif

 if (req.kdc-options.PROXIABLE is set) then
 if (tgt.flags.PROXIABLE is reset)
 error_out(KDC_ERR_BADOPTION);
 endif
 set new_tkt.flags.PROXIABLE;
 endif
 if (req.kdc-options.PROXY is set) then
 if (tgt.flags.PROXIABLE is reset) then
 error_out(KDC_ERR_BADOPTION);
 endif
 set new_tkt.flags.PROXY;
 new_tkt.caddr :=3D req.addresses;
 resp.caddr :=3D req.addresses;
 endif

 if (req.kdc-options.ALLOW-POSTDATE is set) then
 if (tgt.flags.MAY-POSTDATE is reset)
 error_out(KDC_ERR_BADOPTION);
 endif
 set new_tkt.flags.MAY-POSTDATE;
 endif
 if (req.kdc-options.POSTDATED is set) then
 if (tgt.flags.MAY-POSTDATE is reset) then
 error_out(KDC_ERR_BADOPTION);
 endif
 set new_tkt.flags.POSTDATED;
 set new_tkt.flags.INVALID;
 if (against_postdate_policy(req.from)) then
 error_out(KDC_ERR_POLICY);
 endif
 new_tkt.starttime :=3D req.from;
 endif

 if (req.kdc-options.VALIDATE is set) then
 if (tgt.flags.INVALID is reset) then
 error_out(KDC_ERR_POLICY);
 endif
 if (tgt.starttime > kdc_time) then
 error_out(KRB_AP_ERR_NYV);
 endif
 if (check_hot_list(tgt)) then
 error_out(KRB_AP_ERR_REPEAT);
 endif
 tkt :=3D tgt;

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 230

 reset new_tkt.flags.INVALID;
 endif

 if (req.kdc-options.(any flag except ENC-TKT-IN-SKEY, RENEW,
 and those already processed) is set) then
 error_out(KDC_ERR_BADOPTION);
 endif

 new_tkt.authtime :=3D tgt.authtime;

 if (req.kdc-options.RENEW is set) then
 /* Note that if the endtime has already passed, the ticket =
would */
 /* have been rejected in the initial authentication stage, so =
 */
 /* there is no need to check again here =
 */
 if (tgt.flags.RENEWABLE is reset) then
 error_out(KDC_ERR_BADOPTION);
 endif
 if (tgt.renew-till < kdc_time) then
 error_out(KRB_AP_ERR_TKT_EXPIRED);
 endif
 tkt :=3D tgt;
 new_tkt.starttime :=3D kdc_time;
 old_life :=3D tgt.endttime - tgt.starttime;
 new_tkt.endtime :=3D min(tgt.renew-till,
 new_tkt.starttime + old_life);
 else
 new_tkt.starttime :=3D kdc_time;
 if (req.till =3D 0) then
 till :=3D infinity;
 else
 till :=3D req.till;
 endif
 new_tkt.endtime :=3D min(till,
 =
new_tkt.starttime+client.max_life,
 =
new_tkt.starttime+server.max_life,
 =
new_tkt.starttime+max_life_for_realm,
 tgt.endtime);

 if ((req.kdc-options.RENEWABLE-OK is set) and
 (new_tkt.endtime < req.till) and
 (tgt.flags.RENEWABLE is set) then
 /* we set the RENEWABLE option for later =
processing */
 set req.kdc-options.RENEWABLE;
 req.rtime :=3D min(req.till, tgt.renew-till);
 endif
 endif

 if (req.rtime =3D 0) then
 rtime :=3D infinity;
 else
 rtime :=3D req.rtime;
 endif

 if ((req.kdc-options.RENEWABLE is set) and

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 231

 (tgt.flags.RENEWABLE is set)) then
 set new_tkt.flags.RENEWABLE;
 new_tkt.renew-till :=3D min(rtime,
 =
new_tkt.starttime+client.max_rlife,
 =
new_tkt.starttime+server.max_rlife,
 =
new_tkt.starttime+max_rlife_for_realm,
 tgt.renew-till);
 else
 new_tkt.renew-till :=3D OMIT; /* leave the renew-till =
field out */
 endif
 if (req.enc-authorization-data is present) then
 decrypt req.enc-authorization-data into =
decrypted_authorization_data
 using auth_hdr.authenticator.subkey;
 if (decrypt_error()) then
 error_out(KRB_AP_ERR_BAD_INTEGRITY);
 endif
 endif
 new_tkt.authorization_data :=3D =
req.auth_hdr.ticket.authorization_data +
 decrypted_authorization_data;

 new_tkt.key :=3D session;
 new_tkt.crealm :=3D tgt.crealm;
 new_tkt.cname :=3D req.auth_hdr.ticket.cname;

 if (realm_tgt_is_for(tgt) :=3D tgt.realm) then
 /* tgt issued by local realm */
 new_tkt.transited :=3D tgt.transited;
 else
 /* was issued for this realm by some other realm */
 if (tgt.transited.tr-type not supported) then
 error_out(KDC_ERR_TRTYPE_NOSUPP);
 endif
 new_tkt.transited :=3D compress_transited(tgt.transited =
+ tgt.realm)

 /* Don't check transited field if TGT for foreign realm,=20
 * or requested not to check */
 if (is_not_foreign_tgt_name(new_tkt.server)=20
 && req.kdc-options.DISABLE-TRANSITED-CHECK not set) =
then
 /* Check it, so end-server does not have to=20
 * but don't fail, end-server may still accept =
it */
 if (check_transited_field(new_tkt.transited) =
=3D=3D OK)
 set =
new_tkt.flags.TRANSITED-POLICY-CHECKED;
 endif
 endif
 endif

 encode encrypted part of new_tkt into OCTET STRING;
 if (req.kdc-options.ENC-TKT-IN-SKEY is set) then
 if (server not specified) then
 server =3D req.second_ticket.client;
 endif

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 232

 if ((req.second_ticket is not a TGT) or
 (req.second_ticket.client !=3D server)) then
 error_out(KDC_ERR_POLICY);
 endif

 new_tkt.enc-part :=3D encrypt OCTET STRING using
 using etype_for_key(second-ticket.key), =
second-ticket.key;
 else
 new_tkt.enc-part :=3D encrypt OCTET STRING
 using etype_for_key(server.key), server.key, =
server.p_kvno;
 endif

 resp.pvno :=3D 5;
 resp.msg-type :=3D KRB_TGS_REP;
 resp.crealm :=3D tgt.crealm;
 resp.cname :=3D tgt.cname;
 resp.ticket :=3D new_tkt;

 resp.key :=3D session;
 resp.nonce :=3D req.nonce;
 resp.last-req :=3D fetch_last_request_info(client);
 resp.flags :=3D new_tkt.flags;

 resp.authtime :=3D new_tkt.authtime;
 resp.starttime :=3D new_tkt.starttime;
 resp.endtime :=3D new_tkt.endtime;

 omit resp.key-expiration;

 resp.sname :=3D new_tkt.sname;
 resp.realm :=3D new_tkt.realm;

 if (new_tkt.flags.RENEWABLE) then
 resp.renew-till :=3D new_tkt.renew-till;
 endif

 encode body of reply into OCTET STRING;

 if (req.padata.authenticator.subkey)
 resp.enc-part :=3D encrypt OCTET STRING using use_etype,
 req.padata.authenticator.subkey;
 else resp.enc-part :=3D encrypt OCTET STRING using use_etype, =
tgt.key;

 send(resp);

=09

A.7. KRB_TGS_REP verification

 decode response into resp;

 if (resp.msg-type =3D KRB_ERROR) then
 process_error(resp);
 return;
 endif

 /* On error, discard the response, and zero the session key from
 the response immediately */

 if (req.padata.authenticator.subkey)

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 233

 unencrypted part of resp :=3D decode of decrypt of =
resp.enc-part
 using resp.enc-part.etype and subkey;
 else unencrypted part of resp :=3D decode of decrypt of =
resp.enc-part
 using resp.enc-part.etype and tgt's =
session key;
 if (common_as_rep_tgs_rep_checks fail) then
 destroy resp.key;
 return error;
 endif

 check authorization_data as necessary;
 save_for_later(ticket,session,client,server,times,flags);

A.8. Authenticator generation

 body.authenticator-vno :=3D authenticator vno; /* =3D 5 */
 body.cname, body.crealm :=3D client name;
 if (supplying checksum) then
 body.cksum :=3D checksum;
 endif
 get system_time;
 body.ctime, body.cusec :=3D system_time;
 if (selecting sub-session key) then
 select sub-session key;
 body.subkey :=3D sub-session key;
 endif
 if (using sequence numbers) then
 select initial sequence number;
 body.seq-number :=3D initial sequence;
 endif

A.9. KRB_AP_REQ generation

 obtain ticket and session_key from cache;

 packet.pvno :=3D protocol version; /* 5 */
 packet.msg-type :=3D message type; /* KRB_AP_REQ */

 if (desired(MUTUAL_AUTHENTICATION)) then
 set packet.ap-options.MUTUAL-REQUIRED;
 else
 reset packet.ap-options.MUTUAL-REQUIRED;
 endif
 if (using session key for ticket) then
 set packet.ap-options.USE-SESSION-KEY;
 else
 reset packet.ap-options.USE-SESSION-KEY;
 endif
 packet.ticket :=3D ticket; /* ticket */
 generate authenticator;
 encode authenticator into OCTET STRING;
 encrypt OCTET STRING into packet.authenticator using =
session_key;

A.10. KRB_AP_REQ verification

 receive packet;
 if (packet.pvno !=3D 5) then
 either process using other protocol spec
 or error_out(KRB_AP_ERR_BADVERSION);

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 234

 endif
 if (packet.msg-type !=3D KRB_AP_REQ) then
 error_out(KRB_AP_ERR_MSG_TYPE);
 endif
 if (packet.ticket.tkt_vno !=3D 5) then
 either process using other protocol spec
 or error_out(KRB_AP_ERR_BADVERSION);
 endif
 if (packet.ap_options.USE-SESSION-KEY is set) then
 retrieve session key from ticket-granting ticket for
 packet.ticket.{sname,srealm,enc-part.etype};
 else
 retrieve service key for
 =
packet.ticket.{sname,srealm,enc-part.etype,enc-part.skvno};
 endif
 if (no_key_available) then
 if (cannot_find_specified_skvno) then
 error_out(KRB_AP_ERR_BADKEYVER);
 else
 error_out(KRB_AP_ERR_NOKEY);
 endif
 endif
 decrypt packet.ticket.enc-part into decr_ticket using retrieved =
key;
 if (decryption_error()) then
 error_out(KRB_AP_ERR_BAD_INTEGRITY);
 endif

 decrypt packet.authenticator into decr_authenticator
 using decr_ticket.key;
 if (decryption_error()) then
 error_out(KRB_AP_ERR_BAD_INTEGRITY);
 endif
 if (decr_authenticator.{cname,crealm} !=3D
 decr_ticket.{cname,crealm}) then
 error_out(KRB_AP_ERR_BADMATCH);
 endif
 if (decr_ticket.caddr is present) then
 if (sender_address(packet) is not in decr_ticket.caddr) =
then
 error_out(KRB_AP_ERR_BADADDR);
 endif
 elseif (application requires addresses) then
 error_out(KRB_AP_ERR_BADADDR);
 endif
 if (not in_clock_skew(decr_authenticator.ctime,
 decr_authenticator.cusec)) then
 error_out(KRB_AP_ERR_SKEW);
 endif
 if (repeated(decr_authenticator.{ctime,cusec,cname,crealm})) =
then
 error_out(KRB_AP_ERR_REPEAT);
 endif
 save_identifier(decr_authenticator.{ctime,cusec,cname,crealm});
 get system_time;
 if ((decr_ticket.starttime-system_time > CLOCK_SKEW) or
 (decr_ticket.flags.INVALID is set)) then
 /* it hasn't yet become valid */
 error_out(KRB_AP_ERR_TKT_NYV);
 endif
 if (system_time-decr_ticket.endtime > CLOCK_SKEW) then

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 235

 error_out(KRB_AP_ERR_TKT_EXPIRED);
 endif
 if (decr_ticket.transited) then
 /* caller may ignore the TRANSITED-POLICY-CHECKED and do
 * check anyway */
 if (decr_ticket.flags.TRANSITED-POLICY-CHECKED not set) then
 if (check_transited_field(decr_ticket.transited) then
 error_out(KDC_AP_PATH_NOT_ACCPETED);
 endif
 endif
 endif
 /* caller must check decr_ticket.flags for any pertinent details =
*/
 return(OK, decr_ticket, packet.ap_options.MUTUAL-REQUIRED);

A.11. KRB_AP_REP generation

 packet.pvno :=3D protocol version; /* 5 */
 packet.msg-type :=3D message type; /* KRB_AP_REP */

 body.ctime :=3D packet.ctime;
 body.cusec :=3D packet.cusec;
 if (selecting sub-session key) then
 select sub-session key;
 body.subkey :=3D sub-session key;
 endif

 if (using sequence numbers) then
 select initial sequence number;
 body.seq-number :=3D initial sequence;
 endif

 encode body into OCTET STRING;

 select encryption type;
 encrypt OCTET STRING into packet.enc-part;

A.12. KRB_AP_REP verification

 receive packet;
 if (packet.pvno !=3D 5) then
 either process using other protocol spec
 or error_out(KRB_AP_ERR_BADVERSION);
 endif
 if (packet.msg-type !=3D KRB_AP_REP) then
 error_out(KRB_AP_ERR_MSG_TYPE);
 endif
 cleartext :=3D decrypt(packet.enc-part) using ticket's session =
key;
 if (decryption_error()) then
 error_out(KRB_AP_ERR_BAD_INTEGRITY);
 endif
 if (cleartext.ctime !=3D authenticator.ctime) then
 error_out(KRB_AP_ERR_MUT_FAIL);
 endif
 if (cleartext.cusec !=3D authenticator.cusec) then
 error_out(KRB_AP_ERR_MUT_FAIL);
 endif
 if (cleartext.subkey is present) then
 save cleartext.subkey for future use;
 endif
 if (cleartext.seq-number is present) then
 save cleartext.seq-number for future verifications;

