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NOTICE 
The Society of Cable Telecommunications Engineers (SCTE) Standards and Operational Practices 
(hereafter called “documents”) are intended to serve the public interest by providing specifications, test 
methods and procedures that promote uniformity of product, interoperability, interchangeability, best 
practices, and the long term reliability of broadband communications facilities. These documents shall not 
in any way preclude any member or non-member of SCTE from manufacturing or selling products not 
conforming to such documents, nor shall the existence of such standards preclude their voluntary use by 
those other than SCTE members. 

SCTE assumes no obligations or liability whatsoever to any party who may adopt the documents. Such 
adopting party assumes all risks associated with adoption of these documents and accepts full 
responsibility for any damage and/or claims arising from the adoption of such documents. 

NOTE: The user’s attention is called to the possibility that compliance with this document may require 
the use of an invention covered by patent rights. By publication of this document, no position is taken 
with respect to the validity of any such claim(s) or of any patent rights in connection therewith. If a patent 
holder has filed a statement of willingness to grant a license under these rights on reasonable and 
nondiscriminatory terms and conditions to applicants desiring to obtain such a license, then details may 
be obtained from the standards developer. SCTE shall not be responsible for identifying patents for which 
a license may be required or for conducting inquiries into the legal validity or scope of those patents that 
are brought to its attention. 

Patent holders who believe that they hold patents which are essential to the implementation of this 
document have been requested to provide information about those patents and any related licensing terms 
and conditions. Any such declarations made before or after publication of this document are available on 
the SCTE web site at https://scte.org. 

 
All Rights Reserved 

© Society of Cable Telecommunications Engineers, Inc. 2021 
140 Philips Road 
Exton, PA 19341 
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1. Introduction 

1.1. Executive summary 

Mathematical calculations and conversions often are a necessary part of effectively managing cable 
systems and the technology that makes our networks function. This Operational Practice contains an 
assortment of cable-related mathematical formulas covering a broad range of topics. Most formulas are 
accompanied by a summary of the formula and its application, and one or more examples utilizing the 
formula. Readers should find this Operational Practice a wealth of practical information. 

1.2. Scope 

This Operational Practice includes a wide variety of cable-related mathematical formulas and examples of 
how to use them, as well as references to additional information, such as derivations and theory, for those 
who would like to learn more. 

1.3. Benefits 

The formulas and examples in this Operational Practice are intended to serve as a handy reference and 
teaching tool for the cable industry. 

1.4. Intended audience 

This Operational Practice is intended for cable system technical personnel such as installers, service and 
maintenance technicians, engineers, and others who have an interest in mathematical formulas for use in 
the cable industry. 

1.5. Areas for further investigation or to be added in future versions 

Areas for further investigation include the possible addition of mathematical formulas not yet part of this 
Operational Practice, and updates and/or corrections to existing formulas and examples. 

2. Normative References 
The following documents contain provisions, which, through reference in this text, constitute provisions 
of this document. At the time of Subcommittee approval, the editions indicated were valid. All documents 
are subject to revision; and while parties to any agreement based on this document are encouraged to 
investigate the possibility of applying the most recent editions of the documents listed below, they are 
reminded that newer editions of those documents might not be compatible with the referenced version. 

2.1. SCTE references 

• No normative references are applicable. 

2.2. Standards from other organizations 

• No normative references are applicable. 

2.3. Published materials 

• No normative references are applicable. 
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3. Informative References 
The following documents might provide valuable information to the reader but are not required when 
complying with this document. 

3.1. SCTE references 

[SCTE 209] SCTE 209 2015, Technical Report UHF Leakage, Ingress, Direct Pickup 

[SCTE 222] SCTE 222 2020, Useful Signal Leakage Formulas 

[SCTE 258] SCTE 258 2020, DOCSIS 3.1 Downstream OFDM Power Definition, Calculation, and 
Measurement Techniques 

[SCTE 07] ANSI/SCTE 07 2018, Digital Transmission Standard for Cable Television 

3.2. Standards from other organizations 

[IEEE 802.5] IEEE Std 802.5, 1998 Edition (ISO/IEC 8802-5:1998) 

[IEEE 100] ANSI/IEEE Std 100-1984 IEEE Standard Dictionary of Electrical and Electronics Terms 

3.3. Published materials 

Note: References to the following in the main text of this document are denoted by [n], where n is the 
number of the listed item below. 

1. The ARRL Handbook for Radio Amateurs (any recent edition), American Radio Relay League, 
Newington, CT; www.arrl.org 

2. Kraus, J. (1988). Antennas, Second Edition. New York: McGraw-Hill 
3. Johnson, R., Jasik, H. (1984). Antenna Engineering Handbook, Second Edition. New York: 

McGraw-Hill 
4. Large, D., Farmer, J. (2009). Broadband Cable Access Networks: The HFC Plant. Morgan 

Kaufmann Publishers 
5. Broadband Data Book, Revision 21, August 2019. Cisco Systems 
6. Currivan, B., Hranac, R. (2006). “Digital Transmission: Carrier-to-Noise Ratio, Signal-to-Noise 

Ratio, and Modulation Error Ratio” (white paper published by Broadcom and Cisco; content also 
presented at SCTE Cable-Tec Expo)  

7. Ciciora, W., Farmer, J., Large, D., Adams, M. (2004). Modern Cable Television Technology, 2nd 
Edition. Morgan Kaufmann Publishers 

8. National Institute of Standards and Technology Special Publication 811, 2008 Edition, Guide for 
the Use of the International System of Units (SI) 

9. NIST Special Publication 330 The International System of Units (SI). 
10. Multiple contributors (1975). Reference Data for Radio Engineers. Indianapolis, IN: Howard W. 

Sams & Co., Inc. 
11. Multiple contributors (1989). Reference Data for Engineers: Radio, Electronics, Computer, and 

Communications, Seventh Edition. Indianapolis, IN: Howard W. Sams & Co., Inc. 
12. “HFTA-010.0: Physical Layer Performance: Testing the Bit Error Ratio (BER)” Maxim 

Integrated (first appeared in Lightwave Magazine, September, 2004, “Explaining those BER 
testing mysteries.”) 

13. CATV Systems Reference Data RD-13 pocket technical guide; Jerrold Electronics Corporation 
(circa 1979-1982) 
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14. Zahn, S. “Log Periodic Antennas for CATV.” Communications Technology magazine, April 1988 
15. The ARRL Antenna Book (any recent edition), American Radio Relay League, Newington, CT; 

www.arrl.org 
16. Hranac, R. “A Quick Look at S-Parameters” Broadband Library, Winter 2019 issue. 
17. Kuhns, J. (1997) Satellite Calculations Handbook. Published by NCTI, Inc. ISBN 0-88683-001-

X 
18. Gray, D. Handbook of Coaxial Microwave Measurements (Gilbert Engineering, now Corning-

Gilbert; originally published by GenRad, Inc. in 1968) 
19. Kizer, G. Digital Microwave Communication: Engineering Point-to-Point Microwave Systems. 

John Wiley & Sons, Inc. (2013), Hoboken, New Jersey 
20. AML Seminar Maintenance Manual, Hughes Microwave Communications Products (circa 1979). 
21. Fundamentals of RF and Microwave Noise Figure Measurement, Application Note 57-1, 

Hewlett-Packard, July 1983. 
22. Freeman, R. Telecommunications Transmission Handbook, 2nd Ed., John Wiley & Sons, 1981. 
23. Engineering Considerations for Microwave Communications Systems, GTE Lenkurt, Inc., fourth 

printing, June 1970. 
24. Hranac, R., Catter, B. “Techbook.” Communications Technology magazine, February 1987 
25. Jerrold CATV Reference Guide RD-15 pocket technical guide; General Instrument, Jerrold 

Division, Third Edition, February 1989. 
26. IEEE Std 802.5, 1998 Edition (ISO/IEC 8802-5:1998) 
27. ANSI/IEEE Std 100-1984 IEEE Standard Dictionary of Electrical and Electronics Terms 
28. Prodan, R., “Full Duplex DOCSIS PHY Layer Design and Analysis for the Fiber Deep 

Architecture,” SCTE Cable-Tec Expo 2017 
29. Al-Banna, A. and Cloonan, T., “The Spectral Efficiency of DOCSIS 3.1 Systems,” SCTE Cable-

Tec Expo 2014, Denver, CO 
30. ANSI/SCTE 07 2018 Digital Transmission Standard for Cable Television 
31. “Communication in the Presence of Noise,” by Claude E. Shannon, from PROCEEDINGS OF 

THE IRE, vol. 37, no. 1, pp. 10–21, Jan. 1949 
32. Smith, Phillip H. (1995, 2000) Electronic Applications of the Smith Chart. Noble Publishing 

Corporation 
33. ITU: ITU-T Recommendation J.83 (2007), “Cable networks and transmission of television, sound 

programme and other multimedia signals,” International Telecommunications Union, Geneva 
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4. Compliance Notation 

shall This word or the adjective “required” means that the item is an 
absolute requirement of this document. 

shall not This phrase means that the item is an absolute prohibition of this 
document. 

forbidden This word means the value specified shall never be used. 

should 

This word or the adjective “recommended” means that there may exist 
valid reasons in particular circumstances to ignore this item, but the 
full implications should be understood and the case carefully weighted 
before choosing a different course. 

should not 

This phrase means that there may exist valid reasons in particular 
circumstances when the listed behavior is acceptable or even useful, 
but the full implications should be understood and the case carefully 
weighed before implementing any behavior described with this label. 

may 

This word or the adjective “optional” means that this item is truly 
optional. One vendor may choose to include the item because a 
particular marketplace requires it or because it enhances the product, 
for example; another vendor may omit the same item. 

deprecated 
Use is permissible for legacy purposes only. Deprecated features may 
be removed from future versions of this document. Implementations 
should avoid use of deprecated features. 

 

5. Abbreviations and Definitions 

5.1. Abbreviations 
 

2sb second most significant bit 
3sb third most significant bit 
AC (ac) alternating current 
ADC analog to digital converter 
Ae effective aperture 
Aem maximum effective aperture 
AF antenna factor 
AM amplitude modulation 
AMP 1) ampere; 2) amplifier 
AMSL above mean sea level 
APL average optical power level 
ASE amplified spontaneous emission 
atan arctangent  
avg average  
A/W ampere per watt 
AWGN additive white Gaussian noise 
BER 1) bit error rate; 2) bit error ratio 
bps bits per second 
bpsgross bits per second (gross) 
BPSK binary phase shift keying 
bpsnet bits per second (net) 
BSE bit stream efficiency 
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b/s/Hz (bps/Hz) bits per second per hertz 
Btu/h British thermal units per hour 
BW bandwidth  
c speed of light in a medium other than a vacuum 
c0 speed of light in a vacuum 
˚C degree Celsius 
CARS Cable Television Relay Service 
CATV cable television (originally community antenna television) 
CCAP converged cable access platform 
CCN carrier-to-composite noise 
CEA Consumer Electronics Association (now Consumer Technology Association) 
ceil ceiling [function] 
CER codeword error ratio 
CHR carrier-to-hum ratio 
CID composite intermodulation distortion 
Cin cosine integral 
CIN composite intermodulation noise 
CLI cumulative leakage index 
cm centimeter  
cm2 square centimeter 
CMTS cable modem termination system 
C/N carrier-to-noise ratio 
CNR carrier-to-noise ratio  
cos  cosine 
cos–1 inverse cosine or arccosine 
CPD common path distortion  
CSO composite second order 
CTA Consumer Technology Association (formerly Consumer Electronics Association) 
CTB composite triple beat 
CW continuous wave 
DAC digital to analog converter 
dB decibel  
dBc decibel carrier 
dBc/Hz decibel carrier per hertz 
dBd decibel dipole 
dBi decibel isotropic 
dBm decibel milliwatt 
dB/m decibel/meter 
dB/m2 decibel per square meter 
dBmV decibel millivolt 
dBµV decibel microvolt 
dBµV/m decibel microvolt per meter 
dBV decibel volt 
dBW decibel watt 
dBW/m2 decibel watt per square meter 
DC (dc) direct current 
DOCSIS Data-Over-Cable Service Interface Specifications 
DRFI DOCSIS Downstream Radio Frequency Interface Specification 
DS 1) downstream; 2) double-square 
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DSO discrete second order 
E voltage  
Eb/N0 energy-per-bit to noise power spectral density ratio 
EDFA erbium doped fiber amplifier 
e.g. for example (exempli gratia) 
EHz exahertz  
EIRP equivalent isotropic radiated power 
EµV/m field strength in microvolts per meter 
EMC electromagnetic compatibility 
EMF electromotive force 
EMI electromagnetic interference 
EOL end-of-line 
Es/N0 energy-per-symbol to noise-density ratio 
EVM error vector magnitude 
f frequency  
F noise factor 
˚F degree Fahrenheit 
FCC Federal Communications Commission 
FEC forward error correction 
FM frequency modulation 
FSPL free space path loss 
ft foot  
ft2 square foot 
fW femtowatt 
GD group delay 
GDV group delay variation 
GHz gigahertz  
G/T gain to noise temperature ratio 
HFC hybrid fiber/coax 
Hz hertz 
HPBW half power beamwidth 
HVAC heating, ventilation, and air conditioning 
I 1) in-phase; 2) current 
ICFR in-channel frequency response 
i.e. that is (id est) 
IID independent and identically distributed 
IMN intermodulation noise 
in inch  
in2 square inch 
IRE information rate efficiency 
J/s joules per second 
K kelvin  
kg kilogram  
kHz kilohertz  
km kilometer  
km2 square kilometer 
ksym/s kilosymbols per second 
kWh kilowatt-hour 
lb pound  
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lb·ft (lbf·ft) pound·foot  
lb·in (lbf·in) pound·inch 
ln (LN) natural logarithm 
LNA low noise amplifier 
LNB low noise block converter 
log logarithm (base 10 unless otherwise stated) 
LSB least significant bit 
m  meter  
m2 square meter 
MAC media access control 
Mbps megabits per second 
ME modulation efficiency 
MER modulation error ratio 
MHz megahertz  
mi mile  
mi2 square mile 
min/yr minutes per year 
mm millimeter  
mm2 square millimeter 
ms millisecond  
MSB most significant bit 
Msym/s megasymbols per second 
MTA maximum-to-average [constellation power ratio] 
MTBF mean time between failure 
MTTR 1) mean time to restore; 2) mean time to repair 
mV millivolt 
mW milliwatt 
NCP next codeword pointer 
NF noise figure 
N·m newton·meter  
NRZ non-return to zero 
ns nanosecond  
NIST National Institute of Standards and Technology 
NTSC National Television System Committee 
nW nanowatt  
OFDM orthogonal frequency division multiplexing 
OMI optical modulation index 
oz ounce  
P power  
p  peak  
pA picoampere  
PAM pulse amplitude modulation 
PAPR peak-to-average power ratio 
PAR peak-to-average ratio 
P.C. picture carrier 
PDE powered data efficiency 
PEP peak envelope power 
PER packet error ratio 
PEV peak envelope voltage 
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PF power factor 
PHY physical [layer] 
PHz petahertz  
PLC physical layer link channel (also PHY link channel) 
PNM proactive network maintenance 
p-p peak-to-peak 
PSD power spectral density 
PRBS pseudo random binary sequency 
Q quadrature  
QAM quadrature amplitude modulation 
QPSK quadrature phase shift keying 
R resistance  
rad radian  
rad/s radians per second 
ref reference 
RF radio frequency 
RIN relative intensity noise 
RMS (rms) root mean square 
RxMER receive modulation error ratio 
S-CDMA synchronous code division multiple access 
SCTE Society of Cable Telecommunications Engineers 
SC-QAM single carrier quadrature amplitude modulation 
SE 1) spectral efficiency; 2) system efficiency 
SI International System of Units (Le Système International d’ Unités) 
sin sine  
SNR signal-to-noise ratio 
SSB single-sideband 
SRL structural return loss 
SUE symbol utilization efficiency 
SWR standing wave ratio 
sym/s/Hz symbols per second per hertz 
tan tangent  
tan–1 inverse tangent or arctangent 
TE transverse electric 
TEM transverse electromagnetic 
TFE time-frequency efficiency 
THz terahertz  
TV television  
TVRO television receive only 
TxMER transmit modulation error ratio 
RMS root mean square 
US upstream  
VA volt-ampere 
VF velocity factor 
VoP (VP) velocity of propagation 
W watt  
Wh watt-hour 
W/m2 watt per square meter 
XMOD cross modulation 
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yd yard  
yd2 square yard 
Z0 characteristic impedance 
µH microhenry  
µm micrometer  
µs microsecond 
µV microvolt  
µV/m microvolt per meter 
µW microwatt  
λ wavelength 
Ω ohm  
Ω·m ohm-meter  

 

5.2. Definitions 
alternating current (AC or ac) An electric current that periodically reverses direction and whose 

instantaneous magnitude varies continuously over time. 
ampere (A) A measure of electric current, where 1 ampere equals 1 coulomb of 

charge flowing past a given point in 1 second. Analogous to a given 
volume of water (e.g., 1 gallon) flowing through a garden hose per 
second. Note: Coulomb is a unit of measure of electrically charged 
particles, where 1 coulomb = 6.242 x 1018 electrons. 

amplitude modulation (AM) A means of conveying information by varying the amplitude of a 
carrier wave in proportion to a baseband modulating signal, such as 
audio, video, or digital data. 

analog intensity modulation A means of conveying information through an optical fiber link by 
varying the intensity of the transmitted light in proportion to an analog 
electrical signal, such as a cable network’s active downstream or 
upstream RF spectrum. 

antenna  A transducer that converts RF current to electromagnetic waves in 
transmit applications, or converts electromagnetic waves to RF current 
in receive applications. 

antenna factor The ratio of the field strength of an electromagnetic field incident upon 
an antenna to the voltage produced by that field across a load of 
impedance Z0 connected to the antenna’s terminals. 

apparent power The product of voltage and current in an alternating current circuit. 
Expressed in units of volt-ampere (VA). 

attenuation see loss 
availability  The ratio of time that a service, device, or network is available for use 

to total time, usually expressed as a percentage of the total time. 
average (avg) 1) The arithmetic mean, or the sum of a set of numbers (or values) 

divided by the count of numbers (or values) in the set. 2) The average 
(or mean) value of a symmetrical alternating quantity such as a sine 
wave is defined here as the average value of the (full wave) rectified 
quantity measured over one complete cycle. Mathematically, the 
average value of a sinusoidal AC waveform is 𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑝𝑝 ∗ (2 𝜋𝜋⁄ ). 

bandwidth (BW) 1) The amount of spectrum, measured in units of hertz, that an 
electromagnetic signal significantly occupies. 2) The operating 
passband of a device or system, typically expressed in units of hertz. 
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bit error ratio (BER) The ratio of bits in error to the total number of bits transmitted, 
received, or processed. Often referred to as bit error rate, though non-
temporal. 