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 236

 endif
 return(AUTHENTICATION_SUCCEEDED);

A.13. KRB_SAFE generation

 collect user data in buffer;

 /* assemble packet: */
 packet.pvno :=3D protocol version; /* 5 */
 packet.msg-type :=3D message type; /* KRB_SAFE */

 body.user-data :=3D buffer; /* DATA */
 if (using timestamp) then
 get system_time;
 body.timestamp, body.usec :=3D system_time;
 endif
 if (using sequence numbers) then
 body.seq-number :=3D sequence number;
 endif
 body.s-address :=3D sender host addresses;
 if (only one recipient) then
 body.r-address :=3D recipient host address;
 endif

 checksum.cksumtype :=3D checksum type;
 compute checksum over body;
 checksum.checksum :=3D checksum value; /* checksum.checksum */
 packet.cksum :=3D checksum;
 packet.safe-body :=3D body;

A.14. KRB_SAFE verification

 receive packet;
 if (packet.pvno !=3D 5) then
 either process using other protocol spec
 or error_out(KRB_AP_ERR_BADVERSION);
 endif
 if (packet.msg-type !=3D KRB_SAFE) then
 error_out(KRB_AP_ERR_MSG_TYPE);
 endif
 if (packet.checksum.cksumtype is not both collision-proof and =
keyed) then
 error_out(KRB_AP_ERR_INAPP_CKSUM);
 endif
 if (safe_priv_common_checks_ok(packet)) then
 set computed_checksum :=3D checksum(packet.body);
 if (computed_checksum !=3D packet.checksum) then
 error_out(KRB_AP_ERR_MODIFIED);
 endif
 return (packet, PACKET_IS_GENUINE);
 else
 return common_checks_error;
 endif

A.15. KRB_SAFE and KRB_PRIV common checks

 if (packet.s-address !=3D O/S_sender(packet)) then
 /* O/S report of sender not who claims to have sent it =
*/
 error_out(KRB_AP_ERR_BADADDR);

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 237

 endif
 if ((packet.r-address is present) and
 (packet.r-address !=3D local_host_address)) then
 /* was not sent to proper place */
 error_out(KRB_AP_ERR_BADADDR);
 endif
 if (((packet.timestamp is present) and
 (not in_clock_skew(packet.timestamp,packet.usec))) or
 (packet.timestamp is not present and timestamp expected)) =
then
 error_out(KRB_AP_ERR_SKEW);
 endif
 if (repeated(packet.timestamp,packet.usec,packet.s-address)) =
then
 error_out(KRB_AP_ERR_REPEAT);
 endif

 if (((packet.seq-number is present) and
 ((not in_sequence(packet.seq-number)))) or
 (packet.seq-number is not present and sequence expected)) =
then
 error_out(KRB_AP_ERR_BADORDER);
 endif

 if (packet.timestamp not present and packet.seq-number not =
present) then
 error_out(KRB_AP_ERR_MODIFIED);
 endif

 save_identifier(packet.{timestamp,usec,s-address},
 sender_principal(packet));

 return PACKET_IS_OK;

A.16. KRB_PRIV generation

 collect user data in buffer;

 /* assemble packet: */
 packet.pvno :=3D protocol version; /* 5 */
 packet.msg-type :=3D message type; /* KRB_PRIV */

 packet.enc-part.etype :=3D encryption type;

 body.user-data :=3D buffer;
 if (using timestamp) then
 get system_time;
 body.timestamp, body.usec :=3D system_time;
 endif
 if (using sequence numbers) then
 body.seq-number :=3D sequence number;
 endif
 body.s-address :=3D sender host addresses;
 if (only one recipient) then
 body.r-address :=3D recipient host address;
 endif

 encode body into OCTET STRING;

 select encryption type;
 encrypt OCTET STRING into packet.enc-part.cipher;

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 238

A.17. KRB_PRIV verification

 receive packet;
 if (packet.pvno !=3D 5) then
 either process using other protocol spec
 or error_out(KRB_AP_ERR_BADVERSION);
 endif
 if (packet.msg-type !=3D KRB_PRIV) then
 error_out(KRB_AP_ERR_MSG_TYPE);
 endif

 cleartext :=3D decrypt(packet.enc-part) using negotiated key;
 if (decryption_error()) then
 error_out(KRB_AP_ERR_BAD_INTEGRITY);
 endif

 if (safe_priv_common_checks_ok(cleartext)) then
 return(cleartext.DATA, =
PACKET_IS_GENUINE_AND_UNMODIFIED);
 else
 return common_checks_error;
 endif

A.18. KRB_CRED generation

 invoke KRB_TGS; /* obtain tickets to be provided to peer */

 /* assemble packet: */
 packet.pvno :=3D protocol version; /* 5 */
 packet.msg-type :=3D message type; /* KRB_CRED */

 for (tickets[n] in tickets to be forwarded) do
 packet.tickets[n] =3D tickets[n].ticket;
 done

 packet.enc-part.etype :=3D encryption type;

 for (ticket[n] in tickets to be forwarded) do
 body.ticket-info[n].key =3D tickets[n].session;
 body.ticket-info[n].prealm =3D tickets[n].crealm;
 body.ticket-info[n].pname =3D tickets[n].cname;
 body.ticket-info[n].flags =3D tickets[n].flags;
 body.ticket-info[n].authtime =3D tickets[n].authtime;
 body.ticket-info[n].starttime =3D tickets[n].starttime;
 body.ticket-info[n].endtime =3D tickets[n].endtime;
 body.ticket-info[n].renew-till =3D =
tickets[n].renew-till;
 body.ticket-info[n].srealm =3D tickets[n].srealm;
 body.ticket-info[n].sname =3D tickets[n].sname;
 body.ticket-info[n].caddr =3D tickets[n].caddr;
 done

 get system_time;
 body.timestamp, body.usec :=3D system_time;

 if (using nonce) then
 body.nonce :=3D nonce;
 endif

 if (using s-address) then
 body.s-address :=3D sender host addresses;

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 239

 endif
 if (limited recipients) then
 body.r-address :=3D recipient host address;
 endif

 encode body into OCTET STRING;

 select encryption type;
 encrypt OCTET STRING into packet.enc-part.cipher
 using negotiated encryption key;

A.19. KRB_CRED verification

 receive packet;
 if (packet.pvno !=3D 5) then
 either process using other protocol spec
 or error_out(KRB_AP_ERR_BADVERSION);
 endif
 if (packet.msg-type !=3D KRB_CRED) then
 error_out(KRB_AP_ERR_MSG_TYPE);
 endif

 cleartext :=3D decrypt(packet.enc-part) using negotiated key;
 if (decryption_error()) then
 error_out(KRB_AP_ERR_BAD_INTEGRITY);
 endif
 if ((packet.r-address is present or required) and
 (packet.s-address !=3D O/S_sender(packet)) then
 /* O/S report of sender not who claims to have sent it =
*/
 error_out(KRB_AP_ERR_BADADDR);
 endif
 if ((packet.r-address is present) and
 (packet.r-address !=3D local_host_address)) then
 /* was not sent to proper place */
 error_out(KRB_AP_ERR_BADADDR);
 endif
 if (not in_clock_skew(packet.timestamp,packet.usec)) then
 error_out(KRB_AP_ERR_SKEW);
 endif
 if (repeated(packet.timestamp,packet.usec,packet.s-address)) =
then
 error_out(KRB_AP_ERR_REPEAT);
 endif
 if (packet.nonce is required or present) and
 (packet.nonce !=3D expected-nonce) then
 error_out(KRB_AP_ERR_MODIFIED);
 endif

 for (ticket[n] in tickets that were forwarded) do
 save_for_later(ticket[n],key[n],principal[n],
 server[n],times[n],flags[n]);
 return

A.20. KRB_ERROR generation

 /* assemble packet: */
 packet.pvno :=3D protocol version; /* 5 */
 packet.msg-type :=3D message type; /* KRB_ERROR */

 get system_time;
 packet.stime, packet.susec :=3D system_time;
 packet.realm, packet.sname :=3D server name;

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 240

 if (client time available) then
 packet.ctime, packet.cusec :=3D client_time;
 endif

 packet.error-code :=3D error code;
 if (client name available) then
 packet.cname, packet.crealm :=3D client name;
 endif
 if (error text available) then
 packet.e-text :=3D error text;
 endif
 if (error data available) then
 packet.e-data :=3D error data;
 endif

B. Definition of common authorization data elements

This appendix contains the definitions of common authorization data
elements. These common authorization data elements are recursivly defined,
meaning the ad-data for these types will itself contain a sequence of
authorization data whose interpretation is affected by the encapsulating
element. Depending on the meaning of the encapsulating element, the
encapsulated elements may be ignored, might be interpreted as issued
directly by the KDC, or they might be stored in a separate plaintext part of
the ticket. The types of the encapsulating elements are specified as part of
the Kerberos specification because the behavior based on these values should
be understood across implementations whereas other elements need only be
understood by the applications which they affect.

In the definitions that follow, the value of the ad-type for the element
will be specified in the subsection number, and the value of the ad-data
will be as shown in the ASN.1 structure that follows the subsection heading.

B.1. If relevant

AD-IF-RELEVANT AuthorizationData

AD elements encapsulated within the if-relevant element are intended for
interpretation only by application servers that understand the particular
ad-type of the embedded element. Application servers that do not understand
the type of an element embedded within the if-relevant element may ignore
the uninterpretable element. This element promotes interoperability across
implementations which may have local extensions for authorization.

B.2. Intended for server

AD-INTENDED-FOR-SERVER SEQUENCE {
 intended-server[0] SEQUENCE OF PrincipalName
 elements[1] AuthorizationData
}

AD elements encapsulated within the intended-for-server element may be
ignored if the application server is not in the list of principal names of
intended servers. Further, a KDC issuing a ticket for an application server
can remove this element if the application server is not in the list of
intended servers.

Application servers should check for their principal name in the
intended-server field of this element. If their principal name is not found,

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 241

this element should be ignored. If found, then the encapsulated elements
should be evaluated in the same manner as if they were present in the top
level authorization data field. Applications and application servers that do
not implement this element should reject tickets that contain authorization
data elements of this type.

B.3. Intended for application class

AD-INTENDED-FOR-APPLICATION-CLASS SEQUENCE { intended-application-class[0]
SEQUENCE OF GeneralString elements[1] AuthorizationData } AD elements
encapsulated within the intended-for-application-class element may be
ignored if the application server is not in one of the named classes of
application servers. Examples of application server classes include
"FILESYSTEM", and other kinds of servers.=20
This element and the elements it encapsulates may be safely ignored by
applications, application servers, and KDCs that do not implement this
element.

B.4. KDC Issued

AD-KDCIssued SEQUENCE {
 ad-checksum[0] Checksum,
 i-realm[1] Realm OPTIONAL,
 i-sname[2] PrincipalName OPTIONAL,
 elements[3] AuthorizationData.
}

ad-checksum
 A checksum over the elements field using a cryptographic checksum
 method that is identical to the checksum used to protect the ticket
 itself (i.e. using the same hash function and the same encryption
 algorithm used to encrypt the ticket) and using a key derived from the
 same key used to protect the ticket.
i-realm, i-sname
 The name of the issuing principal if different from the KDC itself.
 This field would be used when the KDC can verify the authenticity of
 elements signed by the issuing principal and it allows this KDC to
 notify the application server of the validity of those elements.
elements
 A sequence of authorization data elements issued by the KDC.

The KDC-issued ad-data field is intended to provide a means for Kerberos
principal credentials to embed within themselves privilege attributes and
other mechanisms for positive authorization, amplifying the privileges of
the principal beyond what can be done using a credentials without such an
a-data element.

This can not be provided without this element because the definition of the
authorization-data field allows elements to be added at will by the bearer
of a TGT at the time that they request service tickets and elements may also
be added to a delegated ticket by inclusion in the authenticator.

For KDC-issued elements this is prevented because the elements are signed by
the KDC by including a checksum encrypted using the server's key (the same
key used to encrypt the ticket - or a key derived from that key). Elements
encapsulated with in the KDC-issued element will be ignored by the
application server if this "signature" is not present. Further, elements
encapsulated within this element from a ticket granting ticket may be
interpreted by the KDC, and used as a basis according to policy for
including new signed elements within derivative tickets, but they will not
be copied to a derivative ticket directly. If they are copied directly to a
derivative ticket by a KDC that is not aware of this element, the signature

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 242

will not be correct for the application ticket elements, and the field will
be ignored by the application server.

This element and the elements it encapsulates may be safely ignored by
applications, application servers, and KDCs that do not implement this
element.

B.5. And-Or

AD-AND-OR SEQUENCE {
 condition-count[0] INTEGER,
 elements[1] AuthorizationData
}=20

When restrictive AD elements encapsulated within the and-or element are
encountered, only the number specified in condition-count of the
encapsulated conditions must be met in order to satisfy this element. This
element may be used to implement an "or" operation by setting the
condition-count field to 1, and it may specify an "and" operation by setting
the condition count to the number of embedded elements. Application servers
that do not implement this element must reject tickets that contain
authorization data elements of this type.

B.6. Mandatory ticket extensions

AD-Mandatory-Ticket-Extensions SEQUENCE {
 te-type[0] INTEGER,
 te-checksum[0] Checksum
}=20

An authorization data element of type mandatory-ticket-extensions specifies
the type and a collision-proof checksum using the same hash algorithm used
to protect the integrity of the ticket itself. This checksum will be
calculated over an individual extension field of the type indicated. If
there are more than one extension, multiple Mandatory-Ticket-Extensions
authorization data elements may be present, each with a checksum for a
different extension field. This restriction indicates that the ticket should
not be accepted if a ticket extension is not present in the ticket for which
the type and checksum do not match that checksum specified in the
authorization data element. Note that although the type is redundant for the
purposes of the comparison, it makes the comparison easier when multiple
extensions are present. Application servers that do not implement this
element must reject tickets that contain authorization data elements of this
type.