British thermal units per hour 
(Btu/h) 

A unit of power used for heating and cooling systems, where 1 Btu/h 
is equal to approximately 0.2931 watt, or 1 watt is equal to 
approximately 3.4121 Btu/h. 

capacitive reactance The opposition to alternating current by a capacitor (or capacitance). 
Represented by the symbol XC and expressed in ohms. 

carrier-to-noise ratio (CNR or 
C/N) 

The ratio of carrier or signal power to the thermal noise power in a 
specified bandwidth, as measured on an RF spectrum analyzer or 
similar equipment. Note that “noise” can also refer other types of 
noise, such as relative intensity noise, shot noise, etc., but does not 
refer to transient noise. 

ceiling (ceil) A mathematical function that returns the lowest-valued integer that is 
greater than or equal to a given value. 

channel  1) A portion of the electromagnetic spectrum used to convey one or 
more RF signals between a transmitter and receiver. Can be specified 
by parameters such as center frequency, bandwidth, CTA or other 
designated channel number. 2) An RF signal (or signals) carried on a 
cable network. 

common path distortion 
(CPD) 

Second and/or third order intermodulation products that appear in the 
upstream spectrum of a cable network. Unlike distortions produced in 
active devices, CPD is usually produced at a corrosion-related diode-
like interface where downstream and upstream signals are present.  

composite intermodulation 
noise (CIN) 

A combination of thermal noise and noise-like second and third order 
intermodulation distortion. 

composite second order 
(CSO) distortion 

Composite beat clusters generated by the direct addition or 
subtraction of fundamental visual carrier frequencies. These products 
normally fall at ±750 kHz and/or ±1.25 MHz from the visual carriers. 

composite triple beat (CPD) 
distortion 

Composite beat clusters generated by third order distortions 
resulting from the addition and subtraction of fundamental visual 
carriers with the second harmonic of other visual carriers or the 
addition and subtraction of a combination of three visual carriers. 
These products normally fall within ±15 kHz of the visual carriers. 

crest factor A characteristic of a waveform defined as the ratio of its peak to 
effective value. Expressed mathematically, C = |χpeak|/χrms, where C is 
crest factor, χpeak is the waveform’s peak value and χrms is the 
waveform’s effective or root mean square value. 

cross modulation (XMOD) 
distortion 

A distortion phenomenon in which modulation from other carriers is 
impressed on the carrier of interest (e.g., a test carrier). Cross 
modulation is defined as the difference between the detected cross 
modulation level and the detected level that would correspond to 
100% modulation, expressed in dB. It mathematically derives from the 
third order term in the power series model of distortion in linear 
amplifiers. 

CTA channel A 6 MHz portion of a cable network’s RF spectrum based upon CTA-
542-D R-2018 Cable Television Channel Identification Plan (formerly 
CEA 542-D). 
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current (I) A flow of charged particles per unit of time, measured in units of 
amperes. Analogous to the volume of water flowing through a garden 
hose. 

decibel (dB) A logarithmic-based expression of the ratio between two values of a 
physical quantity, typically power or intensity. The decibel provides an 
efficient way to express ratios which span one or more powers of the 
logarithmic base, most commonly 10. Mathematically, the ratio of two 
power levels P1 and P2 in decibels is dB = 10log10(P1/P2). 

decibel microvolt (dBµV) Unit of RF power expressed in terms of voltage, defined as decibels 
relative to 1 microvolt, where 1 microvolt equals 13.33 femtowatts in a 
75 ohms impedance. Mathematically, dBµV = 20log10(value in µV/1 
µV). 

decibel microvolt per meter 
(dBµV/m) 

An RF signal’s power density expressed in terms of voltage, defined 
as decibels relative to 1 microvolt per meter, where 1 microvolt per 
meter equals 1 microvolt delivered to a receiving antenna’s terminals 
recovered from an imaginary 1 meter x 1 meter square in free-space or 
air. Mathematically, dBµV/m = 20log10(µV/m). 

decibel millivolt (dBmV) Unit of RF power expressed in terms of voltage, defined as decibels 
relative to 1 millivolt, where 1 millivolt equals 13.33 nanowatts in a 75 
ohms impedance. Mathematically, dBmV = 20log10(value in mV/1 
mV). 

decibel milliwatt (dBm) Unit of power, defined as decibels relative to 1 milliwatt, where 0 
dBm equals 1 milliwatt. Mathematically, dBm = 10log10(value in 
mW/1 mW). 

decibel volt (dBV) Unit of power expressed in terms of voltage, in particular a 
logarithmic-based expression of the ratio of a value in volts to 1 volt. 
The 0 dB reference for decibel volt is 0 dBV, which equals 1 volt. 

decibel watt (dBW) Unit of power, in particular a logarithmic-based expression of the ratio 
of a value in watts to 1 watt (W). The 0 dB reference for decibel watt 
is 0 dBW, which equals 1 watt. 

direct current (DC or dc) An electric current that is unidirectional. 
directivity (antenna) A characteristic that is a measure of the concentration of an antenna’s 

radiated energy in a single direction, compared to an isotropic source.1 
effective aperture (Ae) The geometric area over which an antenna receives power from an 

incident RF signal and delivers that power to a connected load. 
Mathematically, Ae = λ2G/4π, where λ is the wavelength of the RF 
signal, G is the receiving antenna’s linear (“numerical”) power gain 
(e.g., 1.64 for a half-wave dipole), and π = 3.14. If the antenna is 
considered lossless, effective aperture is called maximum effective 
aperture (Aem). 

electromotive force (EMF) The force of electrical attraction between two points of different 
charge potential. EMF is more commonly known as voltage 
(technically speaking, the volt is a measure of electromotive force), 
and is analogous to water pressure in a garden hose. 1 volt is the 
potential difference between two points on a wire carrying 1 ampere of 
current when the power dissipated between the points is 1 watt. 

 
1 The term directivity also is a characteristic of RF passive devices such as directional couplers. However, that 
context of the term is not used in this document. 
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error vector magnitude 
(EVM) 

The ratio of RMS constellation error magnitude to peak constellation 
symbol magnitude, stated in percent. 

far-field The region of an antenna’s radiation pattern in which the angular 
distribution of radiated energy is largely independent of distance from 
the antenna, and in which the power varies inversely with the square of 
distance. The approximate distance from the antenna to the beginning 
of the far-field is generally accepted to be R = 2D2/λ, where R is 
distance from the antenna, D is the largest linear dimension of the 
antenna effective aperture, and λ is wavelength. Signal leakage field 
strength measurements are made in the far-field. See also near-field. 

field strength An RF signal’s power density within an imaginary 1 meter x 1 meter 
square (that is, watts per square meter) in free space or in the air. 
Usually expressed in units of voltage, for example, microvolts per 
meter. 

free space path loss The attenuation, typically in decibels, of an electromagnetic signal 
traveling over an unobstructed line-of-sight path through free space 
(usually air) between two points. Mathematically, 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 =
20 𝑙𝑙𝐿𝐿𝑎𝑎10(𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀) + 20 𝑙𝑙𝐿𝐿𝑎𝑎10(𝑑𝑑𝑘𝑘𝑘𝑘) + 32.45, or 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 =
20 𝑙𝑙𝐿𝐿𝑎𝑎10(𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀) + 20 𝑙𝑙𝐿𝐿𝑎𝑎10�𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓� − 37.892, where fMHz is the 
frequency in megahertz, dkm is the path length in kilometers, and dfeet is 
the path length in feet2. 

frequency  The number of times, typically per second, that a repetitive event 
happens. For an electromagnetic wave, frequency is the wave’s rate of 
oscillation. Commonly measured or stated in units of hertz (Hz), 
which is the number of cycles per second. 

frequency domain A representation of a periodic signal (e.g., sinusoidal waveform) or 
aperiodic signal (e.g., rectangular pulse or random noise) as a function 
of frequency. When plotted on a graph or displayed on an instrument 
such as spectrum analyzer, the vertical axis is amplitude and the 
horizontal axis is frequency. 

frequency modulation (FM) A means of conveying information by varying the frequency of a 
carrier wave in proportion to a baseband modulating signal, such as 
audio, video, or digital data. 

Fresnel zone The locus of points above or below a direct path from a microwave 
transmitter to a microwave receiver where the distance from one end 
of the path to a locus point and then to the other end of the path is an 
integer number of half-wavelengths longer than the direct path. For 
example, the first Fresnel zone, F1, has a total additional path length of 
½ wavelength. The second Fresnel zone, F2, has a total additional path 
length of 2 ∗ ½ wavelengths, and so on. 

gain 1) An increase in the power of a signal or signals, usually measured in 
decibels. Expressed mathematically, GdB = 10log10(Pout/Pin), where GdB 
is gain in decibels, Pout is output power in watts, Pin is input power in 
watts, and Pout > Pin. When signal power is stated in dBmV, GdB = 

 
2 Real-world path loss seldom equals the calculated free space path loss, because of the constructive and/or 
destructive effects of signal reflection(s), refraction, and diffraction. In addition to free space path loss modeling, 
other models used to calculate path loss include, but are not limited to, Lee, Irregular Terrain Model (ITM; also 
known as the Longley-Rice model), Okumura-Hata, Walfish-Ikegami, Wireless World Initiative New Radio Phase 
II (WINNER II) and Young. This Operational Practice document uses free space path loss modeling in its examples. 
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Pout(dBmV) – Pin(dBmV). 2) An antenna characteristic related to directivity 
and efficiency. Mathematically, G = kD (dimensionless), where G is 
gain, k is the efficiency factor of the antenna (0 ≤ k ≤ 1), 
dimensionless, and D is directivity. 

gigahertz (GHz) One billion (109) hertz. See also hertz. 
group delay distortion The negative derivative of radian phase with respect to radian 

frequency. In a system, network, device, or component with no group 
delay distortion, all frequencies propagate through the system, 
network, device, or component in the same amount of time – that is, 
with equal time delay. If group delay distortion exists, signals (or parts 
of signals) at some frequencies propagate faster or slower than signals 
(or parts of signals) at other frequencies. 

hertz (Hz) A unit of frequency equivalent to one cycle per second. 
hybrid fiber/coax (HFC) A class of cable network architectures comprising a combination of 

optical fiber and coaxial cable for signal distribution. 
impedance The combined opposition to current in a component, circuit, device, or 

transmission line that contains both resistance and reactance. 
Represented by the symbol Z and expressed in ohms. 

independent and identically 
distributed (IID) 

A property of random variables (e.g., bit errors) that are independent 
and have the same probability distribution as other random variables – 
that is, with equal probability. For independent random variables, 
knowing the probability of one does not change the probability of the 
others. 

index of refraction A dimensionless number that describes the reduction in the speed of an 
electromagnetic signal in a given material, defined as the ratio of the 
speed of light in a vacuum to the speed of light in the material through 
which the electromagnetic signal is traveling. Expressed 
mathematically, n = c0/c, where n is the index of refraction, c0 is the 
speed of light in a vacuum, and c is the speed of light in the material. 

inductive reactance The opposition to alternating current by an inductor (or inductance). 
Represented by the symbol XL and expressed in ohms. 

isotropic source A source that radiates energy uniformly in all directions. An analogy is 
a light bulb at the center of a sphere, illuminating the surface of that 
sphere uniformly. 

loss A decrease in the power of a signal or signals, usually measured in 
decibels. Expressed mathematically, LdB = 10log10(Pin/Pout), where LdB 
is loss in decibels, Pin is input power in watts, Pout is output power in 
watts, and Pout < Pin. When signal power is stated in dBmV, LdB = 
Pin(dBmV) – Pout(dBmV). 

megahertz (MHz) One million (106) hertz. See also hertz. 
micro-reflection An echo (reflection) with a relatively short time delay, typically from 

less than a symbol period to several symbol periods. 
microvolt (µV) One millionth (10-6) of a volt. 
microvolt per meter (µV/m) A measure of the field strength of an RF signal, calculated by dividing 

the received intensity in microvolts by the receiving antenna maximum 
effective aperture. 

millivolt (mV) One thousandth (10-3) of a volt. 
minimum[n, …, nn] The smallest value in the set [n, …, nn]. 
modulation error ratio (MER) The ratio of average signal constellation power to average 

constellation error power, stated in decibels. 
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modulation rate The signaling rate of the upstream modulator (for example, 1,280 kHz 
to 5,120 kHz). In S-CDMA, the chip rate. In TDMA, the channel 
symbol rate. (Note: This definition was first introduced in the DOCSIS 
2.0 Radio Frequency Interface Specification.) 

near-field The space around an antenna comprising a reactive region and a 
radiating region. The radiating region is further subdivided into a near-
field region and a far-field region. The radiating near-field is the 
propagation region where angular contributions from individual 
antenna elements vary significantly with distance from the antenna. 
See also far-field. 

noise factor (F) Degradation in signal-to-noise ratio as a signal passes through a 
device. Specifically, the noise factor of a system or device is a linear 
value defined as F = SNRi/SNRo where SNRi is system or device input 
signal-to-noise ratio and SNRo is system or device output signal-to-
noise ratio. 

noise figure (NF) Noise factor expressed in decibels, expressed mathematically as NF = 
10log10(F). 

noise temperature The noise temperature of an electrical device, circuit, or component is 
defined to be the temperature of a single passive resistance that 
contributes the same noise power spectral density as the device itself. 
The term applies to active devices as well as simple and complex 
passive circuits and components. Noise temperature is stated in kelvin, 
and while related to physical temperature, should not be confused with 
the physical temperature of the device that one would measure with a 
thermometer. 

OFDM power The average RF power of an OFDM signal, which is usually 
characterized in two ways: (1) OFDM power per CTA channel – that 
is, the average power per 6 MHz (which may not be uniform across 
the OFDM signal because of exclusion bands and other factors). (2) 
OFDM total power: The average power over the entire occupied 
bandwidth of the OFDM signal, defined mathematically as Total 
power = Power per CTA channel + 10log10(Number of CTA channels 
occupied by the OFDM signal). 

ohm (Ω) 1) A unit of resistance, where 1 ohm is defined as the resistance that 
allows 1 ampere of current to flow between two points that have a 
potential difference of 1 volt. 2) A unit of impedance. 3) A unit of 
reactance. 

Ohm’s Law The principle, named after Georg Ohm, in which the current through a 
conductor between two points is directly proportional to the voltage 
across the two points. Expressed mathematically, I = E/R, where I is 
current in amperes, E is electromotive force in volts, and R is 
resistance in ohms. Other variations of the formula are E = IR and R = 
E/I. 

optical modulation index 
(OMI) 

A measure of the amount of optical modulation that is applied to a 
laser, commonly stated in terms of the extent of the range from a 
laser’s quiescence bias point to cutoff that is taken up by the 
modulating signal. Typically expressed in percent per channel (peak) 
or composite percent for all channels (root mean square). Note that 
optical intensity is proportional to input signal current. 
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peak (p) The maximum value of an alternating quantity such as a sinusoidal AC 
waveform during one cycle, relative to a reference value such as 0 
volts or 0 amperes (e.g., the horizontal line in Figure 10 labeled 0). 
Mathematically, the peak value of a sinusoidal AC waveform is 𝑝𝑝 =
𝑅𝑅𝑅𝑅𝑅𝑅 ∗ √2. 

peak envelope power (PEP) The average power (watts) during one cycle of an RF signal at the 
crest of its modulation envelope. 

peak-to-average power ratio 
(PAPR) 

The ratio of the peak power of a signal to its average power. 

peak-to-peak (p-p) The sum of the maximum value of an alternating quantity such as a 
sinusoidal AC waveform during one cycle, above and below a 
reference such as 0 volts or 0 amperes (e.g., the horizontal line in 
Figure 10 labeled 0). Mathematically, the peak-to-peak value of a 
sinusoidal AC waveform is  𝑝𝑝-𝑝𝑝 = 𝑝𝑝 ∗ 2. 

period  The duration in time of each cycle of a repetitive event; the reciprocal 
of frequency. In the case of symbol period, the reciprocal of symbol 
rate (or modulation rate). 

phase noise An undesired spreading of the signal spectrum in the frequency 
domain caused by phase fluctuations in the signal source; equivalent to 
jitter in the time domain. 

power  The rate at which work is done, or energy per unit of time, expressed 
in watts. 1 watt of power is equal to 1 volt causing a current of 1 
ampere. Mathematically, for sinusoidal waveforms PAVG = IRMS ∗ ERMS 

∗ cosθ, where PAVG is average power, IRMS is root mean square current, 
ERMS is root mean square voltage, and cosθ is the cosine of the phase 
angle difference in degrees between the current and voltage.  

power factor The ratio of real power to apparent power. 
power per CTA channel The average power in a 6 MHz bandwidth, typically expressed in 

dBmV.  
power spectral density (PSD) The average power present in a signal as a function of frequency, per 

unit frequency, typically expressed in units of power per hertz (e.g., 
W/Hz). Commonly used to describe how the power of a signal is 
distributed over frequency. 

quadrature amplitude 
modulation (QAM) 

A means of conveying information by varying the amplitude and 
phase of a carrier wave. 

QAM-independent system 
efficiency 

Spectral efficiency in b/s/Hz divided by the number of bits per symbol, 
stated in units of symbols per second per hertz (sym/s/Hz). 

radian (rad) A unit of angular measure, where an angle of 1 radian defines an arc 
on the circumference of a circle, and the arc has a length equal to the 
radius of that circle. 

radio frequency (RF) That portion of the electromagnetic spectrum from a few kilohertz to 
just below the frequency of infrared light. 

real power The actual power dissipated in an alternating current circuit. Expressed 
in units of watts. 

receive modulation error ratio 
(RxMER) 

The MER as measured in a digital receiver after demodulation, with or 
without adaptive equalization. See also modulation error ratio. 

reflection coefficient The ratio of reflected voltage to incident voltage, commonly 
represented by the Greek letter gamma (Γ), and sometimes by the 
Greek letter rho (ρ). The magnitude of reflection coefficient, |Γ|, can 
have values from 0 (indicating a reflectionless load – that is, all of the 
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incident energy is absorbed by the load) to 1 (indicating that all of the 
incident energy is reflected by the load). 

reflection loss The loss, as the result of a reflection, in the power delivered to a load. 
Sometimes called transmission loss. 

relative intensity noise (RIN) Random amplitude fluctuation in the light from a laser, expressed in 
terms of noise power in a 1 Hz bandwidth compared with the laser’s 
average optical power level. 

reliability  The probability that a system or device will not fail during a specified 
period of time. 

resistance  Opposition to the flow of current. 
return loss The ratio, in decibels, of the power incident upon an impedance 

discontinuity to the power reflected from the impedance discontinuity. 
Note: When Preflected < Pincident return loss is a positive number. 

root mean square (RMS or 
rms) 

RMS is based upon equating the values of AC and DC power to heat a 
resistive element to exactly the same degree. An RMS value is found 
by squaring the individual values of all the instantaneous values of 
voltage or current in a single AC cycle. Take the average of those 
squares and find the square root of the average. Mathematically, the 
root mean square value of a sinusoidal AC waveform is 𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑝𝑝 ∗
�1 √2⁄ �. 

scattering parameters (S-
parameters) 

Voltage reflection coefficients and voltage transmission coefficients 
that can be used to characterize N-port networks (components, 
devices, etc.). S-parameters describe the electrical behavior of linear 
N-port networks when those networks undergo steady-state stimuli by 
electrical signals. 

shot noise Noise in an optical receiver caused by fluctuations in the number of 
photons detected due to the statistical variation in arriving photon 
distribution. 

signal leakage Unwanted emission of RF signals from a cable network into the 
surrounding over-the-air environment, typically caused by degraded 
shielding effectiveness of coaxial cable, connectors, and other network 
components, or by poorly shielded subscriber terminal equipment 
connected to the cable network. 

signal-to-noise ratio (SNR) 1) A general measurement of the ratio of signal power to noise power. 
2) In a specific context, a measurement of the ratio of signal power to 
noise power made at baseband before modulation or after detection or 
demodulation. 

single carrier quadrature 
amplitude modulation (SC-
QAM) 

A term applied to legacy DOCSIS and digital video signals, in which 
information such as digital data is conveyed by varying the amplitude 
and phase of a single RF carrier. 

skin depth The depth at which the current density is 1/e of the current density at 
the surface of a conductor. Note: “e” is the mathematical constant that 
is the base of the natural logarithm. Skin depth, a measure of skin 
effect, is commonly denoted by the symbol δ. 

skin effect A phenomenon where the conduction of alternating current – including 
RF – is largely confined to a region at and near the surface of a 
conductor. The higher the frequency, the shallower the region (and 
closer to the surface) in which the current is conducted.  

slant range distance The line-of-sight distance along a slant direction between two points 
which are not at the same level relative to each other. As used in 
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satellite-to-earth station free space path loss calculations, slant range 
distance is the distance between a satellite in geostationary orbit above 
the equator and an earth station (usually) north or south of the equator. 

spectral efficiency Describes the information bit rate that is supported in a given RF 
bandwidth. Mathematically, the net bit rate (that is, the bit rate 
excluding overhead) in bits per second, bpsnet, divided by the channel 
bandwidth in hertz, stated in units of bits per second per hertz (b/s/Hz 
or bps/Hz). 

standing wave ratio (SWR) The ratio of maximum voltage to minimum voltage (or maximum 
current to minimum current) in the distribution of fields in a 
transmission line when a wave (or waves) reflected from an 
impedance discontinuity interacts with an incident wave (or incident 
waves). 

symbol rate The number of symbol, waveform, or signaling changes or events in a 
data transmission medium, typically expressed in units of symbols per 
second (e.g., kilosymbols per second or megasymbols per second). 
Also called baud. See also modulation rate.  

thermal noise Also called Johnson-Nyquist noise, the fluctuating voltage across a 
resistance caused by the random motion of free charge as a result of 
thermal agitation. 

time domain A representation of a periodic signal (e.g., sinusoidal waveform) or 
aperiodic signal (e.g., rectangular pulse or random noise) as a function 
of time. When plotted on a graph or displayed on an instrument such 
as an oscilloscope, the vertical axis is amplitude and the horizontal 
axis is time. 

torque  The rotational equivalent of linear force, defined as the product of 
radius times force. Sometimes called moment of force or rotational 
force. Commonly described in units of pound·foot or pound·inch (the 
SI derived unit for moment of force is the newton·meter). 

total power The combined power of all signals and/or signal components in a 
defined bandwidth. Generally assumed to be average power, unless 
otherwise stated. 

transmit modulation error 
ratio (TxMER) 

The MER produced by a transmitter under test, as measured by an 
ideal test receiver. See also modulation error ratio. 

velocity factor (VF) The ratio, in decimal form, of the speed of an electromagnetic signal 
propagating through a medium (such as coaxial cable) to the speed of 
light in a vacuum. 

velocity of propagation (VoP 
or VP) 

Velocity factor expressed in percent. 

volt (E or V) A derived unit for electric potential (or electromotive force), where 1 
volt is the potential difference between two points on a conductor 
(wire) carrying 1 ampere of current when the power dissipated 
between the points is 1 watt. Analogous to water pressure in a garden 
hose. Note: Electromotive force is the force of electrical attraction 
between two points of different charge potential. 

watt (W) The rate at which work is done, or energy per unit of time – that is, 
power can be described as the rate at which energy is consumed in a 
circuit. 1 watt of power is equal to 1 volt causing a current of 1 
ampere. Watt is the power required to do work at a rate of 1 joule per 
second (J/s). 
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wavelength  An electromagnetic wave’s speed of propagation divided by its 
frequency in cycles per second, and commonly represented by the 
symbol λ. If one could see an electromagnetic signal’s waves, 
wavelength is the distance from a point on one cycle’s wave to the 
same point on an adjacent cycle’s wave. Note: By convention, when 
discussing the wavelength of an optical signal, that wavelength is the 
value in free space (vacuum). 

 

6. Notes for the User of This Operational Practice 
Where applicable, conventions used in this document conform with the International System of Units 
(SI). Appendix B includes tables summarizing SI prefixes, SI base units, examples of SI derived units, 
etc., that the reader may find helpful.3 
 
Numbers used for quantities are printed with the decimal point represented by a period (.) and numbers 
from one thousand and higher are ordered in groups of three with a comma (,) separating each group. For 
example, the number one hundred sixty-three thousand two hundred thirty-four point seven eight is 
written as 163,234.78. 
 
The reader is cautioned to pay attention to letters and symbols that are locally defined in the relevant 
sections used in various formulas and examples. In many instances the same letter or symbol can have 
more than one meaning, depending on application. Consider, for example, the letter “k”. The following is 
a partial list of different uses of the letter “k” in this document.  

Table 1. Example uses of the letter "k" 
Letter or symbol Definition 
k antenna efficiency 
k Boltzmann’s Constant 
k SI prefix symbol for kilo (e.g., kHz) 
k number of observed failures 
ks stranding factor (for coaxial cable shielding) 
K kelvin (thermodynamic temperature) 
K factor equivalent Earth radius factor 
K factor multiplying factor for antenna element length 

 
 
The content provided in this Operational Practice has been compiled from various sources, many of which 
are summarized in Section 3.3. For more in-depth information, the reader is encouraged to consult the 
original source material and other references as noted. 
 
Unless stated otherwise, most of the formulas and examples included in this Operational Practice pertain 
to radio frequency applications. 
 
Terms in some formulas use letters from the Greek alphabet. Table 2 summarizes the 24 letters of the 
Greek alphabet, and includes both uppercase and lowercase forms. For example, the uppercase form of 
omega is Ω, and the lowercase form of omega is ω. 

 
3 For more information about SI, see https://www.nist.gov/pml/weights-and-measures/metric-si/si-units and 
https://www.nist.gov/pml/weights-and-measures/publications/metric-publications. 

https://www.nist.gov/pml/weights-and-measures/metric-si/si-units
https://www.nist.gov/pml/weights-and-measures/publications/metric-publications
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Table 2. Greek alphabet 
Name Letter Name Letter Name Letter Name Letter Name Letter Name Letter 
alpha Α, α epsilon Ε, ε iota Ι, ι nu Ν, ν rho Ρ, ρ phi Φ, φ 
beta Β, β zeta Ζ, ζ kappa Κ, κ xi Ξ, ξ sigma Σ, ς, σ chi Χ, χ 
gamma Γ, γ eta Η, η lambda Λ, λ omicron Ο, ο tau Τ, τ psi Ψ, ψ 
delta Δ, δ theta Θ, θ mu Μ, μ pi Π, π upsilon Υ, υ omega Ω, ω 

 
Every effort has been made to ensure the accuracy of the content in this Operational Practice. Any errors 
or omissions are unintentional and should be brought to the attention of SCTE so that corrections can be 
made to subsequent versions of this document. 
 
If the reader is aware of or has suggestions for other cable technology-related formulas and examples that 
could be considered for inclusion in future versions of this Operational Practice, please contact SCTE. 
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7. Scientific Notation and Engineering Notation 
Cable math often requires calculations that use very large quantities and very small quantities. For 
example, the speed of light in a vacuum is approximately 300,000,000 meters per second (m/s) or 
approximately 186,000 miles per second (mi/s).4 A typical wavelength of light used for fiber optics in 
cable systems is 0.000001550 meter (commonly stated as 1,550 nanometers). A typical bit error ratio 
might be 0.00000000153, that is, 153 bit errors per every 100 billion bits transmitted 
(153/100,000,000,000 = 0.00000000153). 
 
It is difficult and awkward to carry along all those zeros when doing calculations. Scientific notation and 
engineering notation provide useful ways of writing very large and very small numbers. 
 

7.1. A review of powers of 10 

A helpful starting point for explaining scientific notation is a review of powers of 10. The number 10 
raised to the first power is given by 
 

101 = 10 
 
10 to the second power is given by  
 

102 = 100 
 
10 to the third power is given by 
 

103 = 100 
 
and so forth. One million can be written as 10 to the sixth power or 
 

106 = 1,000,000 
 
10 can also be raised to a negative power. 10 to the power of negative one is given by 
 

10−1 =  
1

101  =  
1

10
= 0.1 

 
or one tenth. 10 to the power of negative two is given by 
 

10−2 =  
1

102  =  
1

100
= 0.01 

 
or one hundredth. 10 to power of negative three is given by 
 

10−3 =  
1

103  =  
1

1000
= 0.001 

 
or one thousandth and so forth. 

 
4 The speed of light used in this document is the National Institute of Standards and Technology value of 
299,792,458 meters per second, which equals 983,571,056.43 feet per second or 186,282.40 miles per second. 
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By definition 10 raised to the zero power is 1. 
 

100 = 1 
 
In fact, any number raised to the zero power is equal to 1. 
 

7.2. Scientific notation 

Scientific notation is a way of writing numbers in the following form: 
 

𝐴𝐴 ∗ 10𝑑𝑑 
 
For example, we could write the approximate speed of light in meters per second as 
 

300,000,000 = 3.0 ∗ 100,000,000 = 3.0 ∗ 108 𝑚𝑚/𝐿𝐿 
 
Thus, the approximate speed of light expressed in scientific notation is 3.0 ∗ 108 m/s. It would be read as 
“three point zero times ten to the eighth meters per second” or just “three times ten to the eighth meters 
per second”. This is a much more convenient way to write this very large number. 
 
Similarly, in the bit error ratio example given previously where there were 153 bit errors per every 100 
billion bits transmitted, the BER could be written as 
 

0.00000000153 = 1.53 ∗ 0.000000001 = 1.53 ∗ 10−9  
 
We would write the BER as 1.53 ∗ 10-9 rather than 0.00000000153. It would be read as “one point five 
three times ten to the minus nine.” 
 
Many pieces of test equipment display results, such as BER, in scientific notation. The format used by 
test equipment often is of a slightly different form. For example, the BER result in the previous paragraph 
would be displayed as 1.53E–09. The “E” in this format refers to the exponent (or power) of 10. The 
display would still be read as “one point five three times ten to the minus nine.” 
 
Note that when dealing with BER, a result of 1.00E–09 is much better than a result of 9.99E–09. In the 
first case there is only one error per every billion bits transmitted whereas in the second case there would 
be almost 10 errors (9.99 errors) per every billion bits transmitted. 
 

7.3. Engineering notation 

Engineering notation is very similar to scientific notation. However, in engineering notation the power of 
10 is always a multiple of three. For example, the approximate speed of light in meters per second, 3.0 ∗ 
108 m/s in scientific notation, would be written in engineering notation as 300 ∗ 106 m/s. Note that the 
power of 10 is six which is a multiple of three. 
 
As a second example, consider the number 3.14 ∗ 10-8 as expressed in scientific notation. This same 
number would be 31.4 ∗ 10-9 when expressed in engineering notation. 
 
Note how engineering notation can be easily related to the prefixes used in Appendix B, Table 32. 
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8. Frequency, Wavelength, and Period 

8.1. Units 

Frequency is the number of times, typically per second, that a repetitive event happens. For an 
electromagnetic wave – for instance, a radio frequency (RF) signal carried in a cable network – frequency 
is the wave’s rate of oscillation. Frequency is commonly measured or stated in units of hertz (Hz), which 
is the number of cycles per second; see Table 3. 
 
Related to frequency is wavelength, an electromagnetic wave’s speed of propagation divided by its 
frequency in cycles per second. Wavelength is commonly represented by the symbol λ. If you could see 
an electromagnetic signal’s waves, wavelength would be the distance from a point on one cycle’s wave to 
the same point on the adjacent cycle’s wave. Yet another related term is period, which is the duration in 
time of each cycle of a repetitive event and is the reciprocal of frequency. 
 
Electromagnetic waves can be thought of as analogous to the ripples that occur when one tosses a rock 
into a pond of water. For example, throw a rock in the water, then count the number of waves per second 
that pass by a wooden post sticking out of the water. That’s the frequency. Next, measure the distance 
between adjacent water ripples’ peaks or valleys to determine the wavelength. Finally, measure the time 
that it takes for each wave or ripple to pass the wooden post; that’s the period.  

Table 3. Cycles per second and frequency 
Number of cycles per second Factor Unit Abbreviation Frequency (SI units) 
1 100 hertz Hz 1 hertz (1 Hz) 
1,000 103 kilohertz kHz 1 kilohertz (1 kHz) 
1,000,000 106 megahertz MHz 1 megahertz (1 MHz) 
1,000,000,000 109 gigahertz GHz 1 gigahertz (1 GHz) 
1,000,000,000,000 1012 terahertz THz 1 terahertz (1 THz) 
1,000,000,000,000,000 1015 petahertz PHz 1 petahertz (1 PHz) 
1,000,000,000,000,000,000 1018 exahertz EHz 1 exahertz (1 EHz) 
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8.2. Frequency 

The frequency of an electromagnetic signal is related to wavelength using the following formulas, which 
are simply the speed of light divided by wavelength: 
 

 

𝑓𝑓 =
983,571,056.43

𝜆𝜆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
 

 
where 
𝑓𝑓 is frequency in hertz 
𝜆𝜆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is wavelength in feet 
 

𝑓𝑓 =
299,792,458

𝜆𝜆𝑘𝑘𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚
 

 
where 
𝑓𝑓 is frequency in hertz 
𝜆𝜆𝑘𝑘𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚 is wavelength in meters 
 
 
Example: 
What is the frequency of a signal whose wavelength in a vacuum is 30 meters? 
 
Solution: 

𝑓𝑓 =
299,792,458

𝜆𝜆𝑘𝑘𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚
 

 

𝑓𝑓 =
299,792,458

30
 

 
𝑓𝑓 = 9,993,081.933 
 
Answer: The frequency is 9,993,081.933 Hz or 9.99 MHz. 
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8.3. Wavelength 

The wavelength of an electromagnetic signal is related to frequency using the following formulas: 
 
 

𝜆𝜆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
983,571,056.43

𝑓𝑓
 

 
where 
𝜆𝜆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is wavelength in feet 
𝑓𝑓 is frequency in hertz 
 

𝜆𝜆𝑘𝑘𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚 =
299,792,458

𝑓𝑓
 

where 
𝜆𝜆𝑘𝑘𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚 is wavelength in meters 
𝑓𝑓 is frequency in hertz 
 
 
Example: 
What is the wavelength in feet of a 100 MHz signal in a vacuum? 
 
Solution: 
First convert 100 MHz to Hz: 100 MHz = 100,000,000 Hz, then use the following formula: 
 

𝜆𝜆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
983,571,056.43

𝑓𝑓
 

 

𝜆𝜆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
983,571,056.43

100,000,000
 

 
𝜆𝜆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 9.836 
 
Answer: The free-space (that is, in a vacuum) wavelength in feet of a 100 MHz signal is 9.836 feet. 
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8.4. Period 

The period of an electromagnetic signal is related to frequency with the following formulas: 
 

 
𝑇𝑇 = 1/𝑓𝑓 

 
where 
𝑇𝑇 is period in seconds 
𝑓𝑓 is frequency in hertz 
 

𝑓𝑓 = 1/𝑇𝑇 
 
where 
𝑓𝑓 is frequency in hertz 
𝑇𝑇 is period in seconds 
 
 
Example 1: 
What is the period of a 10 MHz RF signal? 
 
Solution 1: 
𝑇𝑇 = 1/𝑓𝑓 
 
𝑇𝑇 = 1/10,000,000 
 
𝑇𝑇 = 0.0000001 
 
Answer: The period of a 10 MHz signal is 0.0000001 second or 0.1 microsecond (µs). 
 
Example 2: 
What is the frequency of an RF signal whose period is 1 µs (0.000001 second)? 
 
Solution 2: 
𝑓𝑓 = 1/𝑇𝑇 
 
𝑓𝑓 = 1/0.000001 
 
𝑓𝑓 = 1,000,000 
 
Answer: The frequency is 1,000,000 Hz or 1 MHz. 
 

8.5. Free-space wavelength formulas 

The following table summarizes formulas to calculate the free-space wavelength in meters, feet, and 
inches, for a full wavelength, half-wavelength, and quarter-wavelength. 
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Table 4 - Wavelength formulas 
   
λmeters = 299.792458/fMHz 
λ/2meters = 149.896229/fMHz 
λ/4meters = 74.948115/fMHz 
   
λfeet = 983.571056/fMHz 
λ/2feet = 491.785528/fMHz 
λ/4feet = 245.892764/fMHz 
   
λinches = 11,802.852677/fMHz 
λ/2inches = 5,901.426339/fMHz 
λ/4inches = 2,950.713169/fMHz 

 
Assumptions for table: 
Speed of light in a vacuum = 299,792,458 meters per second, or 983,571,056.43 feet per second 
λ = wavelength 
λ/2 = half wavelength 
λ/4 = quarter wavelength 
fMHz = frequency in megahertz 
 
Example: 
What is the free space wavelength, in feet, of a 450 MHz RF signal? 
 
Solution: 
𝜆𝜆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 983.571056 𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀⁄  
 
𝜆𝜆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 983.571056 450⁄  
 
𝜆𝜆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 2.19 
 
Answer: The wavelength is 2.19 feet, or 2 feet, 2.28 inches. 
 

8.6. Angular velocity (angular frequency) 

Another measure of frequency is angular velocity (or angular frequency). The SI unit of angular velocity 
is expressed in radians per second (rad/s) and is commonly represented by the lowercase form of the 
Greek letter omega (ω). An angular frequency of ω = 1 rad/s corresponds to a frequency in hertz of f = (1 
rad/s)/(2π) ≈ 0.159 Hz. 
 