B.7. Authorization Data in ticket extensions

AD-IN-Ticket-Extensions Checksum

An authorization data element of type in-ticket-extensions specifies a
collision-proof checksum using the same hash algorithm used to protect the
integrity of the ticket itself. This checksum is calculated over a separate
external AuthorizationData field carried in the ticket extensions.
Application servers that do not implement this element must reject tickets
that contain authorization data elements of this type. Application servers
that do implement this element will search the ticket extensions for
authorization data fields, calculate the specified checksum over each
authorization data field and look for one matching the checksum in this
in-ticket-extensions element. If not found, then the ticket must be
rejected. If found, the corresponding authorization data elements will be
interpreted in the same manner as if they were contained in the top level
authorization data field.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 243

Note that if multiple external authorization data fields are present in a
ticket, each will have a corresponding element of type in-ticket-extensions
in the top level authorization data field, and the external entries will be
linked to the corresponding element by their checksums.

C. Definition of common ticket extensions

This appendix contains the definitions of common ticket extensions. Support
for these extensions is optional. However, certain extensions have
associated authorization data elements that may require rejection of a
ticket containing an extension by application servers that do not implement
the particular extension. Other extensions have been defined beyond those
described in this specification. Such extensions are described elsewhere and
for some of those extensions the reserved number may be found in the list of
constants.
It is known that older versions of Kerberos did not support this field, and
that some clients will strip this field from a ticket when they parse and
then reassemble a ticket as it is passed to the application servers. The
presence of the extension will not break such clients, but any functionally
dependent on the extensions will not work when such tickets are handled by
old clients. In such situations, some implementation may use alternate
methods to transmit the information in the extensions field.

C.1. Null ticket extension

TE-NullExtension OctetString -- The empty Octet String

The te-data field in the null ticket extension is an octet string of length
zero. This extension may be included in a ticket granting ticket so that the
KDC can determine on presentation of the ticket granting ticket whether the
client software will strip the extensions field. =20

C.2. External Authorization Data

TE-ExternalAuthorizationData AuthorizationData

The te-data field in the external authorization data ticket extension is
field of type AuthorizationData containing one or more authorization data
elements. If present, a corresponding authorization data element will be
present in the primary authorization data for the ticket and that element
will contain a checksum of the external authorization data ticket extension.

D. Significant changes since RFC 1510

Commentary

Section 1: The preamble and introduction does not define the protocol,
mention is made in the introduction regarding the ability to rely on the KDC
to check the transited field, and on the inclusion of a flag in a ticket
indicating that this check has occurred. This is a new capability not
present in RFC1510. Pre-existing implementation may ignore or not set this
flag without negative security implications.

The definition of the secret key says that in the case of a user the key may
be derived from a password. In 1510, it said that the key was derived from
the password. This change was made to accommodate situations where the user
key might be stored on a smart-card, or otherwise obtained independent of a
password.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 244

The introduction also mentions the use of public key for initial
authentication in Kerberos by reference. RFC1510 did not include such a
reference.

Section 1.2 was added to explain that while Kerberos provides authentication
of a named principal, it is still the responsibility of the application to
ensure that the authenticated name is the entity with which the application
wishes to communicate. Because section 1.2 is completely new, I am
particularly interested in suggestions to improve the wording of this
section. Sections 1.2-4 were renumbered.

Section 2: No changes were made to existing options and flags specified in
RFC1510, though some of the sections in the specification were renumbered,
and text was revised to make the description and intent of existing options
clearer, especially with respect to the ENC-TKT-IN-SKEY option (now section
2.9.3) which is used for user-to-user authentication. New options and ticket
flags added since RFC1510 include transited policy checking (section 2.7),
anonymous tickets (section 2.8) and name canonicalization (section 2.9.1).

Section 3: Added mention of the optional checksum field in the KRB-ERROR
message. Added mention of name canonicalization and anonymous tickets in
exposition on KDC options. Mention of the name canonicalization case is
included in the description of the KDC reply (3.1.3). A warning regarding
generation of session keys for application use was added, urging the
inclusion of key entropy from the KDC generated session key in the ticket.
An example regarding use of the subsession key was added to section 3.2.6.
Descriptions of the pa-etype-info, and pa-pw-salt preauthentication data
items were added.

Changes to section 4: Added language about who has access to the keys in the
Kerberos database. Also made it clear that KDC's may obtain the information
from some database field through other means - for example, one form of
pkinit may extract some of these fields from a certificate.

Regarding the discussion on the list regarding the use of tamper resistant
hardware to store keys, I was not able to determine specific suggested
changes to the text in the RFC regarding this. Much of this discussion
centers around particular implementations. I did however loosen the wording
about the database so as not to preclude keys that can not be extracted in
the clear from such hardware.

Section 5: A statement regarding the carrying of unrecognized additional
fields in ASN.1 encoding through in tickets was added (still waiting on some
better text regarding this).

Ticket flags and KDC options were added to support the new functions
described elsewhere in this document. The encoding of the options flags are
now described to be no less than 32 bits, and the smallest number of bits
beyond 32 needed to encode any set bits. It also describes the encoding of
the bitstring as using "unnamed" bits.

An optional ticket extensions field was added to support the carrying of
auxiliary data that allows the passing of auxiliary that is to accompany a
ticket to the verifier.

(I would like to drop the part about optionally appending it of the opaque
part of the ciphertext. We are still waiting on some text regarding how to
assure backward compatibility).

(Still pending, Tom Yu's request to change the application codes on KDC
message to indicate which minor rev of the protocol - I think this might
break things, but am not sure).

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 245

Definition of the PA-USE-SPECIFIED-KVNO preauthentication data field was
added.

The optional e-cksum field was added to the KRB-ERROR message and the e-data
filed was generalized for use in other than the KDC_ERR_PREAUTH_REQUIRED
error. The TypedData structure was defined. Type tags for TypedData are
defined in the same sequence as the PA-DATA type space to avoid confusion
with the use of the PA-DATA namespace previously used for the e-data field
for the KDC_ERR_PREAUTH_REQUIRED error.

Section 7: Words were added describing the convention that domain based
realm names for newly created realms should be specified as upper case. This
recommendation does not make lower case realm names illegal. Words were
added highlighting that the slash separated components in the X500 style of
realm names is consistent with existing RFC1510 based implementations, but
that it conflicts with the general recommendation of X.500 name
representation specified in RFC2253.

There were suggestions on the list regarding extensions to or new name
types. These require discussion at the IETF meeting. My own feeling at this
point is that in the absence of a strong consensus for adding new types
at this time, I would rather not add new name types in the current draft,
but leave things open for additions later.

Section 8: Since RFC1510, the definition of the TCP transport for Kerberos
messages was added.

Section 9: Requirements for supporting DES3-CBC-SHA1-KD encryption and
HMAC-SHA1-DES3-KD checksums were added.

I would like to make support for Rijndael mandatory and for us to have a
SINGLE standard for use of Rijndale in these revisions.

 --

Discussion

Section 8: Regarding the suggestion of weakening the requirement for use of
port 88 for cases where the port can be looked up elsewhere - I did not
incorporate this suggestion because cross realm authentication requires the
ability to contact the appropriate KDC, and unless ALL implementations of
Kerberos include support for finding such alternate port numbers, use of
such KDC's would be non-interoperable.

 --
[TM] Project Athena, Athena, and Kerberos are trademarks of the
Massachusetts Institute of Technology (MIT). No commercial use of these
trademarks may be made without prior written permission of MIT.

[1.1] Note, however, that many applications use Kerberos' functions only
upon the initiation of a stream-based network connection. Unless an
application subsequently provides integrity protection for the data stream,
the identity verification applies only to the initiation of the connection,
and does not guarantee that subsequent messages on the connection originate
from the same principal.

[1.2] Secret and private are often used interchangeably in the literature.
In our usage, it takes two (or more) to share a secret, thus a shared DES
key is a secret key. Something is only private when no one but its owner
knows it. Thus, in public key cryptosystems, one has a public and a private
key.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 246

[1.3] Of course, with appropriate permission the client could arrange
registration of a separately-named principal in a remote realm, and engage
in normal exchanges with that realm's services. However, for even small
numbers of clients this becomes cumbersome, and more automatic methods as
described here are necessary.

[2.1] Though it is permissible to request or issue tickets with no network
addresses specified.

[2.2] It is important that the KDC be sent the name as typed by the user,
and not only the canonical form of the name. If the domain name system was
used to find the canonical name on the client side, the mapping is
vulnerable. [3.1] The password-changing request must not be honored unless
the requester can provide the old password (the user's current secret key).
Otherwise, it would be possible for someone to walk up to an unattended
session and change another user's password.

[3.2] To authenticate a user logging on to a local system, the credentials
obtained in the AS exchange may first be used in a TGS exchange to obtain
credentials for a local server. Those credentials must then be verified by a
local server through successful completion of the Client/Server exchange.

[3.3] "Random" means that, among other things, it should be impossible to
guess the next session key based on knowledge of past session keys. This can
only be achieved in a pseudo-random number generator if it is based on
cryptographic principles. It is more desirable to use a truly random number
generator, such as one based on measurements of random physical phenomena.

[3.4] Tickets contain both an encrypted and unencrypted portion, so
cleartext here refers to the entire unit, which can be copied from one
message and replayed in another without any cryptographic skill.

[3.5] Note that this can make applications based on unreliable transports
difficult to code correctly. If the transport might deliver duplicated
messages, either a new authenticator must be generated for each retry, or
the application server must match requests and replies and replay the first
reply in response to a detected duplicate.

[3.6] This allows easy implementation of user-to-user authentication [8],
which uses ticket-granting ticket session keys in lieu of secret server keys
in situations where such secret keys could be easily compromised.

[3.7]Note also that the rejection here is restricted to authenticators from
the same principal to the same server. Other client principals communicating
with the same server principal should not be have their authenticators
rejected if the time and microsecond fields happen to match some other
client's authenticator.

[3.8] If this is not done, an attacker could subvert the authentication by
recording the ticket and authenticator sent over the network to a server and
replaying them following an event that caused the server to lose track of
recently seen authenticators.

[3.9] In the Kerberos version 4 protocol, the timestamp in the reply was the
client's timestamp plus one. This is not necessary in version 5 because
version 5 messages are formatted in such a way that it is not possible to
create the reply by judicious message surgery (even in encrypted form)
without knowledge of the appropriate encryption keys.

[3.10] Note that for encrypting the KRB_AP_REP message, the sub-session key
is not used, even if present in the Authenticator.

[3.11] Implementations of the protocol may wish to provide routines to

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 247

choose subkeys based on session keys and random numbers and to generate a
negotiated key to be returned in the KRB_AP_REP message.

[3.12]This can be accomplished in several ways. It might be known beforehand
(since the realm is part of the principal identifier), it might be stored in
a nameserver, or it might be obtained from a configuration file. If the
realm to be used is obtained from a nameserver, there is a danger of being
spoofed if the nameservice providing the realm name is not authenticated.
This might result in the use of a realm which has been compromised, and
would result in an attacker's ability to compromise the authentication of
the application server to the client.

[3.13] If the client selects a sub-session key, care must be taken to ensure
the randomness of the selected sub-session key. One approach would be to
generate a random number and XOR it with the session key from the
ticket-granting ticket.

[4.1] The implementation of the Kerberos server need not combine the
database and the server on the same machine; it is feasible to store the
principal database in, say, a network name service, as long as the entries
stored therein are protected from disclosure to and modification by
unauthorized parties. However, we recommend against such strategies, as they
can make system management and threat analysis quite complex.

[4.2] See the discussion of the padata field in section 5.4.2 for details on
why this can be useful.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 248

Appendix III PKINIT Specification

The PKINIT specification is currently still an IETF draft. This document complies only with the version of the
PKINIT draft that is included in this section. The IPCablecom security team will continue to track the progress of
the PKINIT draft through the IETF. Note that the details of the first and second Oakley groups are provided in
Appendix VI of this specification.
INTERNET-DRAFT Brian Tung
draft-ietf-cat-kerberos-pk-init-16.txt Clifford Neuman
Updates: RFC 1510bis USC/ISI
expires June 25, 2002 Matthew Hur
 Cisco
 Ari Medvinsky
 Keen.com, Inc.
 Sasha Medvinsky
 Motorola
 John Wray
 Iris Associates, Inc.
 Jonathan Trostle
 Cisco

 Public Key Cryptography for Initial Authentication in Kerberos

0. Status Of This Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC 2026. Internet-Drafts are
 working documents of the Internet Engineering Task Force (IETF),
 its areas, and its working groups. Note that other groups may also
 distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-Drafts
 as reference material or to cite them other than as "work in
 progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html.

 To learn the current status of any Internet-Draft, please check
 the "1id-abstracts.txt" listing contained in the Internet-Drafts
 Shadow Directories on ftp.ietf.org (US East Coast),
 nic.nordu.net (Europe), ftp.isi.edu (US West Coast), or
 munnari.oz.au (Pacific Rim).

 The distribution of this memo is unlimited. It is filed as
 draft-ietf-cat-kerberos-pk-init-16.txt, and expires June 25, 2002.
 Please send comments to the authors.

1. Abstract

 This document defines extensions (PKINIT) to the Kerberos protocol
 specification (RFC 1510bis [1]) to provide a method for using public
 key cryptography during initial authentication. The methods
 defined specify the ways in which preauthentication data fields and
 error data fields in Kerberos messages are to be used to transport
 public key data.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 249

2. Introduction

 The popularity of public key cryptography has produced a desire for
 its support in Kerberos [2]. The advantages provided by public key
 cryptography include simplified key management (from the Kerberos
 perspective) and the ability to leverage existing and developing
 public key certification infrastructures.