8.6.1. Radians 

The concept of angular velocity (angular frequency) is based upon something known as the radian. A 
radian – abbreviated rad – is a unit of angular measure, where an angle of 1 radian defines an arc that has 
a length equal to the radius of a circle (see Figure 1). This results in the following relationships: 
 
1 radian = 180/π degrees ≈ 57.3 degrees 
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From this, degrees can be expressed in radians and vice versa: 360° = 2π radians, 180° = π radians, 90° = 
π/2 radians, and so on. See Figure 2. 
 

1 radian

R

Length of this arc equals 
the radius “R” of the circle

 
Figure 1 - The angle formed by an arc whose length is equal to the length of a circle's 

radius is 1 radian, which is approximately 57.3 degrees. 

 
 
 

 
Figure 2. These two graphics illustrate the relationship between degrees and radians. 

Here’s one example of the application of radians to frequency: A sinusoidal signal such as an 
unmodulated RF carrier wave – more commonly known as a continuous wave (CW) carrier – can be 
expressed mathematically as 
 
𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐴𝐴 ∗ 𝐿𝐿𝑠𝑠𝑠𝑠(𝜔𝜔0 ∗ 𝑡𝑡) 
 
where 
𝐶𝐶𝐶𝐶𝐶𝐶 is an unmodulated carrier wave (that is, a CW carrier) 
𝐴𝐴 is the peak amplitude of the carrier wave 
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𝑡𝑡 is time in seconds 
𝜔𝜔0 is the angular frequency of the carrier wave in radians per second 
 

8.6.2. Convert hertz to radians per second 

To convert frequency in hertz to radians per second use the following formula: 
 

 
𝜔𝜔 = 2𝜋𝜋 ∗ 𝑓𝑓 

 
where 
𝜔𝜔 is angular velocity (angular frequency) in radians per second 
𝑓𝑓 is frequency in hertz 
 
 
Example: 
What is a frequency of 1 MHz expressed in radians per second? 
 
Solution: 
First convert 1 MHz to hertz (1 MHz = 1,000,000 Hz) then use the following formula: 
 
𝜔𝜔 = 2𝜋𝜋 ∗ 𝑓𝑓 
 
𝜔𝜔 = 2𝜋𝜋 ∗ 1,000,000 
 
𝜔𝜔 = (2 ∗ 3.1416) ∗ 1,000,000 
 
𝜔𝜔 = (6.2832) ∗ 1,000,000 
 
𝜔𝜔 = 6,283,185.31 
 
Answer: 1 MHz is 6,283,185.31 rad/s. 
 

8.6.3. Convert radians per second to hertz 

To convert angular velocity (angular frequency) in radians per second to frequency in hertz use the 
following formula: 
 

 
𝑓𝑓 =

𝜔𝜔
2𝜋𝜋

 
 
where 
𝑓𝑓 is frequency in hertz 
𝜔𝜔 is angular velocity (angular frequency) in radians per second 
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Example: 
What is an angular velocity (angular frequency) of 376.9912 rad/s expressed in hertz? 
 
Solution: 
𝑓𝑓 =

𝜔𝜔
2𝜋𝜋

 
 

𝑓𝑓 =
376.9912

2𝜋𝜋
 

 

𝑓𝑓 =
376.9912
2 ∗ 3.1416

 
 

𝑓𝑓 =
376.9912

6.2832
 

 
𝑓𝑓 = 60 
 
Answer: The frequency is 60 Hz. 
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9. Time Domain and Frequency Domain 
Most electrical signals of interest in cable systems vary as a function of time.5 One simple example is a 
sinusoidal voltage. Such a signal is a function with time as its domain and voltage as its range. We can 
write 𝑉𝑉(𝑡𝑡) indicating that the signal, 𝑉𝑉, is a function of time, 𝑡𝑡. 
 
Mathematically the signal, 𝑉𝑉(𝑡𝑡), can be described using the following formula:6 
 

 
𝑉𝑉(𝑡𝑡) = 𝐴𝐴 ∗ 𝐿𝐿𝑠𝑠𝑠𝑠(2 ∗ 𝜋𝜋 ∗ 𝑓𝑓 ∗ 𝑡𝑡) 

 
where 
𝑉𝑉(𝑡𝑡) is the signal, 𝑉𝑉, as a function of time, 𝑡𝑡  
𝐴𝐴 is the peak voltage of the signal in volts 
𝐿𝐿𝑠𝑠𝑠𝑠 is the sine function 
𝑓𝑓 is frequency in hertz 
𝑡𝑡 is time in seconds 
 
 
Figure 3 illustrates a plot of 𝑉𝑉(𝑡𝑡) for a sinusoidal waveform (also called a sine wave), where 𝐴𝐴 is the peak 
voltage. Note: The period of the sine wave in seconds is the reciprocal of its frequency, or 1 𝑓𝑓⁄ . Refer to 
Section 8.4 for more information on period. 
 

 
Figure 3 - V(t) for a sinusoidal waveform. 

A good example is the 120 volts root mean square (RMS) alternating current “signal” from a North 
American household electric outlet. Its peak voltage is 120 𝑉𝑉𝑅𝑅𝑀𝑀𝑅𝑅 ∗ √2 = 169.71 volts and its frequency 
is 60 Hz. Here, 𝑉𝑉(𝑡𝑡) = 169.71 ∗ 𝐿𝐿𝑠𝑠𝑠𝑠(2 ∗ 𝜋𝜋 ∗ 60 ∗ 𝑡𝑡). 
 

 

5 Robert Gagliardi, Introduction to Communications Engineering, John Wiley and Sons, ©1978 pp 1-10 
6 The formula often includes a phase term, 𝜃𝜃, for example, 𝑉𝑉(𝑡𝑡) = 𝐴𝐴 ∗ 𝐿𝐿𝑠𝑠𝑠𝑠(2𝜋𝜋𝑓𝑓𝑡𝑡 + 𝜃𝜃). For this discussion, the phase 
term is omitted to simplify the concept. 
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Consider a sine wave at a frequency of 1 kHz (f = 1,000) and peak amplitude of 1 volt (A = 1), 
represented by the formula 𝑉𝑉(𝑡𝑡) = 1 ∗ 𝐿𝐿𝑠𝑠𝑠𝑠(2 ∗ 𝜋𝜋 ∗ 1,000 ∗ 𝑡𝑡). 
 
If we were to connect this signal to an oscilloscope the resulting display of one cycle of that signal would 
appear as shown in Figure 4. 

 
Figure 4 - One cycle of a 1 kHz sine wave as displayed on an oscilloscope. 

The oscilloscope displays time (domain) on the horizontal axis and displays voltage (range) on the 
vertical axis. This is known as a time domain representation of the signal. Figure 5 shows examples of 
other types of signals as they would appear on an oscilloscope (i.e., in the time domain). 
 

 
Figure 5 - Other examples of signals in the time domain. 

Note: One must be cautious when using an oscilloscope to display and measure signals, particularly high 
frequency signals. Many analog oscilloscopes are intentionally designed with limited bandwidth. Signals 

-1

-0.5

0

0.5

1

0 0.00025 0.0005 0.00075 0.001

Time (sec)

A
m

pl
itu

de
 ( 

Vo
lts

)
Vo

lts Square
Wave

Ramp

Noise

Time



SCTE 270 2021r1   

SCTE OPERATIONAL PRACTICE  © SCTE 47 

containing components at frequencies that exceed the bandwidth of the oscilloscope may not be displayed 
properly. Digital sampling oscilloscopes are of particular concern. The sampling rate must be 
significantly higher than the highest frequency component of the signal to be measured. Failure to follow 
this requirement can result in artifacts called aliases that can completely obscure the desired signal. It is 
important to confirm that the useful frequency range of an oscilloscope exceeds the range of frequencies 
in the signal to be measured. 
 
Equivalently it is possible to think of signals as a function of frequency. Consider again our original 1 
kHz sinusoidal signal. It contains power at a single frequency, 1 kHz. If we were to plot power as a 
function of frequency that power would show up as a narrow vertical spike at 1 kHz on the frequency 
axis. This is illustrated in Figure 6. 

 
Figure 6 - A 1 kHz sine wave in the frequency domain. 

In this case we consider frequency as the domain of the signal and power as the range. Thus, in Figure 6 
the signal is shown in the frequency domain.7 
 
The two ways of observing the signal, time domain and frequency domain, are both completely valid but 
emphasize different characteristics of the same signal. Techniques developed by Fourier8 allow us to 
mathematically convert between the two domains (the details of this method are beyond the scope of what 
we wish to cover in this text). 
 

 
7 From a rigorous mathematical standpoint, the frequency domain representation of a signal must contain not only 
amplitude information but also phase information. Frequency spectra are, by definition, vector quantities. However, 
for the purposes of the discussions here we will focus on the amplitude of the frequency spectra. The inquisitive reader 
is encouraged to investigate the complete nature of frequency spectra by examining the Fourier transform. 
8 Athanasios Papoulis, The Fourier Integral and its Applications, McGraw-Hill Book Company, Inc., © 1962, pp 1-
17 
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A conventional swept-tuned spectrum analyzer uses RF and analog circuitry to produce an approximate 
representation of a signal or signals in the frequency domain. If we were to apply our 1 kHz signal to the 
input of a spectrum analyzer the display would appear as shown in Figure 7. 
 

 
Figure 7 - A 1 kHz sine wave as displayed on a spectrum analyzer (courtesy of Comcast). 

Spectrum analyzers display signals in the frequency domain just as oscilloscopes display signals in the 
time domain. Real world constraints prevent the spectrum analyzer from resolving the frequency 
components of the signal at its input with infinite resolution. Consequently, the signal as displayed on the 
spectrum analyzer has a width in the frequency domain that is a function of the width of the filters used 
inside the spectrum analyzer.  
  
A sinusoidal signal such as that shown Figure 3, Figure 4, Figure 6, and Figure 7 is generally referred to 
as a carrier. This designation has to do with the use of sinusoidal signals in RF modulation. A carrier 
without modulation is often referred to as a continuous wave (CW) carrier. 
 
Now consider a more complex signal consisting of the sum of three sine waves, each with an amplitude of 
1 volt. The first sine wave will be at a frequency of 1 kHz, the second will be at a frequency of 2 kHz and 
the third at a frequency of 3 kHz.  We can describe the composite voltage resulting from the sum of these 
three sine waves as 
 

𝑉𝑉(𝑡𝑡) = [1 ∗ 𝐿𝐿𝑠𝑠𝑠𝑠(2 ∗ 𝜋𝜋 ∗ 1,000 ∗ 𝑡𝑡)] + [1 ∗ 𝐿𝐿𝑠𝑠𝑠𝑠(2 ∗ 𝜋𝜋 ∗ 2,000 ∗ 𝑡𝑡)] + [1 ∗ 𝐿𝐿𝑠𝑠𝑠𝑠(2 ∗ 𝜋𝜋 ∗ 3,000 ∗ 𝑡𝑡)] 
 
If we were to connect this complex signal to an oscilloscope, the resulting time domain display would 
appear as shown in Figure 8. 
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Figure 8 - The sum of a 1 kHz sine wave, 2 kHz sine wave, and 3 kHz sine wave as 

displayed on an oscilloscope. 

It is not readily apparent by simple inspection in the time domain that this signal consists of the sum of 
three sine waves. Figure 9 shows the resulting display if this complex signal were connected to a 
spectrum analyzer. 
 

 
Figure 9 - The sum of three sine waves – 1 kHz, 2 kHz, and 3 kHz – in the frequency 

domain as displayed on a spectrum analyzer (courtesy of Comcast). 

The spectrum analyzer makes it much easier to see that the signal contains power at three distinct 
frequencies. 
 
When dealing with cable signals it is often useful to consider those signals in both the time domain and 
the frequency domain. The two ways of examining the signal emphasize different characteristics. 
Depending upon the task at hand one representation may be preferred to the other.  
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10. Conversion Factors for Sinusoidal AC Voltage and Current 
An unmodulated RF carrier, also known as a continuous wave (CW) carrier, is a sinusoidal alternating 
current (AC) waveform. The 120 volts electricity from a North American household electrical outlet also 
is a sinusoidal waveform. Figure 10 shows an example of a sinusoidal waveform, or sine wave, in the 
time domain (that is, the horizontal axis is time and the vertical axis is amplitude). The figure’s horizontal 
axis also shows the phase of the waveform in degrees, and the waveform’s period (T) in units of seconds 
(see Section 8.4 for more information on period). The graphic in the figure is similar to what one would 
see on an oscilloscope display of a sine wave. The formulas in this section can be used to convert between 
the various ways commonly used to express the amplitude of sinusoidal AC voltage or current: average, 
peak, peak-to-peak, and root mean square. 
 
average (avg): The average (or mean) value of a symmetrical alternating quantity such as a sine wave is 
defined here as the average value of the (full wave) rectified quantity measured over one complete cycle. 
Mathematically, the average value of a sinusoidal AC waveform is 𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑝𝑝 ∗ (2 𝜋𝜋⁄ ). 
 
peak (p): The maximum value of an alternating quantity such as a sinusoidal AC waveform during one 
cycle, relative to a reference value such as 0 volts or 0 amperes (e.g., the horizontal line in Figure 10 
labeled 0). Mathematically, the peak value of a sinusoidal AC waveform is 𝑝𝑝 = 𝑅𝑅𝑅𝑅𝑅𝑅 ∗ √2. 
 
peak-to-peak (p-p): The sum of the maximum value of an alternating quantity such as a sinusoidal AC 
waveform during one cycle, above and below a reference such as 0 volts or 0 amperes (e.g., the horizontal 
line in Figure 10 labeled 0). Mathematically, the peak-to-peak value of a sinusoidal AC waveform is  
𝑝𝑝-𝑝𝑝 = 𝑝𝑝 ∗ 2. 
 
root mean square RMS): In the context as used here, RMS is based upon equating the values of AC and 
DC power to heat a resistive element to exactly the same degree. An RMS value is found by squaring the 
individual values of all the instantaneous values of voltage or current in a single AC cycle. Take the 
average of those squares and find the square root of the average. Mathematically, the root mean square 
value of a sinusoidal AC waveform is 𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑝𝑝 ∗ �1 √2⁄ �. 
 
The formulas and examples for a sinusoidal waveform are NOT applicable to the quasi-square wave 
alternating current waveform provided by ferroresonant transformer-based cable network line power 
supplies. (Note: The peak-to-peak value of a quasi-square wave waveform is 𝑝𝑝-𝑝𝑝 = 𝑝𝑝 ∗ 2; the peak value 
of that type of waveform is 𝑝𝑝 = 𝑝𝑝-𝑝𝑝 ∗ 0.5.) 
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Figure 10 - Relationships between root mean square, average, peak, and peak-to-peak 

values of AC voltage (or AC current) in a sinusoidal waveform. Adapted from [1]. 

 

10.1. Convert peak voltage to peak-to-peak voltage (or peak current to peak-to-
peak current) 

The following formula can be used to convert peak voltage to peak-to-peak voltage (or peak current to 
peak-to-peak current): 
 

 
𝑝𝑝-𝑝𝑝 = 2 ∗ 𝑝𝑝 

 
where 
𝑝𝑝-𝑝𝑝 is peak-to-peak voltage or current 
𝑝𝑝 is peak voltage or current 
 
 
Example: 
What is the peak-to-peak voltage of a 30 volts peak sine wave? 
 
Solution: 
𝑝𝑝-𝑝𝑝 = 2 ∗ 𝑝𝑝 
 
𝑝𝑝-𝑝𝑝 = 2 ∗ 30 
 
𝑝𝑝-𝑝𝑝 = 60 
 
Answer: The peak-to-peak voltage is 60 volts. 
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10.2. Convert peak-to-peak voltage to peak voltage (or peak-to-peak current to 
peak current) 

The following formulas can be used to convert peak-to-peak voltage to peak voltage (or peak-to-peak 
current to peak current): 
 

 
𝑝𝑝 =

𝑝𝑝-𝑝𝑝
2

 
 

𝑝𝑝 = 𝑝𝑝-𝑝𝑝 ∗ 0.5 
 

where 
𝑝𝑝 is peak voltage or current 
𝑝𝑝-𝑝𝑝 is peak-to-peak voltage or current 
 
 
Example: 
What is the peak voltage of a 60 volts peak-to-peak sine wave? 
 
Solution: 
𝑝𝑝 =

𝑝𝑝-𝑝𝑝
2

 
 

𝑝𝑝 =
60
2

 
 
𝑝𝑝 = 30 
 
Answer: The peak voltage is 30 volts. 
 

10.3. Convert root mean square voltage to peak voltage (or root mean square 
current to peak current) 

The following formulas can be used to convert root mean square voltage to peak voltage (or root mean 
square current to peak current): 
 

 
𝑝𝑝 = 𝑅𝑅𝑅𝑅𝑅𝑅 ∗ √2 

 
𝑝𝑝 = 𝑅𝑅𝑅𝑅𝑅𝑅 ∗ 1.414214 

 
where 
𝑝𝑝 is peak voltage or current 
𝑅𝑅𝑅𝑅𝑅𝑅 is root mean square voltage or current 
 
 
Example: 
What is the peak current of a 12 amperes RMS sinusoidal current? 
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Solution: 
𝑝𝑝 = 𝑅𝑅𝑅𝑅𝑅𝑅 ∗ 1.414214 
 
𝑝𝑝 = 12 ∗ 1.414214 
 
𝑝𝑝 = 16.97 
 
Answer: The peak current is 16.97 amperes. 
 

10.4. Convert root mean square voltage to peak-to-peak voltage (or root mean 
square current to peak-to-peak current) 

The following formulas can be used to convert root mean square voltage to peak-to-peak voltage (or root 
mean square current to peak-to-peak current): 
 

 
𝑝𝑝-𝑝𝑝 = 𝑅𝑅𝑅𝑅𝑅𝑅 ∗ �2 ∗ √2� 

 
𝑝𝑝-𝑝𝑝 = 𝑅𝑅𝑅𝑅𝑅𝑅 ∗ 2.828427 

 
where 
𝑝𝑝-𝑝𝑝 is peak-to-peak voltage or current 
𝑅𝑅𝑅𝑅𝑅𝑅 is root mean square voltage or current 
 
 
Example: 
What is the peak-to-peak voltage of a 120 volts RMS electrical outlet? 
 
Solution: 
𝑝𝑝-𝑝𝑝 = 𝑅𝑅𝑅𝑅𝑅𝑅 ∗ �2 ∗ √2� 
 
𝑝𝑝-𝑝𝑝 = 120 ∗ �2 ∗ √2� 
 
𝑝𝑝-𝑝𝑝 = 120 ∗ (2 ∗ 1.4142) 
 
𝑝𝑝-𝑝𝑝 = 120 ∗ (2.8284) 
 
𝑝𝑝-𝑝𝑝 = 339.41 
 
Answer: The peak-to-peak voltage is 339.41 volts. 
 