 Public key cryptography can be integrated into Kerberos in a number
 of ways. One is to associate a key pair with each realm, which can
 then be used to facilitate cross-realm authentication; this is the
 topic of another draft proposal. Another way is to allow users with
 public key certificates to use them in initial authentication. This
 is the concern of the current document.

 PKINIT utilizes ephemeral-ephemeral Diffie-Hellman keys in
 combination with RSA keys as the primary, required mechanism. Note
 that PKINIT supports the use of separate signature and encryption
 keys.

 PKINIT enables access to Kerberos-secured services based on initial
 authentication utilizing public key cryptography. PKINIT utilizes
 standard public key signature and encryption data formats within the
 standard Kerberos messages. The basic mechanism is as follows: The
 user sends an AS-REQ message to the KDC as before, except that if that
 user is to use public key cryptography in the initial authentication
 step, his certificate and a signature accompany the initial request
 in the preauthentication fields. Upon receipt of this request, the
 KDC verifies the certificate and issues a ticket granting ticket
 (TGT) as before, except that the encPart from the AS-REP message
 carrying the TGT is now encrypted utilizing either a Diffie-Hellman
 derived key or the user's public key. This message is authenticated
 utilizing the public key signature of the KDC.

 Note that PKINIT does not require the use of certificates. A KDC
 may store the public key of a principal as part of that principal's
 record. In this scenario, the KDC is the trusted party that vouches
 for the principal (as in a standard, non-cross realm, Kerberos
 environment). Thus, for any principal, the KDC may maintain a
 symmetric key, a public key, or both.

 The PKINIT specification may also be used as a building block for
 other specifications. PKINIT may be utilized to establish
 inter-realm keys for the purposes of issuing cross-realm service
 tickets. It may also be used to issue anonymous Kerberos tickets
 using the Diffie-Hellman option. Efforts are under way to draft
 specifications for these two application protocols.

 Additionally, the PKINIT specification may be used for direct peer
 to peer authentication without contacting a central KDC. This
 application of PKINIT is based on concepts introduced in [6, 7].
 For direct client-to-server authentication, the client uses PKINIT
 to authenticate to the end server (instead of a central KDC), which
 then issues a ticket for itself. This approach has an advantage
 over TLS [5] in that the server does not need to save state (cache
 session keys). Furthermore, an additional benefit is that Kerberos
 tickets can facilitate delegation (see [6]).

3. Proposed Extensions

 This section describes extensions to RFC 1510bis for supporting the
 use of public key cryptography in the initial request for a ticket
 granting ticket (TGT).

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 250

 In summary, the following change to RFC 1510bis is proposed:

 * Users may authenticate using either a public key pair or a
 conventional (symmetric) key. If public key cryptography is
 used, public key data is transported in preauthentication
 data fields to help establish identity. The user presents
 a public key certificate and obtains an ordinary TGT that may
 be used for subsequent authentication, with such
 authentication using only conventional cryptography.

 Section 3.1 provides definitions to help specify message formats.
 Section 3.2 describes the extensions for the initial authentication
 method.

3.1. Definitions

 The extensions involve new preauthentication fields; we introduce
 the following preauthentication types:

 PA-PK-AS-REQ 14
 PA-PK-AS-REP 15

 The extensions also involve new error types; we introduce the
 following types:

 KDC_ERR_CLIENT_NOT_TRUSTED 62
 KDC_ERR_KDC_NOT_TRUSTED 63
 KDC_ERR_INVALID_SIG 64
 KDC_ERR_KEY_TOO_WEAK 65
 KDC_ERR_CERTIFICATE_MISMATCH 66
 KDC_ERR_CANT_VERIFY_CERTIFICATE 70
 KDC_ERR_INVALID_CERTIFICATE 71
 KDC_ERR_REVOKED_CERTIFICATE 72
 KDC_ERR_REVOCATION_STATUS_UNKNOWN 73
 KDC_ERR_REVOCATION_STATUS_UNAVAILABLE 74
 KDC_ERR_CLIENT_NAME_MISMATCH 75
 KDC_ERR_KDC_NAME_MISMATCH 76

 We utilize the following typed data for errors:

 TD-PKINIT-CMS-CERTIFICATES 101
 TD-KRB-PRINCIPAL 102
 TD-KRB-REALM 103
 TD-TRUSTED-CERTIFIERS 104
 TD-CERTIFICATE-INDEX 105

 We utilize the following encryption types (which map directly to
 OIDs):

 dsaWithSHA1-CmsOID 9
 md5WithRSAEncryption-CmsOID 10
 sha1WithRSAEncryption-CmsOID 11
 rc2CBC-EnvOID 12
 rsaEncryption-EnvOID (PKCS#1 v1.5) 13
 rsaES-OAEP-ENV-OID (PKCS#1 v2.0) 14
 des-ede3-cbc-Env-OID 15

 These mappings are provided so that a client may send the
 appropriate enctypes in the AS-REQ message in order to indicate
 support for the corresponding OIDs (for performing PKINIT). The
 above encryption types are utilized only within CMS structures
 within the PKINIT preauthentication fields. Their use within

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 251

 the Kerberos EncryptedData structure is unspecified.

 In many cases, PKINIT requires the encoding of the X.500 name of a
 certificate authority as a Realm. When such a name appears as
 a realm it will be represented using the "Other" form of the realm
 name as specified in the naming constraints section of RFC 1510bis.
 For a realm derived from an X.500 name, NAMETYPE will have the value
 X500-RFC2253. The full realm name will appear as follows:

 <nametype> + ":" + <string>

 where nametype is "X500-RFC2253" and string is the result of doing
 an RFC2253 encoding of the distinguished name, i.e.

 "X500-RFC2253:" + RFC2253Encode(DistinguishedName)

 where DistinguishedName is an X.500 name, and RFC2253Encode is a
 function returning a readable UTF encoding of an X.500 name, as
 defined by RFC 2253 [11] (part of LDAPv3 [15]).

 Each component of a DistinguishedName is called a
 RelativeDistinguishedName, where a RelativeDistinguishedName is a
 SET OF AttributeTypeAndValue. RFC 2253 does not specify the order
 in which to encode the elements of the RelativeDistinguishedName and
 so to ensure that this encoding is unique, we add the following rule
 to those specified by RFC 2253:

 When converting a multi-valued RelativeDistinguishedName
 to a string, the output consists of the string encodings
 of each AttributeTypeAndValue, in the same order as
 specified by the DER encoding.

 Similarly, in cases where the KDC does not provide a specific
 policy-based mapping from the X.500 name or X.509 Version 3
 SubjectAltName extension in the user's certificate to a Kerberos
 principal name, PKINIT requires the direct encoding of the X.500
 name as a PrincipalName. In this case, the name-type of the
 principal name MUST be set to KRB_NT-X500-PRINCIPAL. This new
 name type is defined in RFC 1510bis as:

 KRB_NT_X500_PRINCIPAL 6

 For this type, the name-string MUST be set as follows:

 RFC2253Encode(DistinguishedName)

 as described above. When this name type is used, the principal's
 realm MUST be set to the certificate authority's distinguished
 name using the X500-RFC2253 realm name format described earlier in
 this section.

 Note that the same string may be represented using several different
 ASN.1 data types. As the result, the reverse conversion from an
 RFC2253-encoded principal name back to an X.500 name may not be
 unique and may result in an X.500 name that is not the same as the
 original X.500 name found in the client certificate.

 RFC 1510bis describes an alternate encoding of an X.500 name into a
 realm name. However, as described in RFC 1510bis, the alternate
 encoding does not guarantee a unique mapping from a
 DistinguishedName inside a certificate into a realm name and
 similarly cannot be used to produce a unique principal name. PKINIT
 therefore uses an RFC 2253-based name mapping approach, as specified

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 252

 above.

 RFC 1510bis specifies the ASN.1 structure for PrincipalName as follows:

 PrincipalName ::= SEQUENCE {
 name-type[0] INTEGER,
 name-string[1] SEQUENCE OF GeneralString
 }

 The following rules relate to the matching of PrincipalNames
 with regard to the PKI name constraints for CAs as laid out in RFC
 2459 [12]. In order to be regarded as a match (for permitted and
 excluded name trees), the following MUST be satisfied.

 1. If the constraint is given as a user plus realm name, or
 as a client principal name plus realm name (as specified in
 RFC 1510bis), the realm name MUST be valid (see 2.a-d below)
 and the match MUST be exact, byte for byte.

 2. If the constraint is given only as a realm name, matching
 depends on the type of the realm:

 a. If the realm contains a colon (':') before any equal
 sign ('='), it is treated as a realm of type Other,
 and MUST match exactly, byte for byte.

 b. Otherwise, if the realm name conforms to rules regarding
 the format of DNS names, it is considered a realm name of
 type Domain. The constraint may be given as a realm
 name 'FOO.BAR', which matches any PrincipalName within
 the realm 'FOO.BAR' but not those in subrealms such as
 'CAR.FOO.BAR'. A constraint of the form '.FOO.BAR'
 matches PrincipalNames in subrealms of the form
 'CAR.FOO.BAR' but not the realm 'FOO.BAR' itself.

 c. Otherwise, the realm name is invalid and does not match
 under any conditions.

3.1.1. Encryption and Key Formats

 In the exposition below, we use the terms public key and private
 key generically. It should be understood that the term "public
 key" may be used to refer to either a public encryption key or a
 signature verification key, and that the term "private key" may be
 used to refer to either a private decryption key or a signature
 generation key. The fact that these are logically distinct does
 not preclude the assignment of bitwise identical keys for RSA
 keys.

 In the case of Diffie-Hellman, the key is produced from the agreed
 bit string as follows:

 * Truncate the bit string to the required length.
 * Apply the specific cryptosystem's random-to-key function.

 Appropriate key constraints for each valid cryptosystem are given
 in RFC 1510bis.

3.1.2. Algorithm Identifiers

 PKINIT does not define, but does permit, the algorithm identifiers
 listed below.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 253

3.1.2.1. Signature Algorithm Identifiers

 The following signature algorithm identifiers specified in [8] and
 in [12] are used with PKINIT:

 sha-1WithRSAEncryption (RSA with SHA1)
 md5WithRSAEncryption (RSA with MD5)
 id-dsa-with-sha1 (DSA with SHA1)

3.1.2.2 Diffie-Hellman Key Agreement Algorithm Identifier

 The following algorithm identifier shall be used within the
 SubjectPublicKeyInfo data structure: dhpublicnumber

 This identifier and the associated algorithm parameters are
 specified in RFC 2459 [12].

3.1.2.3. Algorithm Identifiers for RSA Encryption

 These algorithm identifiers are used inside the EnvelopedData data
 structure, for encrypting the temporary key with a public key:

 rsaEncryption (RSA encryption, PKCS#1 v1.5)
 id-RSAES-OAEP (RSA encryption, PKCS#1 v2.0)

 Both of the above RSA encryption schemes are specified in [13].
 Currently, only PKCS#1 v1.5 is specified by CMS [8], although the
 CMS specification says that it will likely include PKCS#1 v2.0 in
 the future. (PKCS#1 v2.0 addresses adaptive chosen ciphertext
 vulnerability discovered in PKCS#1 v1.5.)

3.1.2.4. Algorithm Identifiers for Encryption with Secret Keys

 These algorithm identifiers are used inside the EnvelopedData data
 structure in the PKINIT Reply, for encrypting the reply key with the
 temporary key:
 des-ede3-cbc (3-key 3-DES, CBC mode)
 rc2-cbc (RC2, CBC mode)

 The full definition of the above algorithm identifiers and their
 corresponding parameters (an IV for block chaining) is provided in
 the CMS specification [8].

3.2. Public Key Authentication

 Implementation of the changes in this section is REQUIRED for
 compliance with PKINIT.

3.2.1. Client Request

 Public keys may be signed by some certification authority (CA), or
 they may be maintained by the KDC in which case the KDC is the
 trusted authority. Note that the latter mode does not require the
 use of certificates.

 The initial authentication request is sent as per RFC 1510bis, except
 that a preauthentication field containing data signed by the user's
 private key accompanies the request:

 PA-PK-AS-REQ ::= SEQUENCE {
 -- PA TYPE 14
 signedAuthPack [0] ContentInfo,
 -- Defined in CMS [8];

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 254

 -- SignedData OID is {pkcs7 2}
 -- AuthPack (below) defines the
 -- data that is signed.
 trustedCertifiers [1] SEQUENCE OF TrustedCas OPTIONAL,
 -- This is a list of CAs that the
 -- client trusts and that certify
 -- KDCs.
 kdcCert [2] IssuerAndSerialNumber OPTIONAL
 -- As defined in CMS [8];
 -- specifies a particular KDC
 -- certificate if the client
 -- already has it.
 encryptionCert [3] IssuerAndSerialNumber OPTIONAL
 -- For example, this may be the
 -- client's Diffie-Hellman
 -- certificate, or it may be the
 -- client's RSA encryption
 -- certificate.
 }

 TrustedCas ::= CHOICE {
 principalName [0] KerberosName,
 -- as defined below
 caName [1] Name
 -- fully qualified X.500 name
 -- as defined by X.509
 issuerAndSerial [2] IssuerAndSerialNumber
 -- Since a CA may have a number of
 -- certificates, only one of which
 -- a client trusts
 }

 The type of the ContentInfo in the signedAuthPack is SignedData.
 Its usage is as follows:

 The SignedData data type is specified in the Cryptographic
 Message Syntax, a product of the S/MIME working group of the
 IETF. The following describes how to fill in the fields of
 this data:

 1. The encapContentInfo field MUST contain the PKAuthenticator
 and, optionally, the client's Diffie Hellman public value.

 a. The eContentType field MUST contain the OID value for
 pkauthdata: iso (1) org (3) dod (6) internet (1)
 security (5) kerberosv5 (2) pkinit (3) pkauthdata (1)

 b. The eContent field is data of the type AuthPack (below).

 2. The signerInfos field contains the signature of AuthPack.

 3. The Certificates field, when non-empty, contains the client's
 certificate chain. If present, the KDC uses the public key
 from the client's certificate to verify the signature in the
 request. Note that the client may pass different certificate
 chains that are used for signing or for encrypting. Thus,
 the KDC may utilize a different client certificate for
 signature verification than the one it uses to encrypt the
 reply to the client. For example, the client may place a
 Diffie-Hellman certificate in this field in order to convey
 its static Diffie Hellman certificate to the KDC to enable
 static-ephemeral Diffie-Hellman mode for the reply; in this
 case, the client does NOT place its public value in the

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 255

 AuthPack (defined below). As another example, the client may
 place an RSA encryption certificate in this field. However,
 there MUST always be (at least) a signature certificate.

 4. When a DH key is being used, the public exponent is provided
 in the subjectPublicKey field of the SubjectPublicKeyInfo and
 the DH parameters are supplied as a DomainParameters in the
 AlgorithmIdentitfier parameters. The DH paramaters SHOULD be
 chosen from the First and Second defined Oakley Groups [The
 Internet Key Exchange (IKE) RFC-2409], if a server will not
 accept either of these groups, it will respond with a krb-
 error of KDC_ERR_KEY_TOO_WEAK and the e_data will contain a
 DomainParameters with appropriate parameters for the client
 to use.

 5. The KDC may wish to use cached Diffie-Hellman parameters
 (see Section 3.2.2, KDC Response). To indicate acceptance
 of cached parameters, the client sends zero in the nonce
 field of the PKAuthenticator. Zero is not a valid value
 for this field under any other circumstances. If cached
 parameters are used, the client and the KDC MUST perform
 key derivation (for the appropriate cryptosystem) on the
 resulting encryption key, as specified in RFC 1510bis. (With
 a zero nonce, message binding is performed using the nonce
 in the main request, which must be encrypted using the
 encapsulated reply key.)

 AuthPack ::= SEQUENCE {
 pkAuthenticator [0] PKAuthenticator,
 clientPublicValue [1] SubjectPublicKeyInfo OPTIONAL
 -- if client is using Diffie-Hellman
 -- (ephemeral-ephemeral only)
 }

 PKAuthenticator ::= SEQUENCE {
 cusec [0] INTEGER,
 -- for replay prevention as in RFC 1510bis
 ctime [1] KerberosTime,
 -- for replay prevention as in RFC 1510bis
 nonce [2] INTEGER,
 -- zero only if client will accept
 -- cached DH parameters from KDC;
 -- must be non-zero otherwise
 pachecksum [3] Checksum
 -- Checksum over KDC-REQ-BODY
 -- Defined by Kerberos spec;
 -- must be unkeyed, e.g. sha1 or rsa-md5
 }

 SubjectPublicKeyInfo ::= SEQUENCE {
 algorithm AlgorithmIdentifier,
 -- dhKeyAgreement
 subjectPublicKey BIT STRING
 -- for DH, equals
 -- public exponent (INTEGER encoded
 -- as payload of BIT STRING)
 } -- as specified by the X.509 recommendation [7]

 AlgorithmIdentifier ::= SEQUENCE {
 algorithm OBJECT IDENTIFIER,
 -- for dhKeyAgreement, this is
 -- { iso (1) member-body (2) US (840)
 -- ansi-x942(10046) number-type(2) 1 }

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 256

 -- from RFC 2459 [12]
 parameters ANY DEFINED by algorithm OPTIONAL
 -- for dhKeyAgreement, this is
 -- DomainParameters
 } -- as specified by the X.509 recommendation [7]

 DomainParameters ::= SEQUENCE {
 p INTEGER, -- odd prime, p=jq +1
 g INTEGER, -- generator, g
 q INTEGER, -- factor of p-1
 j INTEGER OPTIONAL, -- subgroup factor
 validationParms ValidationParms OPTIONAL
 } -- as defined in RFC 2459 [12]

 ValidationParms ::= SEQUENCE {
 seed BIT STRING,
 -- seed for the system parameter
 -- generation process
 pgenCounter INTEGER
 -- integer value output as part
 -- of the of the system parameter
 -- prime generation process
 } -- as defined in RFC 2459 [12]

 If the client passes an issuer and serial number in the request,
 the KDC is requested to use the referred-to certificate. If none
 exists, then the KDC returns an error of type
 KDC_ERR_CERTIFICATE_MISMATCH. It also returns this error if, on the
 other hand, the client does not pass any trustedCertifiers,
 believing that it has the KDC's certificate, but the KDC has more
 than one certificate. The KDC should include information in the
 KRB-ERROR message that indicates the KDC certificate(s) that a
 client may utilize. This data is specified in the e-data, which
 is defined in RFC 1510bis revisions as a SEQUENCE of TypedData:

 TypedData ::= SEQUENCE {
 data-type [0] INTEGER,
 data-value [1] OCTET STRING,
 } -- per Kerberos RFC 1510bis

 where:
 data-type = TD-PKINIT-CMS-CERTIFICATES = 101
 data-value = CertificateSet // as specified by CMS [8]

 The PKAuthenticator carries information to foil replay attacks, to
 bind the pre-authentication data to the KDC-REQ-BODY, and to bind the
 request and response. The PKAuthenticator is signed with the client's
 signature key.
3.2.2. KDC Response

 Upon receipt of the AS_REQ with PA-PK-AS-REQ pre-authentication
 type, the KDC attempts to verify the user's certificate chain
 (userCert), if one is provided in the request. This is done by
 verifying the certification path against the KDC's policy of
 legitimate certifiers.

 If the client's certificate chain contains no certificate signed by
 a CA trusted by the KDC, then the KDC sends back an error message
 of type KDC_ERR_CANT_VERIFY_CERTIFICATE. The accompanying e-data
 is a SEQUENCE of one TypedData (with type TD-TRUSTED-CERTIFIERS=104)
 whose data-value is an OCTET STRING which is the DER encoding of

 TrustedCertifiers ::= SEQUENCE OF PrincipalName

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 257

 -- X.500 name encoded as a principal name
 -- see Section 3.1

 If while verifying a certificate chain the KDC determines that the
 signature on one of the certificates in the CertificateSet from
 the signedAuthPack fails verification, then the KDC returns an
 error of type KDC_ERR_INVALID_CERTIFICATE. The accompanying
 e-data is a SEQUENCE of one TypedData (with type
 TD-CERTIFICATE-INDEX=105) whose data-value is an OCTET STRING
 which is the DER encoding of the index into the CertificateSet
 ordered as sent by the client.

 CertificateIndex ::= INTEGER
 -- 0 = 1st certificate,
 -- (in order of encoding)
 -- 1 = 2nd certificate, etc

 The KDC may also check whether any of the certificates in the
 client's chain has been revoked. If one of the certificates has
 been revoked, then the KDC returns an error of type
 KDC_ERR_REVOKED_CERTIFICATE; if such a query reveals that
 the certificate's revocation status is unknown or not
 available, then if required by policy, the KDC returns the
 appropriate error of type KDC_ERR_REVOCATION_STATUS_UNKNOWN or
 KDC_ERR_REVOCATION_STATUS_UNAVAILABLE. In any of these three
 cases, the affected certificate is identified by the accompanying
 e-data, which contains a CertificateIndex as described for
 KDC_ERR_INVALID_CERTIFICATE.

 If the certificate chain can be verified, but the name of the
 client in the certificate does not match the client's name in the
 request, then the KDC returns an error of type
 KDC_ERR_CLIENT_NAME_MISMATCH. There is no accompanying e-data
 field in this case.

 Even if all succeeds, the KDC may--for policy reasons--decide not
 to trust the client. In this case, the KDC returns an error message
 of type KDC_ERR_CLIENT_NOT_TRUSTED. One specific case of this is
 the presence or absence of an Enhanced Key Usage (EKU) OID within
 the certificate extensions. The rules regarding acceptability of
 an EKU sequence (or the absence of any sequence) are a matter of
 local policy. For the benefit of implementers, we define a PKINIT
 EKU OID as the following: iso (1) org (3) dod (6) internet (1)
 security (5) kerberosv5 (2) pkinit (3) pkekuoid (2).

 If a trust relationship exists, the KDC then verifies the client's
 signature on AuthPack. If that fails, the KDC returns an error
 message of type KDC_ERR_INVALID_SIG. Otherwise, the KDC uses the
 timestamp (ctime and cusec) in the PKAuthenticator to assure that
 the request is not a replay. The KDC also verifies that its name
 is specified in the PKAuthenticator.

 If the clientPublicValue field is filled in, indicating that the
 client wishes to use Diffie-Hellman key agreement, then the KDC
 checks to see that the parameters satisfy its policy. If they do
 not (e.g., the prime size is insufficient for the expected
 encryption type), then the KDC sends back an error message of type
 KDC_ERR_KEY_TOO_WEAK, with an e-data containing a structure of
 type DomainParameters with appropriate DH parameters for the client
 to retry the request. Otherwise, it generates its own public and
 private values for the response.

 The KDC also checks that the timestamp in the PKAuthenticator is

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 258

 within the allowable window and that the principal name and realm
 are correct. If the local (server) time and the client time in the
 authenticator differ by more than the allowable clock skew, then the
 KDC returns an error message of type KRB_AP_ERR_SKEW as defined in
 RFC 1510bis.

 Assuming no errors, the KDC replies as per RFC 1510bis, except as
 follows. The user's name in the ticket is determined by the
 following decision algorithm:

 1. If the KDC has a mapping from the name in the certificate
 to a Kerberos name, then use that name.
 Else
 2. If the certificate contains the SubjectAltName extension
 and the local KDC policy defines a mapping from the
 SubjectAltName to a Kerberos name, then use that name.
 Else
 3. Use the name as represented in the certificate, mapping
 as necessary (e.g., as per RFC 2253 for X.500 names). In
 this case the realm in the ticket MUST be the name of the
 certifier that issued the user's certificate.

 Note that a principal name may be carried in the subjectAltName
 field of a certificate. This name may be mapped to a principal
 record in a security database based on local policy, for example
 the subjectAltName may be kerberos/principal@realm format. In
 this case the realm name is not that of the CA but that of the
 local realm doing the mapping (or some realm name chosen by that
 realm).

 If a non-KDC X.509 certificate contains the principal name within
 the subjectAltName version 3 extension, that name may utilize
 KerberosName as defined below, or, in the case of an S/MIME
 certificate [14], may utilize the email address. If the KDC
 is presented with an S/MIME certificate, then the email address
 within subjectAltName will be interpreted as a principal and realm
 separated by the "@" sign, or as a name that needs to be mapped
 according to local policy. If the resulting name does not correspond
 to a registered principal name, then the principal name is formed as
 defined in section 3.1.

 The trustedCertifiers field contains a list of certification
 authorities trusted by the client, in the case that the client does
 not possess the KDC's public key certificate. If the KDC has no
 certificate signed by any of the trustedCertifiers, then it returns
 an error of type KDC_ERR_KDC_NOT_TRUSTED.

 KDCs should try to (in order of preference):
 1. Use the KDC certificate identified by the serialNumber included
 in the client's request.
 2. Use a certificate issued to the KDC by one of the client's
 trustedCertifier(s);
 If the KDC is unable to comply with any of these options, then the
 KDC returns an error message of type KDC_ERR_KDC_NOT_TRUSTED to the
 client.

 The KDC encrypts the reply not with the user's long-term key, but
 with the Diffie Hellman derived key or a random key generated
 for this particular response which is carried in the padata field of
 the TGS-REP message.

 PA-PK-AS-REP ::= CHOICE {
 -- PA TYPE 15

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 259

 dhSignedData [0] ContentInfo,
 -- Defined in CMS [8] and used only with
 -- Diffie-Hellman key exchange (if the
 -- client public value was present in the
 -- request).
 -- SignedData OID is {pkcs7 2}
 -- This choice MUST be supported
 -- by compliant implementations.
 encKeyPack [1] ContentInfo
 -- Defined in CMS [8].
 -- The temporary key is encrypted
 -- using the client public key
 -- key.
 -- EnvelopedData OID is {pkcs7 3}
 -- SignedReplyKeyPack, encrypted
 -- with the temporary key, is also
 -- included.
 }

 The type of the ContentInfo in the dhSignedData is SignedData.
 Its usage is as follows:

 When the Diffie-Hellman option is used, dhSignedData in
 PA-PK-AS-REP provides authenticated Diffie-Hellman parameters
 of the KDC. The reply key used to encrypt part of the KDC reply
 message is derived from the Diffie-Hellman exchange:

 1. Both the KDC and the client calculate a secret value
 (g^ab mod p), where a is the client's private exponent and
 b is the KDC's private exponent.

 2. Both the KDC and the client take the first N bits of this
 secret value and convert it into a reply key. N depends on
 the reply key type.

 a. For example, if the reply key is DES, N=64 bits, where
 some of the bits are replaced with parity bits, according
 to FIPS PUB 74.

 b. As another example, if the reply key is (3-key) 3-DES,
 N=192 bits, where some of the bits are replaced with
 parity bits, according to FIPS PUB 74.

 3. The encapContentInfo field MUST contain the KdcDHKeyInfo as
 defined below.

 a. The eContentType field MUST contain the OID value for
 pkdhkeydata: iso (1) org (3) dod (6) internet (1)
 security (5) kerberosv5 (2) pkinit (3) pkdhkeydata (2)

 b. The eContent field is data of the type KdcDHKeyInfo
 (below).

 4. The certificates field MUST contain the certificates
 necessary for the client to establish trust in the KDC's
 certificate based on the list of trusted certifiers sent by
 the client in the PA-PK-AS-REQ. This field may be empty if
 the client did not send to the KDC a list of trusted
 certifiers (the trustedCertifiers field was empty, meaning
 that the client already possesses the KDC's certificate).