10.5. Convert average voltage to peak voltage (or average current to peak 
current) 

The following formulas can be used to convert average voltage to peak voltage (or average current to 
peak current): 
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𝑝𝑝 = 𝑎𝑎𝑎𝑎𝑎𝑎 ∗

𝜋𝜋
2

 
 

𝑝𝑝 = 𝑎𝑎𝑎𝑎𝑎𝑎 ∗ 1.570796 
 

where 
𝑝𝑝 is peak voltage or current 
𝑎𝑎𝑎𝑎𝑎𝑎 is average voltage or current 
 
 
Example: 
Assume that the average current of a sinusoidal waveform is 10 amperes. What is the peak current? 
 
Solution: 
𝑝𝑝 = 𝑎𝑎𝑎𝑎𝑎𝑎 ∗

𝜋𝜋
2

 
 

𝑝𝑝 = 10 ∗
3.141593

2
 

 
𝑝𝑝 = 10 ∗ 1.570796 
 
𝑝𝑝 = 15.71 
 
Answer: The peak current is 15.71 amperes. 
 

10.6. Convert peak voltage to average voltage (or peak current to average 
current) 

The following formulas can be used to convert peak voltage to average voltage (or peak current to 
average current): 
 

 

𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑝𝑝 ∗
2
𝜋𝜋

 
 

𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑝𝑝 ∗ 0.636620 
 

where 
𝑎𝑎𝑎𝑎𝑎𝑎 is average voltage or current 
𝑝𝑝 is peak voltage or current 
 
 
Example: 
Assume the peak current of a sinusoidal waveform is 15.71 amperes. What is the average current? 
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Solution: 

𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑝𝑝 ∗
2
𝜋𝜋

 
 

𝑎𝑎𝑎𝑎𝑎𝑎 = 15.71 ∗
2

3.141593
 

 
𝑎𝑎𝑎𝑎𝑎𝑎 = 15.71 ∗ 0.636620 
 
𝑎𝑎𝑎𝑎𝑎𝑎 = 10.00 
 
Answer: The average current is 10 amperes. 
 

10.7. Convert root mean square voltage to average voltage (or root mean 
square current to average current) 

The following formulas can be used to convert root mean square voltage to average voltage (or root mean 
square current to average current): 
 

 

𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑅𝑅𝑅𝑅𝑅𝑅 ∗
�2 ∗ √2�

𝜋𝜋
 

 
𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑅𝑅𝑅𝑅𝑅𝑅 ∗ 0.900316 

 
where 
𝑎𝑎𝑎𝑎𝑎𝑎 is average voltage or current 
𝑅𝑅𝑅𝑅𝑅𝑅 is root mean square voltage or current 
 
 
Example: 
What is the average voltage of a 120 volts RMS electrical outlet? 
 
Solution: 
𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑅𝑅𝑅𝑅𝑅𝑅 ∗ 0.900316 
 
𝑎𝑎𝑎𝑎𝑎𝑎 = 120 ∗ 0.900316 
 
𝑎𝑎𝑎𝑎𝑎𝑎 = 108.04 
 
Answer: The average voltage is 108.04 volts. 
 

10.8. Convert peak voltage to root mean square voltage (or peak current to 
root mean square current) 

The following formulas can be used to convert peak voltage to root mean square voltage (or peak current 
to root mean square current): 
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𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑝𝑝 ∗
1

√2
 

 
𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑝𝑝 ∗ 0.707107 

 
where 
𝑝𝑝-𝑝𝑝 is peak-to-peak voltage or current 
𝑝𝑝 is peak voltage or current 
𝑅𝑅𝑅𝑅𝑅𝑅 is root mean square voltage or current 
 
 
Example: 
What is the root mean square voltage of a North American electrical outlet that provides a peak voltage of 
169.7057 volts? 
 
Solution: 
𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑝𝑝 ∗ 0.707107 
 
𝑅𝑅𝑅𝑅𝑅𝑅 = 169.7057 ∗ 0.707107 
 
𝑅𝑅𝑅𝑅𝑅𝑅 = 120.00 
 
Answer: The RMS voltage is 120 volts. 
 

10.9. Convert peak-to-peak voltage to root mean square voltage (or peak-to-
peak current to root mean square current) 

The following formulas can be used to convert peak-to-peak voltage to root mean square voltage (or 
peak-to-peak current to root mean square current): 
 

 

𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑝𝑝-𝑝𝑝 ∗
1

�2 ∗ √2�
 

 
𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑝𝑝-𝑝𝑝 ∗ 0.353553 

 
where 
𝑅𝑅𝑅𝑅𝑅𝑅 is root mean square voltage or current 
𝑝𝑝-𝑝𝑝 is peak-to-peak voltage or current 
 
 
Example: 
What is the root mean square voltage of a 339.41 volts peak-to-peak sinusoidal waveform? 
 
Solution: 
𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑝𝑝-𝑝𝑝 ∗ 0.353553 
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𝑅𝑅𝑅𝑅𝑅𝑅 = 339.41 ∗ 0.353553 
 
𝑅𝑅𝑅𝑅𝑅𝑅 = 119.99 
 
Answer: The RMS voltage is about 120 volts. 
 

10.10. Convert average voltage to root mean square voltage (or average 
current to root mean square current) 

The following formulas can be used to convert average voltage to root mean square voltage (or average 
current to root mean square current): 
 

 
𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑎𝑎𝑎𝑎𝑎𝑎 ∗

𝜋𝜋
�2 ∗ √2�

 

 
𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑎𝑎𝑎𝑎𝑎𝑎 ∗ 1.110721 

 
where 
𝑅𝑅𝑅𝑅𝑅𝑅 is root mean square voltage or current 
𝑎𝑎𝑎𝑎𝑎𝑎 is average voltage or current 
 
 
Example: 
What is the root mean square current of a sinusoidal waveform when the average current is 10.8 amperes? 
 
Solution: 
𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑎𝑎𝑎𝑎𝑎𝑎 ∗ 1.110721 
 
𝑅𝑅𝑅𝑅𝑅𝑅 = 10.8 ∗ 1.110721 
 
𝑅𝑅𝑅𝑅𝑅𝑅 = 11.9958 
 
Answer: The RMS current is about 12 amperes. 
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11. Common Decibel-Based Calculations 

11.1. The decibel 

The foundation of much of the mathematics of cable – and many of the formulas in this document – is the 
decibel, which is a logarithmic-based expression of the ratio between two values of a physical quantity, 
typically power or intensity. The decibel provides an efficient way to express ratios which span one or 
more powers of the logarithmic base, most commonly 10 (see sidebar immediately prior to Section 11.4). 
 

11.1.1. Why use logarithms and decibels? 

RF signal power levels used in cable networks can exist over a very large dynamic range. Radio receivers 
recover signals that are about 10 times bigger than thermal noise power. This is a very small amount of 
energy at room temperature. Coaxial cable and taps attenuate the RF signals launched by optical nodes 
and amplifiers by a factor of about 10,000. Tracking signal levels as they travel from node or amplifier to 
the subscriber drop and coax outlet inside the customer premises is easiest if referenced back to some 
convenient level. Let’s say an amplifier output level is 1 volt of RF signal. The set-top box or cable 
modem in a subscriber’s home can recover a useable signal that is as little as 0.0001 volt. That is a 
dynamic range of 10,000-fold compared to the amplifier output. 
 
We could use volts, or millivolts (or even units of watts), to describe RF signal power levels in cable 
networks, but it is cumbersome with such a large range of values to accommodate. It is easier to convert 
these signal levels into decibels by employing logarithms. 
 
Another neat feature of decibels is that they make it much easier to determine the impact of an amplifier 
or length of coaxial cable on signal levels. Amplifiers have gain which can be represented in decibels – 
the ratio of output signal level to input signal level. Similarly, a distribution feeder will attenuate the 
signal level by the ratio of tap port signal level divided by amplifier launch level. When expressed in 
decibels, the impact of amplifiers or passive components is easy to determine by simply adding or 
subtracting the applicable number of decibels. In essence, logarithms translate multiplication and division 
into addition and subtraction – a much easier process to do in one’s head. 
 

11.2. Convert the ratio of two power levels to decibels 

The ratio in decibels of two power levels P1 and P2 can be calculated as follows: 
 
 

𝑑𝑑𝑑𝑑 = 10𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝑃𝑃1

𝑃𝑃2
� 

where 
𝑑𝑑𝑑𝑑 is the value in decibels 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑃𝑃1 is power in watts (or units of watts, e.g., milliwatts) 
𝑃𝑃2 is power in watts (the same units of watts as 𝑃𝑃1) 
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Example 1: 
Let’s say your company truck has a 50 watts two-way radio, and the dispatch office uses a 100 watts base 
station. How much more power, in decibels, does dispatch’s base station radio have than the one in your 
truck? 
 
Solution 1: 

𝑑𝑑𝑑𝑑 = 10𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝑃𝑃1

𝑃𝑃2
� 

 

𝑑𝑑𝑑𝑑 = 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 �
100
50

� 
 
𝑑𝑑𝑑𝑑 = 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(2) 
 
𝑑𝑑𝑑𝑑 = 10 ∗ (0.301) 
 
𝑑𝑑𝑑𝑑 = 3.01 
 
Answer: The 100 watts dispatch office radio has 3.01 dB greater power than the 50 watts radio in the 
truck. 
 
Example 2: 
Assume a local FM radio station installs a new 40,000 watts transmitter to replace an old 20,000 watts 
transmitter. How much more powerful, in decibels, is the new transmitter than the old one? 
 
Solution 2: 

𝑑𝑑𝑑𝑑 = 10𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝑃𝑃1

𝑃𝑃2
� 

 

𝑑𝑑𝑑𝑑 = 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 �
40,000
20,000

� 

 
𝑑𝑑𝑑𝑑 = 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(2) 
 
𝑑𝑑𝑑𝑑 = 10 ∗ (0.301) 
 
𝑑𝑑𝑑𝑑 = 3.01 
 
Answer: The 40,000 watts transmitter is 3.01 dB more powerful than the 20,000 watts transmitter. 
 
How can that be? In the first example, the power difference is 50 watts, and in the second example the 
power difference is 20,000 watts! Why does 3.01 dB apply to both examples? The absolute difference 
between the two power levels isn’t what matters, it’s the ratio of the two power levels. In both examples 
the ratio is 2:1. That is, one power level is twice as much as the other. (Note: Reducing the power by half, 
say, from 20,000 watts to 10,000 watts, also is a 3.01 dB change.) 
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Using the decibel for voltage ratios 
The decibel, while technically a ratio of two power levels, also can be used to represent the ratio of two 
voltage levels, assuming the two voltages are across (or in) the same impedance. 
 
Here is how that relationship is derived: The unit of electrical power, the watt, equals 1 volt multiplied by 
1 ampere. Equation-wise, P = EI, where P is power in watts, E is voltage in volts, and I is current in 
amperes. Substituting the Ohm’s Law equivalent for E and I gives additional formulas for power: P = 
E2/R and P = I2R. If the right-hand side of the power equation P = E2/R is substituted for both P1 and P2 in 
the formula dB = 10log10(P1/P2), the equation becomes dB = 10log10[(E2/R)/(E2/R)] which is the same as 
dB = 10log10[(E1

2)/R1)/(E2
2/R2)]. In this example, R represents the 75 ohms impedance of a cable network. 

Since R1 and R2 are both equal to 75 ohms, those equation terms cancel, leaving the equation dB = 
10log10(E1

2/E2
2). This can be simplified somewhat and written as dB = 10log10(E1/E2)2 which is the same 

as dB = 2 ∗ 10log10(E1/E2) or dB = 20log10(E1/E2). 
 
 

11.3. Convert the ratio of two voltage levels to decibels 

The ratio in decibels of two voltage levels E1 and E2 can be calculated as follows: 
 
 

𝑑𝑑𝑑𝑑 = 20𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝐸𝐸1

𝐸𝐸2
� 

where 
𝑑𝑑𝑑𝑑 is the value in decibels 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝐸𝐸1 is voltage in volts (or units of volts, e.g., millivolts) 
𝐸𝐸2 is voltage in volts (the same units of volts as 𝐸𝐸1) 
 
Note: Voltages 𝐸𝐸1 and 𝐸𝐸2 must be across the same impedance. 
 
 
Example: 
What is the difference, in decibels, between 100 millivolts (mV) and 50 mV, in the same 75 ohms 
impedance network? 
 
Solution: 

𝑑𝑑𝑑𝑑 = 20𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝐸𝐸1

𝐸𝐸2
� 

 

𝑑𝑑𝑑𝑑 = 20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 �
100
50

� 
 
𝑑𝑑𝑑𝑑 = 20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(2) 
 
𝑑𝑑𝑑𝑑 = 20 ∗ (0.301) 
 
𝑑𝑑𝑑𝑑 = 6.02 
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Answer: The difference, in decibels, between 100 mV and 50 mV is 6.02 dB. 
 
 
 
 
An important point: By itself, the decibel cannot be used to express absolute values.9 For instance, one 
can correctly say that an amplifier has 20 dB of gain, or a splitter has 4 dB of loss. It is incorrect to say 
that the RF signal level at the input to a set-top box is –2 dB, or the RF signal level at a line extender 
output is 48 dB. For that, “dB” must be appended with a reference suffix, such as dBmV, discussed later. 
The two examples here, when correctly stated, are –2 dBmV and +48 dBmV respectively. 
 

 
9 The decibel (dB) is used to express gain, loss or attenuation, return loss, structural return loss (SRL), isolation, 
carrier-to-noise ratio (CNR), composite intermodulation noise (CIN) ratio, signal-to-noise ratio (SNR), receive 
modulation error ratio (RxMER), various carrier-to-distortion ratios, and similar parameters. 
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Logarithms 
The formulas in the previous section include “log10,” which is an abbreviation for “base 10 logarithm.” 
Consider the numbers 100, 1,000, 10,000 and 0.001, and the different ways in which they can be represented: 
 
100 = 10 ∗ 10 = 102 
1,000 = 10 ∗ 10 ∗ 10 = 103 
10,000 = 10 ∗ 10 ∗ 10 ∗ 10 = 104 
0.001 = 1/(10 ∗ 10 ∗ 10) = 10-3 

 
What do the numbers 100, 1,000, 10,000, and 0.001 have in common? Each can be represented as 10 raised to 
some power – for instance, 10 raised to the power of 2 equals 100, written as 102 = 100. The exponent – the 
power to which 10 is raised – is the base 10 logarithm! 

 
From this, the logarithms of the previous example numbers can be shown. 
 
log10(100) = 2 
That is, 102 = 100 
 
log10(1,000) = 3 
That is, 103 = 1,000 
 
log10(10,000) = 4 
That is, 104 = 10,000 
 
log10(0.001) = –3 
That is, 10–3 = 0.001 
 
What about a number such as 523? 
log10(523) = 2.7185 
That is, 102.7185 = 523 
 
Note: The subscript “10” is sometimes dropped from “log10” when dealing with base 10 logarithms, so the 
formula dB = 10log10(P2/P1) becomes dB = 10log(P2/P1). In this document, the subscript denoting base is 
retained in formulas using logarithms. 
 
Logarithms are not limited to base 10. Indeed, they can be any base. One common logarithmic base used in data 
communications is 2. Here, the base 2 logarithm of a number is the power to which 2 is raised to obtain that 
number. For example, log2(256) = 8; that is, 28 = 256. Refer to Appendix A for information about how to 
calculate base 2 logarithms. 
 
For more on logarithms, an on-line search will return a variety of helpful resources and references. 
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11.4. Gain 

Gain is an increase in the power of a signal or signals, usually measured in decibels. Expressed 
mathematically: 
 
 

𝐺𝐺𝑑𝑑𝑑𝑑 = 10𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝑃𝑃𝑜𝑜𝑜𝑜𝑓𝑓

𝑃𝑃𝑖𝑖𝑖𝑖
� 

where 
𝐺𝐺𝑑𝑑𝑑𝑑 is gain in decibels 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑃𝑃𝑜𝑜𝑜𝑜𝑓𝑓 is output power in watts 
𝑃𝑃𝑖𝑖𝑖𝑖 is input power in watts (the same units of watts as Pout) 
and 𝑃𝑃𝑜𝑜𝑜𝑜𝑓𝑓 > 𝑃𝑃𝑖𝑖𝑖𝑖 
 
When signal power is stated in dBmV 
 

𝐺𝐺𝑑𝑑𝑑𝑑 = 𝑃𝑃𝑜𝑜𝑜𝑜𝑓𝑓(𝑑𝑑𝑑𝑑𝑘𝑘𝑑𝑑) − 𝑃𝑃𝑖𝑖𝑖𝑖(𝑑𝑑𝑑𝑑𝑘𝑘𝑑𝑑) 
where 
𝐺𝐺𝑑𝑑𝑑𝑑 is gain in decibels 
𝑃𝑃𝑜𝑜𝑜𝑜𝑓𝑓(𝑑𝑑𝑑𝑑𝑘𝑘𝑑𝑑) is output power in dBmV 
𝑃𝑃𝑖𝑖𝑖𝑖(𝑑𝑑𝑑𝑑𝑘𝑘𝑑𝑑) is input power in dBmV 
 
 
Example 1: 
What is the nominal gain of an amplifier whose input power is 1 watt and output power is 10 watts? 
 
Solution 1: 

𝐺𝐺𝑑𝑑𝑑𝑑 = 10𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝑃𝑃𝑜𝑜𝑜𝑜𝑓𝑓

𝑃𝑃𝑖𝑖𝑖𝑖
� 

 

𝐺𝐺𝑑𝑑𝑑𝑑 = 10𝑙𝑙𝐿𝐿𝑎𝑎10 �
10 𝑤𝑤𝑎𝑎𝑡𝑡𝑡𝑡𝐿𝐿

1 𝑤𝑤𝑎𝑎𝑡𝑡𝑡𝑡
� 

 
𝐺𝐺𝑑𝑑𝑑𝑑 = 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(10) 
 
𝐺𝐺𝑑𝑑𝑑𝑑 = 10 ∗ (1.00) 
 
𝐺𝐺𝑑𝑑𝑑𝑑 = 10 
 
Answer: The gain of the amplifier is 10 dB. 
 
Example 2: 
What is the nominal gain of a line extender amplifier whose per-channel RF input signal level is +20 
dBmV and output per-channel signal level is +48 dBmV? 
 
Solution 2: 
𝐺𝐺𝑑𝑑𝑑𝑑 = 𝑃𝑃𝑜𝑜𝑜𝑜𝑓𝑓(𝑑𝑑𝑑𝑑𝑘𝑘𝑑𝑑) − 𝑃𝑃𝑖𝑖𝑖𝑖(𝑑𝑑𝑑𝑑𝑘𝑘𝑑𝑑) 
 
𝐺𝐺𝑑𝑑𝑑𝑑 = 48 𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 − 20 𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 
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𝐺𝐺𝑑𝑑𝑑𝑑 = 28 
 
Answer: The gain of the line extender amplifier is 28 dB. 
 
Note: When adding or subtracting one value in dBmV to or from another value in dBmV, the difference is 
in dB, not dBmV. 
 