 5. The signerInfos field is a SET that MUST contain at least
 one member, since it contains the actual signature.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 260

 6. If the client indicated acceptance of cached Diffie-Hellman
 parameters from the KDC, and the KDC supports such an option
 (for performance reasons), the KDC should return a zero in
 the nonce field and include the expiration time of the
 parameters in the dhKeyExpiration field. If this time is
 exceeded, the client SHOULD NOT use the reply. If the time
 is absent, the client SHOULD NOT use the reply and MAY
 resubmit a request with a non-zero nonce (thus indicating
 non-acceptance of cached Diffie-Hellman parameters). As
 indicated above in Section 3.2.1, Client Request, when the
 KDC uses cached parameters, the client and the KDC MUST
 perform key derivation (for the appropriate cryptosystem)
 on the resulting encryption key, as specified in RFC 1510bis.

 KdcDHKeyInfo ::= SEQUENCE {
 -- used only when utilizing Diffie-Hellman
 subjectPublicKey [0] BIT STRING,
 -- Equals public exponent (g^a mod p)
 -- INTEGER encoded as payload of
 -- BIT STRING
 nonce [1] INTEGER,
 -- Binds response to the request
 -- Exception: Set to zero when KDC
 -- is using a cached DH value
 dhKeyExpiration [2] KerberosTime OPTIONAL
 -- Expiration time for KDC's cached
 -- DH value
 }

 The type of the ContentInfo in the encKeyPack is EnvelopedData. Its
 usage is as follows:

 The EnvelopedData data type is specified in the Cryptographic
 Message Syntax, a product of the S/MIME working group of the
 IETF. It contains a temporary key encrypted with the PKINIT
 client's public key. It also contains a signed and encrypted
 reply key.

 1. The originatorInfo field is not required, since that
 information may be presented in the signedData structure
 that is encrypted within the encryptedContentInfo field.

 2. The optional unprotectedAttrs field is not required for
 PKINIT.

 3. The recipientInfos field is a SET which MUST contain exactly
 one member of the KeyTransRecipientInfo type for encryption
 with a public key.

 a. The encryptedKey field (in KeyTransRecipientInfo)
 contains the temporary key which is encrypted with the
 PKINIT client's public key.

 4. The encryptedContentInfo field contains the signed and
 encrypted reply key.

 a. The contentType field MUST contain the OID value for
 id-signedData: iso (1) member-body (2) us (840)
 rsadsi (113549) pkcs (1) pkcs7 (7) signedData (2)

 b. The encryptedContent field is encrypted data of the CMS
 type signedData as specified below.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 261

 i. The encapContentInfo field MUST contains the
 ReplyKeyPack.

 * The eContentType field MUST contain the OID value
 for pkrkeydata: iso (1) org (3) dod (6) internet (1)
 security (5) kerberosv5 (2) pkinit (3) pkrkeydata (3)

 * The eContent field is data of the type ReplyKeyPack
 (below).

 ii. The certificates field MUST contain the certificates
 necessary for the client to establish trust in the
 KDC's certificate based on the list of trusted
 certifiers sent by the client in the PA-PK-AS-REQ.
 This field may be empty if the client did not send
 to the KDC a list of trusted certifiers (the
 trustedCertifiers field was empty, meaning that the
 client already possesses the KDC's certificate).

 iii. The signerInfos field is a SET that MUST contain at
 least one member, since it contains the actual
 signature.

 ReplyKeyPack ::= SEQUENCE {
 -- not used for Diffie-Hellman
 replyKey [0] EncryptionKey,
 -- from RFC 1510bis
 -- used to encrypt main reply
 -- ENCTYPE is at least as strong as
 -- ENCTYPE of session key
 nonce [1] INTEGER,
 -- binds response to the request
 -- must be same as the nonce
 -- passed in the PKAuthenticator
 }

3.2.2.1. Use of transited Field

 Since each certifier in the certification path of a user's
 certificate is equivalent to a separate Kerberos realm, the name
 of each certifier in the certificate chain MUST be added to the
 transited field of the ticket. The format of these realm names is
 defined in Section 3.1 of this document. If applicable, the
 transit-policy-checked flag should be set in the issued ticket.

3.2.2.2. Kerberos Names in Certificates

 The KDC's certificate(s) MUST bind the public key(s) of the KDC to
 a name derivable from the name of the realm for that KDC. X.509
 certificates MUST contain the principal name of the KDC (defined in
 RFC 1510bis) as the SubjectAltName version 3 extension. Below is
 the definition of this version 3 extension, as specified by the
 X.509 standard:

 subjectAltName EXTENSION ::= {
 SYNTAX GeneralNames
 IDENTIFIED BY id-ce-subjectAltName
 }

 GeneralNames ::= SEQUENCE SIZE(1..MAX) OF GeneralName

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 262

 GeneralName ::= CHOICE {
 otherName [0] OtherName,
 ...
 }

 OtherName ::= SEQUENCE {
 type-id OBJECT IDENTIFIER,
 value [0] EXPLICIT ANY DEFINED BY type-id
 }

 For the purpose of specifying a Kerberos principal name, the value
 in OtherName MUST be a KerberosName, defined as follows:

 KerberosName ::= SEQUENCE {
 realm [0] Realm,
 principalName [1] PrincipalName
 }

 This specific syntax is identified within subjectAltName by setting
 the type-id in OtherName to krb5PrincipalName, where (from the
 Kerberos specification) we have

 krb5 OBJECT IDENTIFIER ::= { iso (1)
 org (3)
 dod (6)
 internet (1)
 security (5)
 kerberosv5 (2) }

 krb5PrincipalName OBJECT IDENTIFIER ::= { krb5 2 }

 (This specification may also be used to specify a Kerberos name
 within the user's certificate.) The KDC's certificate may be signed
 directly by a CA, or there may be intermediaries if the server resides
 within a large organization, or it may be unsigned if the client
 indicates possession (and trust) of the KDC's certificate.

 Note that the KDC's principal name has the instance equal to the
 realm, and those fields should be appropriately set in the realm
 and principalName fields of the KerberosName. This is the case
 even when obtaining a cross-realm ticket using PKINIT.

3.2.3. Client Extraction of Reply

 The client then extracts the random key used to encrypt the main
 reply. This random key (in encPaReply) is encrypted with either the
 client's public key or with a key derived from the DH values
 exchanged between the client and the KDC. The client uses this
 random key to decrypt the main reply, and subsequently proceeds as
 described in RFC 1510bis.

3.2.4. Required Algorithms

 Not all of the algorithms in the PKINIT protocol specification have
 to be implemented in order to comply with the proposed standard.
 Below is a list of the required algorithms:

 * Diffie-Hellman public/private key pairs
 * utilizing Diffie-Hellman ephemeral-ephemeral mode
 * SHA1 digest and RSA for signatures
 * SHA1 digest for the Checksum in the PKAuthenticator

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 263

 * using Kerberos checksum type 'sha1'
 * 3-key triple DES keys derived from the Diffie-Hellman Exchange
 * 3-key triple DES Temporary and Reply keys

4. Logistics and Policy

 This section describes a way to define the policy on the use of
 PKINIT for each principal and request.

 The KDC is not required to contain a database record for users
 who use public key authentication. However, if these users are
 registered with the KDC, it is recommended that the database record
 for these users be modified to an additional flag in the attributes
 field to indicate that the user should authenticate using PKINIT.
 If this flag is set and a request message does not contain the
 PKINIT preauthentication field, then the KDC sends back as error of
 type KDC_ERR_PREAUTH_REQUIRED indicating that a preauthentication
 field of type PA-PK-AS-REQ must be included in the request.

5. Security Considerations

 PKINIT raises a few security considerations, which we will address
 in this section.

 First of all, PKINIT extends the cross-realm model to the public
 key infrastructure. Anyone using PKINIT must be aware of how the
 certification infrastructure they are linking to works.

 Also, as in standard Kerberos, PKINIT presents the possibility of
 interactions between different cryptosystems of varying strengths,
 and this now includes public-key cryptosystems. Many systems, for
 instance, allow the use of 512-bit public keys. Using such keys
 to wrap data encrypted under strong conventional cryptosystems,
 such as triple-DES, may be inappropriate.

 Care should be taken in how certificates are chosen for the purposes
 of authentication using PKINIT. Some local policies require that key
 escrow be applied for certain certificate types. People deploying
 PKINIT should be aware of the implications of using certificates that
 have escrowed keys for the purposes of authentication.

 As described in Section 3.2, PKINIT allows for the caching of the
 Diffie-Hellman parameters on the KDC side, for performance reasons.
 For similar reasons, the signed data in this case does not vary from
 message to message, until the cached parameters expire. Because of
 the persistence of these parameters, the client and the KDC are to
 use the appropriate key derivation measures (as described in RFC
 1510bis) when using cached DH parameters.

 PKINIT does not provide for a "return routability test" to prevent
 attackers from mounting a denial of service attack on the KDC by
 causing it to perform needless expensive cryptographic operations.
 Strictly speaking, this is also true of base Kerberos, although the
 potential cost is not as great in base Kerberos, because it does
 not make use of public key cryptography.

 Lastly, PKINIT calls for randomly generated keys for conventional
 cryptosystems. Many such systems contain systematically "weak"
 keys. For recommendations regarding these weak keys, see RFC
 1510bis.

6. Transport Issues

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 264

 Certificate chains can potentially grow quite large and span several
 UDP packets; this in turn increases the probability that a Kerberos
 message involving PKINIT extensions will be broken in transit. In
 light of the possibility that the Kerberos specification will
 require KDCs to accept requests using TCP as a transport mechanism,
 we make the same recommendation with respect to the PKINIT
 extensions as well.

7. Bibliography

 [1] J. Kohl, C. Neuman. The Kerberos Network Authentication Service
 (V5). Request for Comments 1510.

 [2] B.C. Neuman, Theodore Ts'o. Kerberos: An Authentication Service
 for Computer Networks, IEEE Communications, 32(9):33-38. September
 1994.

 [3] M. Sirbu, J. Chuang. Distributed Authentication in Kerberos
 Using Public Key Cryptography. Symposium On Network and Distributed
 System Security, 1997.

 [4] B. Cox, J.D. Tygar, M. Sirbu. NetBill Security and Transaction
 Protocol. In Proceedings of the USENIX Workshop on Electronic
 Commerce, July 1995.

 [5] T. Dierks, C. Allen. The TLS Protocol, Version 1.0
 Request for Comments 2246, January 1999.

 [6] B.C. Neuman, Proxy-Based Authorization and Accounting for
 Distributed Systems. In Proceedings of the 13th International
 Conference on Distributed Computing Systems, May 1993.

 [7] ITU-T (formerly CCITT) Information technology - Open Systems
 Interconnection - The Directory: Authentication Framework
 Recommendation X.509 ISO/IEC 9594-8

 [8] R. Housley. Cryptographic Message Syntax.
 draft-ietf-smime-cms-13.txt, April 1999, approved for publication
 as RFC.

 [9] PKCS #7: Cryptographic Message Syntax Standard,
 An RSA Laboratories Technical Note Version 1.5
 Revised November 1, 1993

 [10] R. Rivest, MIT Laboratory for Computer Science and RSA Data
 Security, Inc. A Description of the RC2(r) Encryption Algorithm
 March 1998.
 Request for Comments 2268.

 [11] M. Wahl, S. Kille, T. Howes. Lightweight Directory Access
 Protocol (v3): UTF-8 String Representation of Distinguished Names.
 Request for Comments 2253.

 [12] R. Housley, W. Ford, W. Polk, D. Solo. Internet X.509 Public
 Key Infrastructure, Certificate and CRL Profile, January 1999.
 Request for Comments 2459.

 [13] B. Kaliski, J. Staddon. PKCS #1: RSA Cryptography
 Specifications, October 1998. Request for Comments 2437.

 [14] S. Dusse, P. Hoffman, B. Ramsdell, J. Weinstein. S/MIME
 Version 2 Certificate Handling, March 1998. Request for
 Comments 2312.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 265

 [15] M. Wahl, T. Howes, S. Kille. Lightweight Directory Access
 Protocol (v3), December 1997. Request for Comments 2251.

 [16] ITU-T (formerly CCITT) Information Processing Systems - Open
 Systems Interconnection - Specification of Abstract Syntax Notation
 One (ASN.1) Rec. X.680 ISO/IEC 8824-1

 [17] PKCS #3: Diffie-Hellman Key-Agreement Standard, An RSA
 Laboratories Technical Note, Version 1.4, Revised November 1, 1993.

8. Acknowledgements

 Some of the ideas on which this proposal is based arose during
 discussions over several years between members of the SAAG, the IETF
 CAT working group, and the PSRG, regarding integration of Kerberos
 and SPX. Some ideas have also been drawn from the DASS system.
 These changes are by no means endorsed by these groups. This is an
 attempt to revive some of the goals of those groups, and this
 proposal approaches those goals primarily from the Kerberos
 perspective. Lastly, comments from groups working on similar ideas
 in DCE have been invaluable.

9. Expiration Date

 This draft expires June 25, 2002.

10. Authors

 Brian Tung
 Clifford Neuman
 USC Information Sciences Institute
 4676 Admiralty Way Suite 1001
 Marina del Rey CA 90292-6695
 Phone: +1 310 822 1511
 E-mail: {brian, bcn}@isi.edu

 Matthew Hur
 Cisco Systems
 2901 Third Avenue
 Seattle WA 98121
 Phone: (206) 256-3197
 E-Mail: mhur@cisco.com

 Ari Medvinsky
 Keen.com, Inc.
 150 Independence Drive
 Menlo Park CA 94025
 Phone: +1 650 289 3134
 E-mail: ari@keen.com

 Sasha Medvinsky
 Motorola
 6450 Sequence Drive
 San Diego, CA 92121
 +1 858 404 2367
 E-mail: smedvinsky@gi.com

 John Wray
 Iris Associates, Inc.
 5 Technology Park Dr.
 Westford, MA 01886
 E-mail: John_Wray@iris.com

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 266

 Jonathan Trostle
 Cisco Systems
 170 W. Tasman Dr.
 San Jose, CA 95134
 E-mail: jtrostle@cisco.com

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 267

Appendix IV PKCROSS Specification

The text in this section has been removed because it is not within the scope of IPCablecom 1.0, but the appendix
heading was retained to maintain appendix numbering.