11.4.1. Convert linear power gain to gain in decibels 

The following formula can be used to convert a linear power gain value (sometimes called a linear power 
ratio) to a value in decibels. Note: The formula is essentially the same as formulas used in Section 11.2 
and Section 11.4, but with the ratio (fraction) in parentheses already solved to yield the linear power gain 
value. 
 
 

𝐺𝐺𝑑𝑑𝑑𝑑 = 10𝑙𝑙𝐿𝐿𝑎𝑎10(𝐺𝐺) 
where 
𝐺𝐺𝑑𝑑𝑑𝑑 is gain in decibels 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝐺𝐺 is the linear gain or linear power ratio 
 
 
Example: 
Assume an amplifier has a linear power gain of 100, that is, the amplifier’s gain increases the input power 
to the amplifier by a factor of 100. What is the amplifier’s gain in decibels? 
 
Solution: 
𝐺𝐺𝑑𝑑𝑑𝑑 = 10𝑙𝑙𝐿𝐿𝑎𝑎10(𝐺𝐺) 
 
𝐺𝐺𝑑𝑑𝑑𝑑 = 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(100) 
 
𝐺𝐺𝑑𝑑𝑑𝑑 = 10 ∗ (2.00) 
 
𝐺𝐺𝑑𝑑𝑑𝑑 = 20 
 
Answer: The gain in decibels is 20 dB. 
 

11.4.2. Convert gain in decibels to a linear power gain value 

The following formula can be used to convert gain in decibels to a linear power gain value (or linear 
power ratio). 
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𝐺𝐺 = 10𝐺𝐺𝑑𝑑𝑑𝑑 10⁄  

where 
𝐺𝐺 is the linear gain or linear power ratio 
𝐺𝐺𝑑𝑑𝑑𝑑 is gain in decibels 
 
 
Example: 
Assume an amplifier has 20 dB of gain. What is that power gain expressed as a linear value? 
 
Solution: 
𝐺𝐺 = 10𝐺𝐺𝑑𝑑𝑑𝑑 10⁄  
 
𝐺𝐺 = 1020 10⁄  
 
𝐺𝐺 = 102.00 
 
𝐺𝐺 = 100 
 
Answer: The linear gain (or linear power ratio) is 100. 
 

11.5. Loss10 

Loss (or attenuation) is a decrease in the power of a signal or signals, usually measured in decibels. 
Expressed mathematically:  
 
 

𝐿𝐿𝑑𝑑𝑑𝑑 = 10𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝑃𝑃𝑖𝑖𝑖𝑖

𝑃𝑃𝑜𝑜𝑜𝑜𝑓𝑓
� 

where 
𝐿𝐿𝑑𝑑𝑑𝑑 is loss in decibels 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑃𝑃𝑖𝑖𝑖𝑖 is input power in watts 
𝑃𝑃𝑜𝑜𝑜𝑜𝑓𝑓 is output power in watts (the same units of watts as Pin) 
and 𝑃𝑃𝑜𝑜𝑜𝑜𝑓𝑓 < 𝑃𝑃𝑖𝑖𝑖𝑖 
 
When signal power is stated in dBmV 
 

𝐿𝐿𝑑𝑑𝑑𝑑 = 𝑃𝑃𝑖𝑖𝑖𝑖(𝑑𝑑𝑑𝑑𝑘𝑘𝑑𝑑) − 𝑃𝑃𝑜𝑜𝑜𝑜𝑓𝑓(𝑑𝑑𝑑𝑑𝑘𝑘𝑑𝑑) 
where 
𝐿𝐿𝑑𝑑𝑑𝑑 is loss in decibels 
𝑃𝑃𝑖𝑖𝑖𝑖(𝑑𝑑𝑑𝑑𝑘𝑘𝑑𝑑) is input power in dBmV 
𝑃𝑃𝑜𝑜𝑜𝑜𝑓𝑓(𝑑𝑑𝑑𝑑𝑘𝑘𝑑𝑑) is output power in dBmV 
 
 
  

 
10 Coaxial cable loss (attenuation) is discussed later in Section 20.3. 
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Example 1: 
What is the loss of a high-power attenuator when the input power is 100 watts and the output power is 1 
watt? 
 
Solution 1: 

𝐿𝐿𝑑𝑑𝑑𝑑 = 10𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝑃𝑃𝑖𝑖𝑖𝑖

𝑃𝑃𝑜𝑜𝑜𝑜𝑓𝑓
� 

 

𝐿𝐿𝑑𝑑𝑑𝑑 = 10𝑙𝑙𝐿𝐿𝑎𝑎10 �
100 𝑤𝑤𝑎𝑎𝑡𝑡𝑡𝑡𝐿𝐿

1 𝑤𝑤𝑎𝑎𝑡𝑡𝑡𝑡
� 

 
𝐿𝐿𝑑𝑑𝑑𝑑 = 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(100) 
 
𝐿𝐿𝑑𝑑𝑑𝑑 = 10 ∗ (2) 
 
𝐿𝐿𝑑𝑑𝑑𝑑 = 20 
 
Answer: The attenuator’s loss (or attenuation) is 20 dB. 
 
Example 2: 
What is the tap loss of an unmarked directional coupler when the per-channel RF input signal level is +10 
dBmV and the per-channel output signal level is +4 dBmV? 
 
Solution 2: 
𝐿𝐿𝑑𝑑𝑑𝑑 = 𝑃𝑃𝑖𝑖𝑖𝑖(𝑑𝑑𝑑𝑑𝑘𝑘𝑑𝑑) − 𝑃𝑃𝑜𝑜𝑜𝑜𝑓𝑓(𝑑𝑑𝑑𝑑𝑘𝑘𝑑𝑑) 
 
𝐿𝐿𝑑𝑑𝑑𝑑 = 10 𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 − 4 𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 
 
𝐿𝐿𝑑𝑑𝑑𝑑 = 6 
 
Answer: The directional coupler’s tap loss is 6 dB. 
 
Note: When adding or subtracting one value in dBmV to or from another value in dBmV, the difference is 
in dB, not dBmV. 
 

11.6. Ideal splitter insertion loss 

The insertion loss through an ideal multiple-output splitter that has equal insertion loss or attenuation 
between the input port and each of the output ports can be calculated using the following formula: 
 
 

𝐿𝐿𝑑𝑑𝑑𝑑 = 10𝑙𝑙𝐿𝐿𝑎𝑎10(𝑁𝑁) 
where 
𝐿𝐿𝑑𝑑𝑑𝑑 is loss in decibels 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑁𝑁 is the number of output ports 
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Example: 
What is the insertion loss of an ideal two-way splitter (see Figure 11)? 
 
Solution: 
𝐿𝐿𝑑𝑑𝑑𝑑 = 10𝑙𝑙𝐿𝐿𝑎𝑎10(𝑁𝑁) 
 
𝐿𝐿𝑑𝑑𝑑𝑑 = 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(2) 
 
𝐿𝐿𝑑𝑑𝑑𝑑 = 10 ∗ 0.301 
 
𝐿𝐿𝑑𝑑𝑑𝑑 = 3.01 
 
Answer: The ideal two-way splitter’s insertion loss is 3.01 dB. 
 

INPUT

OUTPUT 
(terminated)

OUTPUT

 
Figure 11 - Insertion loss of a splitter is measured between the input port and each 

output port. (Note: During the measurement, all unused ports are terminated.) 

Real-world splitters have somewhat higher insertion loss than the ideal value calculated here. That 
additional or excess insertion loss is on the order of 0.5 dB to 1 dB (for a total insertion loss of about 3.5 
dB to 4 dB in a two-way splitter), and is caused by losses in the splitter’s internal toroidal transformers’ 
ferrite-core material and their very small gauge wire windings. The next section provides a formula to 
calculate the insertion loss of a real-world splitter. 
 

11.6.1. Real-world splitter insertion loss 

The insertion loss through a real-world multiple-output splitter that has equal insertion loss or attenuation 
between the input port and each of the output ports, and which uses combinations of internal two-way 
splitters to achieve the desired number of outputs can be calculated using the following formula: 
 
 

𝐿𝐿𝑑𝑑𝑑𝑑 = �
𝐿𝐿1

0.301
� ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(𝑁𝑁) 

where 
𝐿𝐿𝑑𝑑𝑑𝑑 is loss in decibels 
𝐿𝐿1 is the actual insertion loss of a single two-way splitter (typ. 3.5 dB to 4.0 dB) 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑁𝑁 is the number of output ports 
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Example: 
What is the insertion loss of a real-world four-way splitter, assuming a two-way splitter has 3.5 dB of 
insertion loss? 
 
Solution: 

𝐿𝐿𝑑𝑑𝑑𝑑 = �
𝐿𝐿1

0.301
� ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(𝑁𝑁) 

 

𝐿𝐿𝑑𝑑𝑑𝑑 = �
3.5

0.301
� ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(4) 

 
𝐿𝐿𝑑𝑑𝑑𝑑 = [11.6279] ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(4) 
 
𝐿𝐿𝑑𝑑𝑑𝑑 = [11.6279] ∗ (0.6021) 
 
𝐿𝐿𝑑𝑑𝑑𝑑 = 7.00 
 
Answer: The insertion loss is 7 dB. 
 

11.6.2. Splitter used as a combiner 

A splitter installed “backwards” can be used as a combiner. The splitter’s original output ports become 
the input ports for the sources being combined, and the splitter’s original input port becomes the 
combined output port. 
 
The following formula can be used to calculate the combined output power when the signals being 
combined have the same frequency, amplitude, and phase. The splitter is assumed to have no internal 
phase shift.11 
 
 

𝑃𝑃𝑐𝑐𝑜𝑜𝑘𝑘𝑐𝑐𝑖𝑖𝑖𝑖𝑓𝑓𝑑𝑑 = 10𝑙𝑙𝐿𝐿𝑎𝑎10�10𝑃𝑃1 10⁄ + 10𝑃𝑃2 10⁄ + ⋯ 10𝑃𝑃𝑛𝑛 10⁄ � 
where 
𝑃𝑃𝑐𝑐𝑜𝑜𝑘𝑘𝑐𝑐𝑖𝑖𝑖𝑖𝑓𝑓𝑑𝑑 is the combined output power in decibel millivolt 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑃𝑃1 is the first signal’s input power in decibel millivolt 
𝑃𝑃2 is the second signal’s input power in decibel millivolt 
𝑃𝑃𝑖𝑖 is the nth signal’s input power in decibel millivolt 
 
 
Example: 
Assume that a two-way splitter is being used to combine signals from two identical antennas receiving the 
same over-the-air TV channel. If the signal level at the input to each of the backwards splitter’s two 
output ports is 5 dBmV, what is the combined output signal level at the splitter’s input port (refer to 
Figure 12)? 
 
  

 
11 If the signals being combined are on different frequencies – for example, two different channels – then the 
combined output will be lower in amplitude than the individual input signal levels by an amount equal to the 
splitter’s insertion loss. See Section 11.6. 
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Solution: 
𝑃𝑃𝑐𝑐𝑜𝑜𝑘𝑘𝑐𝑐𝑖𝑖𝑖𝑖𝑓𝑓𝑑𝑑 = 10𝑙𝑙𝐿𝐿𝑎𝑎10�10𝑃𝑃1 10⁄ + 10𝑃𝑃2 10⁄ + ⋯ 10𝑃𝑃𝑛𝑛 10⁄ � 
 
𝑃𝑃𝑐𝑐𝑜𝑜𝑘𝑘𝑐𝑐𝑖𝑖𝑖𝑖𝑓𝑓𝑑𝑑 = 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10�105 10⁄ + 105 10⁄ � 
 
𝑃𝑃𝑐𝑐𝑜𝑜𝑘𝑘𝑐𝑐𝑖𝑖𝑖𝑖𝑓𝑓𝑑𝑑 = 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(100.50 + 100.50) 
 
𝑃𝑃𝑐𝑐𝑜𝑜𝑘𝑘𝑐𝑐𝑖𝑖𝑖𝑖𝑓𝑓𝑑𝑑 = 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(3.1623 + 3.1623) 
 
𝑃𝑃𝑐𝑐𝑜𝑜𝑘𝑘𝑐𝑐𝑖𝑖𝑖𝑖𝑓𝑓𝑑𝑑 = 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(6.3246) 
 
𝑃𝑃𝑐𝑐𝑜𝑜𝑘𝑘𝑐𝑐𝑖𝑖𝑖𝑖𝑓𝑓𝑑𝑑 = 10 ∗ (0.8010) 
 
𝑃𝑃𝑐𝑐𝑜𝑜𝑘𝑘𝑐𝑐𝑖𝑖𝑖𝑖𝑓𝑓𝑑𝑑 = 8.0103 
 
Answer: The combined output is about 8.01 dBmV. (Note: The combined output will be somewhat less 
than the ideal value calculated here, because of losses in the splitter’s internal toroidal transformers’ 
ferrite-core material and their very small gauge wire windings. Also, if there are any phase differences 
between the two inputs, that will affect the combined output signal level.) 

 

Figure 12 - Backwards two-way splitter used as a combiner. 
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11.7. Converting decibels and percentage 

It is often desirable to convert between percentage and decibel values. The following formulas can be 
used to make those conversions. 
 
 
To calculate the decibel equivalent of a percentage of power or voltage: 
 
 

𝑑𝑑𝑑𝑑 = 10𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡𝑎𝑎𝑎𝑎𝑝𝑝 𝑝𝑝𝐿𝐿𝑤𝑤𝑝𝑝𝑝𝑝

100
� 

 
 

𝑑𝑑𝑑𝑑 = 20𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡𝑎𝑎𝑎𝑎𝑝𝑝 𝑎𝑎𝐿𝐿𝑙𝑙𝑡𝑡𝑎𝑎𝑎𝑎𝑝𝑝

100
� 

 
 
To convert from percentages to decibels: 
 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡𝑎𝑎𝑎𝑎𝑝𝑝 𝑝𝑝𝐿𝐿𝑤𝑤𝑝𝑝𝑝𝑝 = 100 ∗ 10(𝑑𝑑𝑑𝑑 10)⁄  
 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡𝑎𝑎𝑎𝑎𝑝𝑝 𝑎𝑎𝐿𝐿𝑙𝑙𝑡𝑡𝑎𝑎𝑎𝑎𝑝𝑝 = 100 ∗ 10(𝑑𝑑𝑑𝑑 20)⁄  
 
where  
𝑑𝑑𝑑𝑑 is the value in decibels 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡𝑎𝑎𝑎𝑎𝑝𝑝 𝑝𝑝𝐿𝐿𝑤𝑤𝑝𝑝𝑝𝑝 is a ratio of power expressed as a fraction of 100, denoted using the percent sign (%) 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡𝑎𝑎𝑎𝑎𝑝𝑝 𝑎𝑎𝐿𝐿𝑙𝑙𝑡𝑡𝑎𝑎𝑎𝑎𝑝𝑝 is a ratio of voltage expressed as a fraction of 100, denoted using the percent sign 
(%) 
 
 
Example 1: 
You are using an antenna feed line that has a signal loss of 0.68 dB at the frequency of interest. Calculate 
the percentage of transmitter power that is reaching your antenna. 
 
Solution 1: 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡𝑎𝑎𝑎𝑎𝑝𝑝 𝑝𝑝𝐿𝐿𝑤𝑤𝑝𝑝𝑝𝑝 = 100 ∗ 10(𝑑𝑑𝑑𝑑 10)⁄  
 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡𝑎𝑎𝑎𝑎𝑝𝑝 𝑝𝑝𝐿𝐿𝑤𝑤𝑝𝑝𝑝𝑝 = 100 ∗ 10(−0.68 10)⁄  
 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡𝑎𝑎𝑎𝑎𝑝𝑝 𝑝𝑝𝐿𝐿𝑤𝑤𝑝𝑝𝑝𝑝 = 100 ∗ 10(−0.068) 
 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡𝑎𝑎𝑎𝑎𝑝𝑝 𝑝𝑝𝐿𝐿𝑤𝑤𝑝𝑝𝑝𝑝 = 100 ∗ 0.855067 
 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡𝑎𝑎𝑎𝑎𝑝𝑝 𝑝𝑝𝐿𝐿𝑤𝑤𝑝𝑝𝑝𝑝 = 85.51 
 
Answer: The percentage of transmitter power that is reaching the antenna is 85.51%. 
 
Note: Negative decibel values represent signal loss. 
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Example 2: 
You are using an antenna feed line to connect the output of the transmitter to your antenna. Assume the 
input power at the antenna is equal to 85.51% of the transmitter output power. What is the signal loss of 
the antenna feed line dB? 
 
Solution 2: 

𝑑𝑑𝑑𝑑 = 10𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡𝑎𝑎𝑎𝑎𝑝𝑝 𝑝𝑝𝐿𝐿𝑤𝑤𝑝𝑝𝑝𝑝

100
� 

 

𝑑𝑑𝑑𝑑 = 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 �
85.51%

100
� 

 
𝑑𝑑𝑑𝑑 = 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(0.8551) 
 
𝑑𝑑𝑑𝑑 = 10 ∗  −0.067983 
 
𝑑𝑑𝑑𝑑 = −0.67983 
 
Answer: The signal loss of the antenna feed line is 0.68 dB. 
 
Example 3: 
Calculate the output voltage of a 6 dB attenuator as a percentage of the input voltage. 
 
Solution 3: 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡𝑎𝑎𝑎𝑎𝑝𝑝 𝑎𝑎𝐿𝐿𝑙𝑙𝑡𝑡𝑎𝑎𝑎𝑎𝑝𝑝 = 100 ∗ 10(𝑑𝑑𝑑𝑑 20)⁄  
 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡𝑎𝑎𝑎𝑎𝑝𝑝 𝑎𝑎𝐿𝐿𝑙𝑙𝑡𝑡𝑎𝑎𝑎𝑎𝑝𝑝 = 100 ∗ 10(−6 20)⁄  
 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡𝑎𝑎𝑎𝑎𝑝𝑝 𝑎𝑎𝐿𝐿𝑙𝑙𝑡𝑡𝑎𝑎𝑎𝑎𝑝𝑝 = 100 ∗ 10(−0.3) 
 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡𝑎𝑎𝑎𝑎𝑝𝑝 𝑎𝑎𝐿𝐿𝑙𝑙𝑡𝑡𝑎𝑎𝑎𝑎𝑝𝑝 = 100 ∗ 0.501187 
 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡𝑎𝑎𝑎𝑎𝑝𝑝 𝑎𝑎𝐿𝐿𝑙𝑙𝑡𝑡𝑎𝑎𝑎𝑎𝑝𝑝 = 50.12 
 
Answer: The output voltage of a 6 dB attenuator is equal to 50.12% of the input voltage. 
 
Example 4: 
Assume the output voltage of a 6 dB attenuator is equal to 50.12% of the input voltage. What is the 
attenuation in dB? 
 
Solution 4: 

𝑑𝑑𝑑𝑑 = 20𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡𝑎𝑎𝑎𝑎𝑝𝑝 𝑎𝑎𝐿𝐿𝑙𝑙𝑡𝑡𝑎𝑎𝑎𝑎𝑝𝑝

100
� 

 

𝑑𝑑𝑑𝑑 = 20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 �
50.12%

100
� 

 

𝑑𝑑𝑑𝑑 = 20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 �
50.12%

100
� 
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𝑑𝑑𝑑𝑑 = 20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(0.5012) 
 
𝑑𝑑𝑑𝑑 = 20 ∗  −0.2999989 
 
𝑑𝑑𝑑𝑑 = 20 ∗  −0.2999989 
 
𝑑𝑑𝑑𝑑 = −5.999978 
 
Answer: The attenuation is equal to about 6 dB. 
 

11.8. Decibel millivolt (dBmV) 

Decibel millivolt (dBmV) is a unit of power expressed in terms of voltage. RF signal levels in cable 
networks are commonly stated in dBmV, although some areas of the world use decibel microvolt (dBµV) 
instead of dBmV, which is discussed later. While dBmV is commonly used as an expression of absolute 
values, technically speaking dBmV is a logarithmic ratio of some value to a specified 0 dB reference, in 
this case 0 dBmV.12 For instance, a signal level of +20 dBmV (10 millivolts) is another way of saying 
that 10 millivolts is 20 dB greater than 1 millivolt (0 dBmV). 
 

11.8.1. Converting millivolts to dBmV 

A value in millivolts can be converted to decibel millivolt using the following formulas: 
 
 

𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = 20𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝑎𝑎𝑎𝑎𝑙𝑙𝑣𝑣𝑝𝑝 𝑠𝑠𝑠𝑠 𝑚𝑚𝑉𝑉

1 𝑚𝑚𝑉𝑉
� 

where 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 is the value in decibel millivolt 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑎𝑎𝑎𝑎𝑙𝑙𝑣𝑣𝑝𝑝 𝑠𝑠𝑠𝑠 𝑚𝑚𝑉𝑉 is voltage in millivolts 
1 𝑚𝑚𝑉𝑉 is the 0 dB reference for dBmV 
 
Note: The “1 𝑚𝑚𝑉𝑉” in the denominator is sometimes not included, making the formula 
 

𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = 20𝑙𝑙𝐿𝐿𝑎𝑎10(𝑎𝑎𝑎𝑎𝑙𝑙𝑣𝑣𝑝𝑝 𝑠𝑠𝑠𝑠 𝑚𝑚𝑉𝑉) 
 
 
Example: 
What is the value in dBmV for a voltage of 40 mV? 
 
Solution: 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = 20𝑙𝑙𝐿𝐿𝑎𝑎10(𝑎𝑎𝑎𝑎𝑙𝑙𝑣𝑣𝑝𝑝 𝑠𝑠𝑠𝑠 𝑚𝑚𝑉𝑉) 
 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = 20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(40) 
 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = 20 ∗ (1.60) 

 
12 In the context used here, the 0 dB reference for decibel millivolt, 0 dBmV, equals 13.33 nanowatts (nW) of power, 
defined as 1 millivolt (RMS) across an impedance of 75 ohms. 
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𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = 32.04 
 
Answer: 40 mV is equal to 32.04 dBmV. 
 

11.8.2. Converting dBmV to millivolts 

A value in decibel millivolt can be converted to millivolts using the following formula: 
 
 

𝑚𝑚𝑉𝑉 = 10(𝑑𝑑𝑑𝑑𝑘𝑘𝑑𝑑 20⁄ ) 
where 
𝑚𝑚𝑉𝑉 is the value in millivolt 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 is the value in decibel millivolt 
 
 
Example: 
What is the value in millivolts for a signal level of +20 dBmV? 
 
Solution: 
𝑚𝑚𝑉𝑉 = 10(𝑑𝑑𝑑𝑑𝑘𝑘𝑑𝑑 20)⁄  
 
𝑚𝑚𝑉𝑉 = 10(20 20)⁄  
 
𝑚𝑚𝑉𝑉 = 101 
 
𝑚𝑚𝑉𝑉 = 10 
 
Answer: A signal level of +20 dBmV equals 10 millivolts. 
 

11.8.3. Converting microvolts to dBmV 

A value in microvolts can be converted to decibel millivolt using the following formula: 
 
 

𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = 20𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝑎𝑎𝑎𝑎𝑙𝑙𝑣𝑣𝑝𝑝 𝑠𝑠𝑠𝑠 𝜇𝜇𝑉𝑉

1000
� 

where 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 is the value in decibel millivolt 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑎𝑎𝑎𝑎𝑙𝑙𝑣𝑣𝑝𝑝 𝑠𝑠𝑠𝑠 𝜇𝜇𝑉𝑉 is voltage in microvolts 
 
 
Example: 
What is the value in dBmV for a voltage of 500 µV? 
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Solution: 

𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = 20𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝑎𝑎𝑎𝑎𝑙𝑙𝑣𝑣𝑝𝑝 𝑠𝑠𝑠𝑠 𝜇𝜇𝑉𝑉

1000
� 

 

𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = 20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 �
500

1000
� 

 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = 20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(0.5) 
 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = 20 ∗ (−0.301) 
 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = −6.02 
 
Answer: 500 microvolts equals –6.02 dBmV. 
 

11.8.4. Converting dBmV to microvolts 

A value in decibel millivolt can be converted to microvolts using the following formula: 
 
 

𝜇𝜇𝑉𝑉 = 1,000 ∗ 10(𝑑𝑑𝑑𝑑𝑘𝑘𝑑𝑑 20⁄ ) 
where 
𝜇𝜇𝑉𝑉 is the value in microvolts 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 is the value in decibel millivolt 
 
 
Example: 
What is the value in microvolts for a signal level of +10 dBmV? 
 
Solution: 
𝜇𝜇𝑉𝑉 = 1000 ∗ 10(𝑑𝑑𝑑𝑑𝑘𝑘𝑑𝑑 20)⁄  
 
𝜇𝜇𝑉𝑉 = 1000 ∗ 10(10 20⁄ ) 
 
𝜇𝜇𝑉𝑉 = 1000 ∗ 100.500 
 
𝜇𝜇𝑉𝑉 = 1000 ∗ 3.162 
 
𝜇𝜇𝑉𝑉 = 3,162 
 
Answer: A signal level of +10 dBmV equals 3,162 microvolts. 
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11.8.5. Converting dBmV to watts 

Part 76 of the FCC Rules includes aeronautical band power thresholds stated in watts, which can cause 
some confusion for cable operators because of the widespread use of dBmV for RF signal level (power). 
The following is one way to convert RF signal level in dBmV to a value in watts. 
 
 
First convert the power in dBmV to millivolts using the formula: 
 

𝑚𝑚𝑉𝑉 = 10(𝑑𝑑𝑑𝑑𝑘𝑘𝑑𝑑 20)⁄  
where 
𝑚𝑚𝑉𝑉 is the value in millivolt 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 is the value in decibel millivolt 
 
Next, convert the value in millivolts to volts: 
 

𝐸𝐸 =
𝑚𝑚𝑉𝑉

1,000
 

 
where 
𝐸𝐸 is voltage in volts 
𝑚𝑚𝑉𝑉 is voltage in millivolts 
 
Finally, convert the value in volts to watts: 
 

𝑃𝑃 =
𝐸𝐸2

𝑅𝑅
 

 
where 
𝑃𝑃 is power in watts 
𝐸𝐸 is voltage in volts 
𝑅𝑅 is resistance or impedance in ohms (75 ohms for cable networks) 
 
 
Example: 
What is +38.75 dBmV in watts? 
 
Solution: 
First, convert +38.75 dBmV to millivolts: 
 
𝑚𝑚𝑉𝑉 = 10(𝑑𝑑𝑑𝑑𝑘𝑘𝑑𝑑 20)⁄  
 
𝑚𝑚𝑉𝑉 = 10(38.75 20)⁄  
 
𝑚𝑚𝑉𝑉 = 101.94 
 
𝑚𝑚𝑉𝑉 = 86.596 
 
Next, convert 86.596 millivolts to volts: 
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𝑉𝑉 =
𝑚𝑚𝑉𝑉

1,000
 

 

𝑉𝑉 =
86.596
1,000

 

 
𝑉𝑉 = 0.0866 
 
Finally, convert 0.0866 volt to watts: 

𝑃𝑃 =
𝐸𝐸2

𝑅𝑅
 

 

𝑃𝑃 =
0.08662

75
 

 

𝑃𝑃 =
0.007

75
 

 
𝑃𝑃 = 0.0001 
 
Answer: +38.75 dBmV is 0.0001 watt (10-4 watt), or 100 microwatts. 
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11.8.6. Converting watts to dBmV 

The following is one way to convert power in watts to dBmV. 
 
 
First convert the power in watts to volts using the formula: 
 

𝐸𝐸 = √𝑃𝑃 ∗ 𝑅𝑅 
where 
𝐸𝐸 is voltage in volts 
𝑃𝑃 is power in watts 
𝑅𝑅 is resistance or impedance in ohms (75 ohms for cable networks) 
 
Next, convert the value in volts to millivolts: 
 

𝑚𝑚𝑉𝑉 = 𝐸𝐸 ∗ 1,000 
 
where 
𝑚𝑚𝑉𝑉 is voltage in millivolts 
𝐸𝐸 is voltage in volts 
 
Finally, convert the value in millivolts to dBmV: 
 

𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = 20𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝑎𝑎𝑎𝑎𝑙𝑙𝑣𝑣𝑝𝑝 𝑠𝑠𝑠𝑠 𝑚𝑚𝑉𝑉

1 𝑚𝑚𝑉𝑉
� 

where 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 is the value in decibel millivolt 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑎𝑎𝑎𝑎𝑙𝑙𝑣𝑣𝑝𝑝 𝑠𝑠𝑠𝑠 𝑚𝑚𝑉𝑉 is voltage in millivolts 
1 𝑚𝑚𝑉𝑉 is the 0 dB reference for dBmV 
 
Note: The “1 𝑚𝑚𝑉𝑉” in the denominator is sometimes not included, making the formula 
 

𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = 20𝑙𝑙𝐿𝐿𝑎𝑎10(𝑎𝑎𝑎𝑎𝑙𝑙𝑣𝑣𝑝𝑝 𝑠𝑠𝑠𝑠 𝑚𝑚𝑉𝑉) 
 
 
Example: 
What is 75.85 microwatts expressed in dBmV? 
 
Solution: 
First, convert 75.85 microwatts (0.00007585 watt) to volts: 
 
𝐸𝐸 = √𝑃𝑃 ∗ 𝑅𝑅 
 
𝐸𝐸 = √0.00007585 ∗ 75 
 
𝐸𝐸 = √0.00568875 
 
𝐸𝐸 = 0.075424 
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Next, convert 0.075424 volt to millivolts: 
 
𝑚𝑚𝑉𝑉 = 0.075424 ∗ 1,000 
 
𝑚𝑚𝑉𝑉 = 75.4238 
 
Finally, convert 75.42 millivolts to dBmV: 
 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = 20𝑙𝑙𝐿𝐿𝑎𝑎10(𝑎𝑎𝑎𝑎𝑙𝑙𝑣𝑣𝑝𝑝 𝑠𝑠𝑠𝑠 𝑚𝑚𝑉𝑉) 
 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = 20𝑙𝑙𝐿𝐿𝑎𝑎10(75.42) 
 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = 20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(75.42) 
 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = 20 ∗ (1.88) 
 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = 37.55 
 
Answer: 75.85 microwatts is +37.55 dBmV. 
 

11.8.7. dBmV in different impedances 

The following formula can be used to convert a dBmV value in one impedance into a dBmV value in 
another impedance, assuming uniform power.13 The conversion does not take into account the insertion 
loss of a minimum loss pad or impedance matching transformer. 
 
 

𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉(𝑧𝑧2) = 𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉(𝑧𝑧1) + 10𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝑧𝑧2

𝑧𝑧1
� 

where 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉(𝑧𝑧1) is the dBmV value in the first impedance 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉(𝑧𝑧2) is the dBmV value in the second impedance 
𝑧𝑧1 is the first impedance in ohms 
𝑧𝑧2 is the second impedance in ohms 
 
 
Example 1: 
If a 75 ohms impedance circuit with a signal level of 3 dBmV is connected to a 50 ohms impedance 
circuit, what is the signal level in dBmV in the 50 ohms impedance circuit? 
 
Solution 1: 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉(𝑧𝑧2) = 𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉(𝑧𝑧1) + 10𝑙𝑙𝐿𝐿𝑎𝑎10 �

𝑧𝑧2

𝑧𝑧1
� 

 

 
13 Units of decibel millivolt are commonly used in 75 ohms impedance applications, but dBmV can be used in 
impedances other than 75 ohms (the same is true of units of decibel microvolt, or dBµV). The formula and examples 
in this section assume uniform power. It is recommended that the impedance be specified when dBmV is used in 
other impedances. 
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𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉(𝑧𝑧2) = 3 + 10𝑙𝑙𝐿𝐿𝑎𝑎10 �
50
75

� 
 

𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉(𝑧𝑧2) = 3 + �10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 �
50
75

�� 
 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉(𝑧𝑧2) = 3 + [10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(0.6667)] 
 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉(𝑧𝑧2) = 3 + [10 ∗ (−0.1761)] 
 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉(𝑧𝑧2) = 3 + [−1.7609] 
 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉(𝑧𝑧2) = 1.2391 
 
Answer: The signal level in the 50 ohms impedance circuit is 1.24 dBmV. 
 
Example 2: 
If a 75 ohms impedance circuit with a signal level of 3 dBmV is connected to a 300 ohms impedance 
circuit, what is the signal level in dBmV in the 300 ohms impedance circuit? 
 
Solution 2: 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉(𝑧𝑧2) = 𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉(𝑧𝑧1) + 10𝑙𝑙𝐿𝐿𝑎𝑎10 �

𝑧𝑧2

𝑧𝑧1
� 

 

𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉(𝑧𝑧2) = 3 + 10𝑙𝑙𝐿𝐿𝑎𝑎10 �
300
75

� 
 

𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉(𝑧𝑧2) = 3 + �10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 �
300
75

�� 
 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉(𝑧𝑧2) = 3 + [10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(4.00)] 
 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉(𝑧𝑧2) = 3 + [10 ∗ (0.6021)] 
 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉(𝑧𝑧2) = 3 + [6.0206] 
 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉(𝑧𝑧2) = 9.0206 
 
Answer: The signal level in the 300 ohms impedance circuit is 9.02 dBmV. 
 
The following table summarizes some common conversions from dBmV in one impedance (𝑧𝑧1) to dBmV 
in another impedance (𝑧𝑧2). For example, to convert 5 dBmV in 300 ohms to dBmV in 75 ohms, subtract 
6.02 dB from 5 dBmV, giving –1.02 dBmV in 75 ohms. 
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Table 5 - Add or subtract the value in dB to convert from dBmV in one impedance to 
dBmV in another impedance. See text. 

 
… to dBmV in impedance 𝒛𝒛𝟐𝟐, 

add or subtract the value (in dB) shown 
50 Ω 75 Ω 300 Ω 600 Ω 

To convert 
from dBmV 

in impedance 
𝒛𝒛𝟏𝟏 … 

50 Ω 0 +1.76 dB +7.78 dB +10.79 dB 
75 Ω –1.76 dB 0 +6.02 dB +9.03 dB 
300 Ω –7.78 dB –6.02 dB 0 +3.01 dB 
600 Ω –10.79 dB –9.03 dB –3.01 dB 0 

11.9. Decibel microvolt (dBµV) 

Decibel microvolt (dBµV) is a unit of power expressed in terms of voltage. RF signal levels in cable 
networks are commonly stated in dBmV, although some areas of the world use dBµV instead of dBmV. 
 
While dBµV is commonly used as an expression of absolute values, technically speaking dBµV is a 
logarithmic ratio of some value to a specified 0 dB reference, in this case 0 dBµV.14 For instance, a signal 
level of +70 dBµV (3,162 microvolts) is another way of saying that 3,162 microvolts is 70 dB greater 
than 1 microvolt (0 dBµV). 
 

11.9.1. Converting microvolts to dBµV 

The following formulas can be used to convert a value in microvolts to decibel microvolt: 
 
 

𝑑𝑑𝑑𝑑𝜇𝜇𝑉𝑉 = 20𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝑎𝑎𝑎𝑎𝑙𝑙𝑣𝑣𝑝𝑝 𝑠𝑠𝑠𝑠 𝜇𝜇𝑉𝑉

1 𝜇𝜇𝑉𝑉
� 

where 
𝑑𝑑𝑑𝑑𝜇𝜇𝑉𝑉 is the value in decibel microvolt 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑎𝑎𝑎𝑎𝑙𝑙𝑣𝑣𝑝𝑝 𝑠𝑠𝑠𝑠 𝜇𝜇𝑉𝑉 is voltage in microvolts 
1 𝜇𝜇𝑉𝑉 is the 0 dB reference for dBµV 
 
Note: The “1 𝜇𝜇𝑉𝑉” in the denominator is sometimes not included, making the formula 
 

𝑑𝑑𝑑𝑑𝜇𝜇𝑉𝑉 = 20𝑙𝑙𝐿𝐿𝑎𝑎10(𝑎𝑎𝑎𝑎𝑙𝑙𝑣𝑣𝑝𝑝 𝑠𝑠𝑠𝑠 𝜇𝜇𝑉𝑉) 
 
 
Example: 
What is the value in dBµV for a voltage of 100 µV? 
 
Solution: 
𝑑𝑑𝑑𝑑𝜇𝜇𝑉𝑉 = 20𝑙𝑙𝐿𝐿𝑎𝑎10(𝑎𝑎𝑎𝑎𝑙𝑙𝑣𝑣𝑝𝑝 𝑠𝑠𝑠𝑠 𝜇𝜇𝑉𝑉) 
 
𝑑𝑑𝑑𝑑𝜇𝜇𝑉𝑉 = 20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(100) 
 
𝑑𝑑𝑑𝑑𝜇𝜇𝑉𝑉 = 20 ∗ (2.00) 

 
14 In the context used here, the 0 dB reference for decibel microvolt, 0 dBµV, equals 13.33 femtowatts (fW) of 
power, defined as 1 microvolt (RMS) across an impedance of 75 ohms. 
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𝑑𝑑𝑑𝑑𝜇𝜇𝑉𝑉 = 40 
 
Answer: 100 microvolts us 40 dBµV. 
 

11.9.2. Converting dBµV to microvolts 

A value in decibel microvolt can be converted to microvolts using the following formula: 
 
 

𝜇𝜇𝑉𝑉 = 10(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 20)⁄  
where 
𝜇𝜇𝑉𝑉 is the value in microvolts 
𝑑𝑑𝑑𝑑𝜇𝜇𝑉𝑉 is the value in decibel microvolt 
 
 
Example: 
What is the value in microvolts for a signal level of +80 dBµV? 
 