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 268

Appendix V Example of MMH Algorithm Implementation (Informative)

This appendix gives an example implementation of the MMH MAC algorithm. There may be other implementations
that have advantages over this example in particular operating environments. This example is for informational
purposes only and is meant to clarify the specification.

The example implementation uses the term “MMH16” for the case where the MAC length is 2 octets and “MMH32”
for the case where the length is 4 octets.

A main program is included for exercising the example implementation. The output produced by the program is
included.

/*
 Demo of IPCablecom MMH16 and MMH32 MAC algorithms.

 This program has been tested using Microsoft C/C++ Version 5.0.
 It is believed to port easily to other compilers, but this has
 not been tested. When porting, be sure to pick the definitions
 for int16, int32, uint16, and uint32 carefully.
*/

#include <stdio.h>

/*
Define signed and unsigned integers having 16 and 32 bits.
This is machine/compiler dependent, so pick carefully.
*/
typedef short int16;
typedef unsigned short uint16;
typedef int int32;
typedef unsigned int uint32;

/*
Define this symbol to see intermediate values.
Comment it out for clean display.
*/
#define VERBOSE

int32 reduceModF4(int32 x) {

 /*
 Routine to reduce an int32 value modulo F4, where F4 = 0x10001.
 Result is in range [0, 0x10000].
 */

 int32 xHi, xLo;

 /* Range of x is [0x80000000, 0x7fffffff]. */

 /*
 If x is negative, add a multiple of F4 to make it non-negative.
 This loop executes no more than two times.
 */
 while (x < 0) x += 0x7fff7fff;

 /* Range of x is [0, 0x7fffffff]. */

 /* Subtract high 16 bits of x from low 16 bits. */
 xHi = x >> 16;
 xLo = x & 0xffff;

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 269

 x = xLo - xHi;

 /* Range of x is [0xffff8001, 0x0000ffff]. */

 /* If x is negative, add F4. */
 if (x < 0) x += 0x10001;

 /* Range of x is [0, 0x10000]. */

 return x;
}

uint16 mmh16(
 unsigned char *message,
 unsigned char *key,
 unsigned char *pad,
 int msgLen
) {

 /*
 Compute and return the MMH16 MAC of the message using the
 indicated key and pad.

 The length of the message is msgLen bytes; msgLen must be even.

 The length of the key must be at least msgLen bytes.

 The length of the pad is two bytes. The pad must be freshly
 picked from a secure random source.
 */

 int16 x, y;
 uint16 u, v;
 int32 sum;
 int i;

 sum = 0;

 for (i=0; i<msgLen; i+=2) {

 /* Build a 16-bit factor from the next two message bytes. */
 x = *message++;
 x <<= 8;
 x |= *message++;

 /* Build a 16-bit factor from the next two key bytes. */
 y = *key++;
 y <<= 8;
 y |= *key++;

 /* Accumulate product of the factors into 32-bit sum */
 sum += (int32)x * (int32)y;

 #ifdef VERBOSE
 printf(" x %04x y %04x sum %08x\n", x & 0xffff, y & 0xffff, sum);
 #endif

 }

 /* Reduce sum modulo F4 and truncate to 16 bits. */
 u = (uint16) reduceModF4(sum);

 #ifdef VERBOSE

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 270

 printf(" sum mod F4, truncated to 16 bits: %04x\n", u & 0xffff);
 #endif

 /* Build the pad variable from the two pad bytes */
 v = *pad++;
 v <<= 8;
 v |= *pad;

 #ifdef VERBOSE
 printf(" pad variable: %04x\n", v & 0xffff);
 #endif

 /* Accumulate pad variable, truncate to 16 bits */
 u = (uint16)(u + v);

 #ifdef VERBOSE
 printf(" mmh16 value: %04x\n", u & 0xffff);
 #endif

 return u;
}

uint32 mmh32(
 unsigned char *message,
 unsigned char *key,
 unsigned char *pad,
 int msgLen
) {

 /*
 Compute and return the MMH32 MAC of the message using the
 indicated key and pad.

 The length of the message is msgLen bytes; msgLen must be even.

 The length of the key must be at least (msgLen + 2) bytes.

 The length of the pad is four bytes. The pad must be freshly
 picked from a secure random source.
 */

 uint16 x, y;
 uint32 sum;

 x = mmh16(message, key, pad, msgLen);
 y = mmh16(message, key+2, pad+2, msgLen);
 sum = x;
 sum <<= 16;
 sum |= y;

 return sum;
}

void show(char *name, unsigned char *src, int nbytes) {

 /*
 Routine to display a byte array, in normal or reverse order
 */

 int i;
 enum {

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 271

 BYTES_PER_LINE = 16
 };

 if (name) printf("%s", name);

 for (i=0; i<nbytes; i++) {
 if ((i % BYTES_PER_LINE) == 0) printf("\n");
 printf("%02x ", src[i]);
 }
 printf("\n");
}

int main() {

 uint16 mac16;
 uint32 mac32;

 unsigned char message[] = {
 0x4e, 0x6f, 0x77, 0x20, 0x69, 0x73, 0x20, 0x74, 0x68,
 0x65, 0x20, 0x74, 0x69, 0x6d, 0x65, 0x2e,
 };

 unsigned char key[] = {
 0x35, 0x2c, 0xcf, 0x84, 0x95, 0xef, 0xd7, 0xdf, 0xb8,
 0xf5, 0x74, 0x05, 0x95, 0xeb, 0x98, 0xd6, 0xeb, 0x98,
 };

 unsigned char pad16[] = {
 0xae, 0x07,
 };

 unsigned char pad32[] = {
 0xbd, 0xe1, 0x89, 0x7b,
 };

 unsigned char macBuf[4];

 printf("Example of MMH16 computation\n");
 show("message", message, sizeof(message));
 show("key", key, sizeof(message));
 show("pad", pad16, 2);

 mac16 = mmh16(message, key, pad16, sizeof(message));
 macBuf[1] = (unsigned char)mac16; mac16 >>= 8;
 macBuf[0] = (unsigned char)mac16;

 show("MMH16 MAC", macBuf, 2);
 printf("\n");

 printf("Example of MMH32 computation\n");
 show("message", message, sizeof(message));
 show("key", key, sizeof(message)+2);
 show("pad", pad32, 4);

 mac32 = mmh32(message, key, pad32, sizeof(message));
 macBuf[3] = (unsigned char)mac32; mac32 >>= 8;
 macBuf[2] = (unsigned char)mac32; mac32 >>= 8;
 macBuf[1] = (unsigned char)mac32; mac32 >>= 8;
 macBuf[0] = (unsigned char)mac32;

 show("MMH32 MAC", macBuf, 4);
 printf("\n");

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 272

 return 0;
}

Here is the output produced by the program:

Example of MMH16 computation
message
4e 6f 77 20 69 73 20 74 68 65 20 74 69 6d 65 2e
key
35 2c cf 84 95 ef d7 df b8 f5 74 05 95 eb 98 d6
pad
ae 07
 x 4e6f y 352c sum 104a7614
 x 7720 y cf84 sum f9bac294
 x 6973 y 95ef sum ce0a23f1
 x 2074 y d7df sum c8f3d4fd
 x 6865 y b8f5 sum abfb55a6
 x 2074 y 7405 sum bab087ea
 x 696d y 95eb sum 8f00bff9
 x 652e y 98d6 sum 663aa46d
 sum mod F4, truncated to 16 bits: 3e33
 pad variable: ae07
 mmh16 value: ec3a
MMH16 MAC
ec 3a

Example of MMH32 computation
message
4e 6f 77 20 69 73 20 74 68 65 20 74 69 6d 65 2e
key
35 2c cf 84 95 ef d7 df b8 f5 74 05 95 eb 98 d6
eb 98
pad
bd e1 89 7b
 x 4e6f y 352c sum 104a7614
 x 7720 y cf84 sum f9bac294
 x 6973 y 95ef sum ce0a23f1
 x 2074 y d7df sum c8f3d4fd
 x 6865 y b8f5 sum abfb55a6
 x 2074 y 7405 sum bab087ea
 x 696d y 95eb sum 8f00bff9
 x 652e y 98d6 sum 663aa46d
 sum mod F4, truncated to 16 bits: 3e33
 pad variable: bde1
 mmh16 value: fc14
 x 4e6f y cf84 sum f125323c
 x 7720 y 95ef sum bfca091c
 x 6973 y d7df sum af427949
 x 2074 y b8f5 sum a640e84d
 x 6865 y 7405 sum d590b646
 x 2074 y 95eb sum c81e04c2
 x 696d y 98d6 sum 9da1dde0
 x 652e y eb98 sum 95912b30
 sum mod F4, truncated to 16 bits: 959f
 pad variable: 897b
 mmh16 value: 1f1a
MMH32 MAC
fc 14 1f 1a

ANSI/SCTE 24-10 2016 (R2022)

AMERICAN NATIONAL STANDARD © 2022 SCTE 273

Appendix VI Oakley Groups

PKINIT states that DH parameters SHOULD be taken from the first or second Oakley groups as defined in [26].
Additionally, this specification requires that DH groups are used exactly as defined in [26].

[26] defines several so-called “Oakley groups.” Only the first two are relevant to this specification. [26] requires
implementations to support the first group, and recommends that they support the second. This Appendix is included
because [26] does not give values of q (the p-1 factor) for the groups, and these are necessary in order to encode the
dhpublicnumber type used in the subjectPublicKeyInfo data structure in PKINIT.

The first two Oakley groups are defined as follows:

First Oakley Group:

Prime (p):
FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1
29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD
EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245
E485B576 625E7EC6 F44C42E9 A63A3620 FFFFFFFF FFFFFFFF

Generator (g or b):

2.

Factor (q):
7FFFFFFF FFFFFFFF E487ED51 10B4611A 62633145 C06E0E68
94812704 4533E63A 0105DF53 1D89CD91 28A5043C C71A026E
F7CA8CD9 E69D218D 98158536 F92F8A1B A7F09AB6 B6A8E122
F242DABB 312F3F63 7A262174 D31D1B10 7FFFFFFF FFFFFFFF

Second Oakley Group:

Prime (p):
FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1
29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD
EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245
E485B576 625E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED
EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE65381
FFFFFFFF FFFFFFFF

Generator (g or b):

2.

Factor (q):
7FFFFFFF FFFFFFFF E487ED51 10B4611A 62633145 C06E0E68
94812704 4533E63A 0105DF53 1D89CD91 28A5043C C71A026E
F7CA8CD9 E69D218D 98158536 F92F8A1B A7F09AB6 B6A8E122
F242DABB 312F3F63 7A262174 D31BF6B5 85FFAE5B 7A035BF6
F71C35FD AD44CFD2 D74F9208 BE258FF3 24943328 F67329C0
FFFFFFFF FFFFFFFF

	1 Scope and Introduction
	1.1 Purpose
	1.2 Scope
	1.2.1 Goals
	1.2.2 Assumptions
	1.2.3 Prerequisite

	1.3 Requirements and Conventions
	1.4 Document Overview

	2 References
	2.1 Normative References
	2.2 Informative References

	3 Terms and Definitions
	4 Abbreviations and Acronyms
	5 Architectural Overview of IPCablecom Security
	5.1 IPCablecom Reference Architecture
	5.1.1 HFC Network
	5.1.2 Call Management Server
	5.1.3 Functional Categories
	5.1.3.1 Device and Service Provisioning
	5.1.3.2 Dynamic Quality of Service
	5.1.3.3 Billing System Interfaces
	5.1.3.4 Call Signaling
	5.1.3.5 PSTN Interconnectivity
	5.1.3.6 CODEC Functionality and Media Stream Mapping
	5.1.3.7 Audio Server Services
	5.1.3.8 Electronic Surveillance

	5.2 Threats
	5.2.1 Theft of Network Services
	5.2.1.1 MTA Clones
	5.2.1.2 Other Clones
	5.2.1.3 Subscription Fraud
	5.2.1.4 Non-Payment for Voice Communications Services
	5.2.1.5 Protocol Attacks against an MTA
	5.2.1.6 Protocol Attacks against Other Network Elements
	5.2.1.7 Theft of Services Provided by the MTA
	5.2.1.7.1 Attacks

	5.2.1.8 MTA Moved to Another Network

	5.2.2 Bearer Channel Information Threats
	5.2.2.1 Attacks
	5.2.2.1.1 Off-line Cryptanalysis

	5.2.3 Signaling Channel Information Threats
	5.2.3.1 Attacks
	5.2.3.1.1 Caller ID
	5.2.3.1.2 Information with Marketing Value

	5.2.4 Service Disruption Threats
	5.2.4.1 Attacks
	5.2.4.1.1 Remote Interference

	5.2.5 Repudiation
	5.2.6 Threat Summary
	5.2.6.1 Primary Threats
	5.2.6.1.1 Theft of Service
	5.2.6.1.2 Bearer Channel Information Disclosure
	5.2.6.1.3 Signaling Information Disclosure

	5.2.6.2 Secondary Threats

	5.3 Security Architecture
	5.3.1 Overview of Security Interfaces
	5.3.2 Security Assumptions
	5.3.2.1 BPI+ CMTS Downstream Messages Are Trusted
	5.3.2.2 Non-Repudiation Not Supported
	5.3.2.3 Root Private Key Compromise Protection
	5.3.2.4 Limited Prevention of Denial-of-Service Attacks

	5.3.3 Susceptibility of Network Elements to Attack
	5.3.3.1 Managed IP Network
	5.3.3.2 MTA
	5.3.3.3 CMTS
	5.3.3.4 Voice Communications Network Servers are Untrusted Network Elements
	5.3.3.4.1 CMS
	5.3.3.4.2 RKS
	5.3.3.4.3 OSS, DHCP & TFTP Servers

	5.3.3.5 PSTN Gateways
	5.3.3.5.1 Media Gateway
	5.3.3.5.2 Signaling Gateway

	6 Security Mechanisms
	6.1 IPsec
	6.1.1 Overview
	6.1.2 IPCablecom Profile for IPsec ESP (Transport Mode)
	6.1.2.1 IPsec ESP Transform Identifiers
	6.1.2.2 IPsec ESP Authentication Algorithms
	6.1.2.3 Replay Protection
	6.1.2.4 Key Management Requirements

	6.2 Internet Key Exchange (IKE)
	6.2.1 Overview
	6.2.2 IPCablecom Profile for IKE
	6.2.2.1 First IKE Phase
	6.2.2.1.1 IKE Authentication with Signatures
	6.2.2.1.2 IKE Authentication with Public-Key Encryption
	6.2.2.1.3 IKE Authentication with Pre-Shared Keys

	6.2.2.2 Second IKE Phase
	6.2.2.3 Encryption Algorithms for IKE Exchanges
	6.2.2.4 Diffie-Hellman Groups

	6.3 SNMPv3
	6.3.1 SNMPv3 Transform Identifiers
	6.3.2 SNMPv3 Authentication Algorithms

	6.4 Kerberos / PKINIT
	6.4.1 Overview
	6.4.1.1 Kerberos Ticket Storage

	6.4.2 PKINIT Exchange
	6.4.2.1 PKINIT Profile for IPCablecom
	6.4.2.1.1 PKINIT Request
	6.4.2.1.2 PKINIT Reply
	6.4.2.1.2.1 PKINIT Error Messages
	6.4.2.1.2.1.1 Clock Skew Error

	6.4.2.1.3 Pre-Authenticator for Provisioning Server Location

	6.4.2.2 Profile for the Kerberos AS Request / AS Reply Messages
	6.4.2.3 Profile for Kerberos Tickets

	6.4.3 Symmetric Key AS Request / AS Reply Exchange
	6.4.3.1 Profile for the Symmetric Key AS Request / AS Reply Exchanges

	6.4.4 Kerberos TGS Request / TGS Reply Exchange
	6.4.4.1 TGS Request Profile
	6.4.4.2 TGS Reply Profile
	6.4.4.3 Error Reply

	6.4.5 Kerberos Server Locations and Naming Conventions
	6.4.5.1 Kerberos Realms
	6.4.5.2 KDC
	6.4.5.3 CMS
	6.4.5.4 Provisioning Server
	6.4.5.5 Names of Other Kerberized Services

	6.4.6 MTA Principal Names
	6.4.7 Mapping of MTA MAC Address to MTA FQDN
	6.4.7.1 MTA FQDN Request
	6.4.7.2 MTA FQDN Reply
	6.4.7.3 MTA FQDN Error

	6.4.8 Server Key Management Time Out Procedure
	6.4.9 Service Key Versioning
	6.4.10 Kerberos Cross-Realm Operation

	6.5 Kerberized Key Management
	6.5.1 Overview
	6.5.2 Kerberized Key Management Messages
	6.5.2.1 Rekey Messages
	6.5.2.2 IPCablecom Profile for KRB_AP_REQ / KRB_AP_REP Messages
	6.5.2.3 Error Handling
	6.5.2.3.1 Error Reply
	6.5.2.3.2 Clock Skew Error
	6.5.2.3.3 Handling Ticket Errors After a Wake Up
	6.5.2.3.3.1 KRB_AP_ERR_BADKEYVER after a Wake Up
	6.5.2.3.3.2 KRB_AP_ERR_SKEW After a Wake Up

	6.5.3 Kerberized IPsec
	6.5.3.1 Derivation of IPsec Keys
	6.5.3.2 Periodic Re-establishment of IPsec Security Associations
	6.5.3.2.1 Periodic Re-establishment of IPsec SAs at the Client
	6.5.3.2.2 Periodic Re-establishment of IPsec SAs at the Application Server

	6.5.3.3 Expiration of IPsec SAs
	6.5.3.4 Initial Establishment of IPsec SAs
	6.5.3.5 On-demand Establishment of IPsec SAs
	6.5.3.5.1 Client Loses an Outgoing IPsec SA
	6.5.3.5.2 Client Loses an Incoming IPsec SA
	6.5.3.5.3 Application Server Loses an Outgoing IPsec SA
	6.5.3.5.4 Application Server Loses an Incoming IPsec SA

	6.5.3.6 IPsec-Specific Errors Returned in KRB_ERROR

	6.5.4 Kerberized SNMPv3
	6.5.4.1 Derivation of SNMPv3 Keys
	6.5.4.2 Periodic Re-establishment of SNMPv3 Keys
	6.5.4.3 Expiration of SNMPv3 Keys
	6.5.4.4 Initial Establishment of SNMPv3 Keys
	6.5.4.5 Error Recovery
	6.5.4.5.1 SNMP Agent Wishes to Send with Missing SNMPv3 Keys
	6.5.4.5.2 SNMP Agent Receives with Missing SNMPv3 Keys
	6.5.4.5.3 SNMP Manager Wishes to Send with Missing SNMPv3 Keys

	6.5.4.6 SNMPv3-Specific Errors Returned in KRB_ERROR

	6.6 End-to-End Security for RTP
	6.7 End-to-End Security for RTCP
	6.8 BPI+

	7 Security Profile
	7.1 Device and Service Provisioning
	7.1.1 Device Provisioning
	7.1.1.1 Security Services
	7.1.1.1.1 MTA-DHCP Server
	7.1.1.1.2 MTA-SNMP Manager
	7.1.1.1.3 MTA-Provisioning Server, via TFTP Server

	7.1.1.2 Cryptographic Mechanisms
	7.1.1.2.1 Call Flows MTA-15, 16, 17: MTA-SNMP Manager: SNMP Inform/Get Requests/Responses
	7.1.1.2.2 Call Flow MTA-18: Provisioning Server-TFTP Server: Create MTA Config File
	7.1.1.2.3 Call Flows MTA-19, 20 and 21: Establish TFTP Server Location
	7.1.1.2.4 Call Flows MTA-22, 23: MTA-TFTP Server: TFTP Get/Get Response
	7.1.1.2.5 Security Flows
	7.1.1.2.5.1 Call Flows SEC-5,6: Get a Kerberos Ticket for the CMS
	7.1.1.2.5.2 Call Flows SEC-7,8,9: Establish IPsec SAs with the CMS

	7.1.1.3 Key Management
	7.1.1.3.1 MTA – SNMP Manager
	7.1.1.3.2 MTA – TFTP Server

	7.1.1.4 MTA Embedded Keys
	7.1.1.5 Summary Security Profile Matrix – Device Provisioning

	7.1.2 Subscriber Enrollment

	7.2 Quality of Service (QoS) Signaling
	7.2.1 Dynamic Quality of Service (DQoS)
	7.2.1.1 Reference Architecture for Embedded MTAs
	7.2.1.2 Security Services
	7.2.1.2.1 CM-CMTS DOCSIS 1.1 QoS Messages
	7.2.1.2.2 Gate Controller – CMTS COPS Messages

	7.2.1.3 Cryptographic Mechanisms
	7.2.1.3.1 CM-CMTS DOCSIS 1.1 QoS Messages
	7.2.1.3.1.1 QoS Service Flow

	7.2.1.3.2 Gate Controller – CMTS COPS Messages

	7.2.1.4 Key Management
	7.2.1.4.1 Gate Controller – CMTS COPS Messages
	7.2.1.4.2 Security Profile Matrix Summary

	7.3 Billing System Interfaces
	7.3.1 Security Services
	7.3.1.1 CMS-RKS Interface
	7.3.1.2 CMTS-RKS Interface
	7.3.1.3 MGC – RKS Interface

	7.3.2 Cryptographic Mechanisms
	7.3.2.1 RADIUS Server Chaining

	7.3.3 Key Management
	7.3.3.1 CMS – RKS Interface
	7.3.3.2 CMTS – RKS Interface
	7.3.3.3 MGC – RKS Interface

	7.3.4 Billing System Summary Security Profile Matrix

	7.4 Call Signaling
	7.4.1 Network Call Signaling (NCS)
	7.4.1.1 Reference Architecture
	7.4.1.2 Security Services
	7.4.1.3 Cryptographic Mechanisms
	7.4.1.3.1 MTA-CMS Interface
	7.4.1.3.2 CMS-CMS, CMS-SIP Proxy and SIP Proxy – SIP Proxy Interfaces
	7.4.1.3.3 End-to-End Protection of Media Stream Keying Material

	7.4.1.4 Key Management
	7.4.1.4.1 MTA-CMS Key Management
	7.4.1.4.1.1 Call Agent Clustering
	7.4.1.4.1.2 MTA Controlled by Multiple CMSes
	7.4.1.4.1.3 Transferring from one CMS to Another via NCS signaling

	7.4.1.4.2 CMS-CMS, CMS-SIP Proxy, SIP Proxy-SIP Proxy Key Management

	7.4.2 Call Signaling Security Profile Matrix

	7.5 PSTN Gateway Interface
	7.5.1 Reference Architecture
	7.5.1.1 Media Gateway Controller
	7.5.1.2 Media Gateway
	7.5.1.3 Signaling Gateway

	7.5.2 Security Services
	7.5.2.1 MGC – MG Interface
	7.5.2.2 MGC – SG Interface
	7.5.2.3 CMS – SG Interface

	7.5.3 Cryptographic Mechanisms
	7.5.3.1 MGC – MG Interface
	7.5.3.2 MGC – SG Interface
	7.5.3.3 CMS – SG Interface

	7.5.4 Key Management
	7.5.4.1 MGC – MG Interface
	7.5.4.2 MGC – SG Interface
	7.5.4.3 CMS – SG Interface

	7.5.5 MGC-MG-CMS-SG Summary Security Profile Matrix

	7.6 Media Stream
	7.6.1 Security Services
	7.6.1.1 RTP
	7.6.1.2 RTCP

	7.6.2 Cryptographic Mechanisms
	7.6.2.1 RTP Messages
	7.6.2.1.1 RTP Timestamp
	7.6.2.1.2 Packet Encoding Requirements
	7.6.2.1.2.1 Encryption and MMH MAC Option
	7.6.2.1.2.1.1 Deriving an MMH MAC Key
	7.6.2.1.2.1.2 RTP Timestamp Wrap-around

	7.6.2.1.2.2 Block Cipher Encryption of RTP Packets
	7.6.2.1.2.2.1 Block Termination
	7.6.2.1.2.2.2 Initialization Vector
	7.6.2.1.2.2.3 MMH-MAC PAD Derivation When Using a Block Cipher

	7.6.2.1.3 Packet Decoding Requirements
	7.6.2.1.3.1 Timestamp Tolerance Check
	7.6.2.1.3.2 Packet Authentication

	7.6.2.2 RTCP Messages
	7.6.2.2.1 RTCP Format
	7.6.2.2.2 RTCP Encryption
	7.6.2.2.3 Sequence Numbers
	7.6.2.2.4 Block Termination
	7.6.2.2.5 RTCP Message Encoding
	7.6.2.2.6 RTCP Message Decoding

	7.6.2.3 Key Management
	7.6.2.3.1 Key Management over NCS
	7.6.2.3.1.1 NULL Ciphersuite Combinations and Ordering
	7.6.2.3.1.2 Ciphersuite Negotiation For MTAs

	7.6.2.3.2 Ciphersuite Format
	7.6.2.3.3 Derivation of End-to-End Keys
	7.6.2.3.3.1 Initial Key Derivation

	7.6.2.4 RTP-RTCP Summary Security Profile Matrix

	7.7 Audio Server Services
	7.8 Electronic Surveillance Interfaces
	7.9 CMS Provisioning

	8 IPCablecom Certificates
	8.1 Generic Structure
	8.1.1 Version
	8.1.2 Public Key Type
	8.1.3 Extensions
	8.1.3.1 subjectKeyIdentifier
	8.1.3.2 authorityKeyIdentifier
	8.1.3.3 KeyUsage
	8.1.3.4 BasicConstraints

	8.1.4 Signature Algorithm
	8.1.5 SubjectName and IssuerName
	8.1.6 Certificate Profile Notation

	8.2 Certificate Trust Hierarchy
	8.2.1 Certificate Validation
	8.2.2 MTA Device Certificate Hierarchy
	8.2.2.1 MTA Root Certificate
	8.2.2.2 MTA Manufacturer Certificate
	8.2.2.3 MTA Device Certificate

	8.2.3 CableLabs Service Provider Certificate Hierarchy
	8.2.3.1 CableLabs Service Provider Root Certificate
	8.2.3.2 Service Provider CA Certificate
	8.2.3.3 Local System CA Certificate
	8.2.3.4 Operational Ancillary Certificates
	8.2.3.4.1 Key Distribution Center Certificate
	8.2.3.4.2 Delivery Function (DF)
	8.2.3.4.3 IPCablecom Server Certificates

	8.2.4 Certificate Revocation

	9 Cryptographic Algorithms
	9.1 AES
	9.2 DES
	9.2.1 XDESX
	9.2.2 DES-CBC-PAD
	9.2.3 3DES-EDE

	9.3 Block Termination
	9.4 RSA Signature
	9.5 HMAC-SHA1
	9.6 Key Derivation
	9.7 The MMH-MAC
	9.7.1 The MMH Function
	9.7.1.1 MMH[16,s,1]
	9.7.1.2 MMH[16,s,2]

	9.7.2 The MMH-MAC
	9.7.2.1 MMH-MAC When Using a Block Cipher
	9.7.2.2 Handling Variable-Size Data

	9.8 Random Number Generation

	10 Physical Security
	10.1 Protection for MTA Key Storage
	10.2 MTA Key Encapsulation

	11 Secure Software Download
	Appendix I IPCablecom Admin Guidelines & Best Practices (Informative)
	I.1 Routine CMS Service Key Refresh

	Appendix II Kerberos Network Authentication Service (Normative)
	Appendix III PKINIT Specification
	Appendix IV PKCROSS Specification
	Appendix V Example of MMH Algorithm Implementation (Informative)
	Appendix VI Oakley Groups