Solution: 
𝜇𝜇𝑉𝑉 = 10(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 20)⁄  
 
𝜇𝜇𝑉𝑉 = 10(80 20)⁄  
 
𝜇𝜇𝑉𝑉 = 104 
 
𝜇𝜇𝑉𝑉 = 10,000 
 
Answer: A signal level of +80 dBµV is 10,000 microvolts. 
 

11.10. Decibel milliwatt (dBm) 

Decibel milliwatt (dBm) is a unit of power, in particular a logarithmic-based expression of the ratio of a 
value in milliwatts to 1 milliwatt (mW), and is usually referenced to a specified impedance – for example, 
50 ohms or 75 ohms in RF applications, and 600 ohms in baseband audio and telephony applications. 
Optical power in fiber optic links is commonly expressed in dBm. The 0 dB reference for decibel 
milliwatt is 0 dBm, which equals 1 mW. 
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11.10.1. Converting milliwatts to dBm 

A value in milliwatts can be converted to decibel milliwatt using the following formulas: 
 
 

𝑑𝑑𝑑𝑑𝑚𝑚 = 10𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝑎𝑎𝑎𝑎𝑙𝑙𝑣𝑣𝑝𝑝 𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚

1 𝑚𝑚𝑚𝑚
� 

where 
𝑑𝑑𝑑𝑑𝑚𝑚 is the value in decibel millivolt 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑎𝑎𝑎𝑎𝑙𝑙𝑣𝑣𝑝𝑝 𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚 is power in milliwatts 
1 𝑚𝑚𝑚𝑚 is the 0 dB reference for dBm 
 
Note: The “1 𝑚𝑚𝑚𝑚” in the denominator is sometimes not included, making the formula 
 

𝑑𝑑𝑑𝑑𝑚𝑚 = 10𝑙𝑙𝐿𝐿𝑎𝑎10(𝑎𝑎𝑎𝑎𝑙𝑙𝑣𝑣𝑝𝑝 𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚) 
 
 
Example: 
What is the value in dBm for a power of 20 mW? 
 
Solution: 
𝑑𝑑𝑑𝑑𝑚𝑚 = 10𝑙𝑙𝐿𝐿𝑎𝑎10(𝑎𝑎𝑎𝑎𝑙𝑙𝑣𝑣𝑝𝑝 𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚) 
 
𝑑𝑑𝑑𝑑𝑚𝑚 = 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(20) 
 
𝑑𝑑𝑑𝑑𝑚𝑚 = 10 ∗ (1.301) 
 
𝑑𝑑𝑑𝑑𝑚𝑚 = 13.01 
 
Answer: A power of 20 mW is equal to 13.01 dBm. 
 

11.10.2. Converting dBm to milliwatts 

A value in decibel milliwatt can be converted to milliwatts using the following formula: 
 
 

𝑚𝑚𝑚𝑚 = 10(𝑑𝑑𝑑𝑑𝑘𝑘 10)⁄  
where 
𝑚𝑚𝑚𝑚 is the power in milliwatts 
𝑑𝑑𝑑𝑑𝑚𝑚 is the value in decibel milliwatt 
 
 
Example: 
What is the power in milliwatts for a value of –10 dBm? 
 
Solution: 
𝑚𝑚𝑚𝑚 = 10(𝑑𝑑𝑑𝑑𝑘𝑘 10)⁄  
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𝑚𝑚𝑚𝑚 = 10(−10 10)⁄  
 
𝑚𝑚𝑚𝑚 = 10−1.00 
 
𝑚𝑚𝑚𝑚 = 0.10 
 
Answer: A value of –10 dBm is 0.10 mW. 
 

11.11. Decibel watt (dBW) 

Decibel watt (dBW) is a unit of power, in particular a logarithmic-based expression of the ratio of a value 
in watts to 1 watt (W). The 0 dB reference for decibel watt is 0 dBW, which equals 1 watt. 
 

11.11.1. Converting watts to dBW 

A value in watts can be converted to decibel watt using the following formulas: 
 
 

𝑑𝑑𝑑𝑑𝑚𝑚 = 10𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝑎𝑎𝑎𝑎𝑙𝑙𝑣𝑣𝑝𝑝 𝑠𝑠𝑠𝑠 𝑚𝑚

1 𝑚𝑚
� 

where 
𝑑𝑑𝑑𝑑𝑚𝑚 is the value in decibel watt 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑎𝑎𝑎𝑎𝑙𝑙𝑣𝑣𝑝𝑝 𝑠𝑠𝑠𝑠 𝑚𝑚 is power in watts 
1 𝑚𝑚 is the 0 dB reference for dBW 
 
Note: The “1 𝑚𝑚” in the denominator is sometimes not included, making the formula 
 

𝑑𝑑𝑑𝑑𝑚𝑚 = 10𝑙𝑙𝐿𝐿𝑎𝑎10(𝑎𝑎𝑎𝑎𝑙𝑙𝑣𝑣𝑝𝑝 𝑠𝑠𝑠𝑠 𝑚𝑚) 
 
 
Example: 
What is the value in dBW for a power of 4 watts? 
 
Solution: 
𝑑𝑑𝑑𝑑𝑚𝑚 = 10𝑙𝑙𝐿𝐿𝑎𝑎10(𝑎𝑎𝑎𝑎𝑙𝑙𝑣𝑣𝑝𝑝 𝑠𝑠𝑠𝑠 𝑚𝑚) 
 
𝑑𝑑𝑑𝑑𝑚𝑚 = 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(4) 
 
𝑑𝑑𝑑𝑑𝑚𝑚 = 10 ∗ (0.602) 
 
𝑑𝑑𝑑𝑑𝑚𝑚 = 6.02 
 
Answer: A power of 4 watts equals 6.02 dBW. 
 

11.11.2. Converting dBW to watts 

A value in decibel watt can be converted to watts using the following formula: 
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𝑚𝑚 = 10(𝑑𝑑𝑑𝑑𝐶𝐶 10)⁄  
where 
𝑚𝑚 is the power in watts 
𝑑𝑑𝑑𝑑𝑚𝑚 is the value in decibel watt 
 
 
Example: 
What is the power in watts for a value of 20 dBW? 
 
Solution: 
𝑚𝑚 = 10(𝑑𝑑𝑑𝑑𝐶𝐶 10)⁄  
 
𝑚𝑚 = 10(20 10)⁄  
 
𝑚𝑚 = 102.00 
 
𝑚𝑚 = 100 
 
Answer: A value of 20 dBW is 100 watts. 
 

11.12. Decibel volt (dBV) 

Decibel volt (dBV) is a unit of power in terms of voltage, in particular a logarithmic-based expression of 
the ratio of a value in volts to 1 volt. The 0 dB reference for decibel volt is 0 dBV, which equals 1 volt. 
 

11.12.1. Converting volts to dBV 

A value in volts can be converted to decibel volt using the following formulas: 
 
 

𝑑𝑑𝑑𝑑𝑉𝑉 = 20𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝐸𝐸

1 𝑉𝑉
� 

where 
𝑑𝑑𝑑𝑑𝑉𝑉 is the value in decibel volt 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝐸𝐸 is voltage in volts 
1 𝑉𝑉 is the 0 dB reference for dBV 
 
Note: The “1 𝑉𝑉” in the denominator is sometimes not included, making the formula 
 

𝑑𝑑𝑑𝑑𝑉𝑉 = 20𝑙𝑙𝐿𝐿𝑎𝑎10(𝐸𝐸) 
 
 
Example: 
What is the value in dBV for a voltage of 10 V? 
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Solution: 
𝑑𝑑𝑑𝑑𝑉𝑉 = 20𝑙𝑙𝐿𝐿𝑎𝑎10(𝐸𝐸) 
 
𝑑𝑑𝑑𝑑𝑉𝑉 = 20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(10) 
 
𝑑𝑑𝑑𝑑𝑉𝑉 = 20 ∗ (1.00) 
 
𝑑𝑑𝑑𝑑𝑉𝑉 = 20 
 
Answer: A voltage of 10 volts is 20 dBV. 
 

11.12.2. Converting dBV to volts 

A value in decibel volt can be converted to volts using the following formula: 
 
 

𝐸𝐸 = 10(𝑑𝑑𝑑𝑑𝑑𝑑 20)⁄  
where 
𝐸𝐸 is the value in volts 
𝑑𝑑𝑑𝑑𝑉𝑉 is the value in decibel volt 
 
 
Example: 
What is the value in volts for –10 dBV? 
 
Solution: 
𝐸𝐸 = 10(𝑑𝑑𝑑𝑑𝑑𝑑 20)⁄  
 
𝐸𝐸 = 10(−10 20)⁄  
 
𝐸𝐸 = 10−0.50 
 
𝐸𝐸 = 0.316 
 
Answer: –10 dBV is 0.316 volt. 
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11.13. Decibel conversions 

The following table includes formulas that can be used to convert between decibel microvolt, decibel 
millivolt, decibel volt, decibel milliwatt, and decibel watt. For these formulas, the impedance is assumed 
to be 75 ohms. 

Table 6 - Decibel conversion formulas (75 ohms impedance) 

 

  

dBµV – 138.75 = dBW 
dBµV – 60 = dBmV 
dBµV – 108.75 = dBm 
dBµV – 120 = dBV 
dBmV – 78.75 = dBW 
dBmV + 60 = dBµV 
dBmV – 48.75 = dBm 
dBmV – 60 = dBV 
dBV – 18.75 = dBW 
dBV + 120 = dBµV 
dBV + 60 = dBmV 
dBV + 11.25 = dBm 
dBm – 30 = dBW 
dBm + 108.75 = dBµV 
dBm + 48.75 = dBmV 
dBm – 11.25 = dBV 
dBW + 138.75 = dBµV 
dBW + 78.75 = dBmV 
dBW + 30 = dBm 
dBW + 18.75 = dBV 

 
The following four sections include examples of some of the conversions from the table. 
 

11.13.1. Convert decibel millivolt (dBmV) to decibel microvolt (dBµV) 

A value in decibel millivolt can be converted to decibel microvolt using the following formula: 
 
 

𝑑𝑑𝑑𝑑𝜇𝜇𝑉𝑉 = 𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 + 60 
 
where 
𝑑𝑑𝑑𝑑𝜇𝜇𝑉𝑉 is RF signal level in decibel microvolt 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 is RF signal level in decibel millivolt 
 
 
Example: 
What is the dBµV equivalent of –48 dBmV? 
 
Solution: 
𝑑𝑑𝑑𝑑𝜇𝜇𝑉𝑉 = 𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 + 60 
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𝑑𝑑𝑑𝑑𝜇𝜇𝑉𝑉 = −48 + 60 
 
𝑑𝑑𝑑𝑑𝜇𝜇𝑉𝑉 = 12 
 
Answer: –48 dBmV is 12 dBµV. 
 

11.13.2. Convert decibel microvolt (dBµV) to decibel millivolt (dBmV) 

A value in decibel microvolt can be converted to decibel millivolt using the following formula: 
 
 

𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = 𝑑𝑑𝑑𝑑𝜇𝜇𝑉𝑉 − 60 
 
where 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 is RF signal level in decibel millivolt 
𝑑𝑑𝑑𝑑𝜇𝜇𝑉𝑉 is RF signal level in decibel microvolt 
 
 
Example: 
What is the dBmV equivalent of 12 dBµV? 
 
Solution: 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = 𝑑𝑑𝑑𝑑𝜇𝜇𝑉𝑉 − 60 
 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = 12 − 60 
 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = −48 
 
Answer: 12 dBµV is –48 dBmV. 
 

11.13.3. Convert decibel millivolt (dBmV) to decibel milliwatt (dBm) 

A value in decibel millivolt can be converted to decibel milliwatt using the following formula: 
 
 

𝑑𝑑𝑑𝑑𝑚𝑚 = 𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 − 48.75 
 
where 
𝑑𝑑𝑑𝑑𝑚𝑚 is RF signal level in decibel milliwatt 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 is RF signal level in decibel millivolt 
 
 
 
Example: 
What is the 75 ohms power equivalent (in dBm) of –48 dBmV? 
 
Solution: 
𝑑𝑑𝑑𝑑𝑚𝑚 = 𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 − 48.75 
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𝑑𝑑𝑑𝑑𝑚𝑚 = −48 − 48.75 
 
𝑑𝑑𝑑𝑑𝑚𝑚 = −96.75 
 
Answer: –48 dBmV equals –96.75 dBm. 
 

11.13.4. Convert decibel milliwatt (dBm) to decibel millivolt (dBmV) 

A value in decibel milliwatt can be converted to decibel millivolt using the following formula: 
 
 

𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = 𝑑𝑑𝑑𝑑𝑚𝑚 + 48.75 
 
where 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 is RF signal level in decibel millivolt 
𝑑𝑑𝑑𝑑𝑚𝑚 is RF signal level in decibel milliwatt 
 
 
Example: 
What is the dBmV equivalent of –96.75 dBm (assume 75 ohms impedance)? 
 
Solution: 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = 𝑑𝑑𝑑𝑑𝑚𝑚 + 48.75 
 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = −96.75 + 48.75 
 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = −48 
 
Answer: –96.75 dBm equals –48 dBmV. 
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12. Noise Factor, Noise Figure, and Noise Temperature 
Among the important metrics for terrestrial and satellite communications; amplifier, radio, and other 
receiver performance; and certain cable network performance calculations are noise factor, noise figure, 
and noise temperature. 
 
The noise factor (F) of a system or device is a linear value defined as F = SNRi/SNRo where SNRi is 
system or device input signal-to-noise ratio when the input noise is due only to thermal noise from a 
passive, resistive input termination of value equal to the system impedance (75 ohms for cable) and at a 
standard noise temperature T0 (usually 290 K), and SNRo is system or device output signal-to-noise ratio. 
 
Noise figure (NF), defined in [21] as the “…degradation in signal-to-noise ratio as the signal passes 
through the [device under test],” is noise factor expressed in decibels. Amplifier specifications usually 
include noise figure among the listed parameters, in part because of its application to carrier-to-noise ratio 
calculations. 
 
Noise temperature is more commonly used in satellite communications – for instance, to characterize a 
satellite antenna’s low noise amplifier (LNA) or low noise block converter (LNB). The noise temperature 
of an electrical device, circuit, or component is defined to be the temperature of a single passive 
resistance that contributes the same noise power spectral density as the device itself. The term applies to 
active devices as well as simple and complex passive circuits and components. Noise temperature is 
stated in kelvin, and while related to physical temperature, should not be confused with the physical 
temperature of the device that one would measure with a thermometer. 
 
The previous definitions assume the input termination is at a standard noise temperature of T0 = 290 K. 
 

12.1. Convert noise factor to noise figure 

The following formula can be used to convert noise factor to noise figure in decibels: 
 
 

𝑁𝑁𝑁𝑁 = 10𝑙𝑙𝐿𝐿𝑎𝑎10(𝑁𝑁) 
 
where 
𝑁𝑁𝑁𝑁 is noise figure in decibels 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑁𝑁 is noise factor 
 
 
Example: 
What is the noise figure in decibels for a noise factor of 6.31? 
 
Solution: 
𝑁𝑁𝑁𝑁 = 10𝑙𝑙𝐿𝐿𝑎𝑎10(𝑁𝑁) 
 
𝑁𝑁𝑁𝑁 = 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(6.31) 
 
𝑁𝑁𝑁𝑁 = 10 ∗ (0.80) 
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𝑁𝑁𝑁𝑁 = 8.0 
 
Answer: The noise figure is 8 dB. 
 

12.2. Convert noise figure to noise factor 

The following formula can be used to convert noise figure to noise factor: 
 
 

𝑁𝑁 = 10𝑁𝑁𝑁𝑁 10⁄  
 
where 
𝑁𝑁 is noise factor 
𝑁𝑁𝑁𝑁 is noise figure in decibels 
 
 
Example: 
What is the noise factor for a noise figure of 12 dB? 
 
Solution: 
𝑁𝑁 = 10𝑁𝑁𝑁𝑁 10⁄  
 
𝑁𝑁 = 1012 10⁄  
 
𝑁𝑁 = 101.20 
 
𝑁𝑁 = 15.85 
 
Answer: The noise factor is 15.85. 
 

12.3. Convert noise temperature to noise figure 

The following formula can be used to convert noise temperature in kelvin to noise figure in decibels: 
 
 

𝑁𝑁𝑁𝑁 = 10𝑙𝑙𝐿𝐿𝑎𝑎10 ��
𝑇𝑇𝑓𝑓

290
� + 1� 

 
where 
𝑁𝑁𝑁𝑁 is noise figure in decibels 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑇𝑇𝑓𝑓 is noise temperature in kelvin (K) 
 
 
Example: 
What is the noise figure of a satellite antenna LNA that has a noise temperature of 85 K? 
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Solution: 

𝑁𝑁𝑁𝑁 = 10𝑙𝑙𝐿𝐿𝑎𝑎10 ��
𝑇𝑇𝑓𝑓

290
� + 1� 

 

𝑁𝑁𝑁𝑁 = 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 ��
85

290
� + 1� 

 
𝑁𝑁𝑁𝑁 = 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[(0.29) + 1] 
 
𝑁𝑁𝑁𝑁 = 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[1.29] 
 
𝑁𝑁𝑁𝑁 = 10 ∗ [0.112] 
 
𝑁𝑁𝑁𝑁 = 1.12 
 
Answer: The noise figure is 1.12 dB. 
 

12.4. Convert noise figure to noise temperature 

The following formula can be used to convert noise figure in decibels to noise temperature in kelvin: 
 
 

𝑇𝑇𝑓𝑓 = 290 ∗ �10𝑁𝑁𝑁𝑁 10⁄ − 1� 
 
where 
𝑇𝑇𝑓𝑓 is noise temperature in kelvin (K) 
𝑁𝑁𝑁𝑁 is noise figure in decibels 
 
 
Example: 
What is the noise temperature in kelvin of a satellite antenna LNA that has a noise figure of 2 dB? 
 
Solution: 
𝑇𝑇𝑓𝑓 = 290 ∗ �10𝑁𝑁𝑁𝑁 10⁄ − 1� 
 
𝑇𝑇𝑓𝑓 = 290 ∗ �102 10⁄ − 1� 
 
𝑇𝑇𝑓𝑓 = 290 ∗ [100.20 − 1] 
 
𝑇𝑇𝑓𝑓 = 290 ∗ [1.58 − 1] 
 
𝑇𝑇𝑓𝑓 = 290 ∗ [0.58] 
 
𝑇𝑇𝑓𝑓 = 169.62 
 
Answer: The noise temperature is 169.62 K. 
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13. Thermal Noise in a 75 Ω Network 
When calculating carrier-to-noise ratio (CNR) in a cable network, one needs to first know the power of 
the thermal noise. Thermal noise power in a CNR calculation is typically specified in a given bandwidth, 
such as 4 MHz for analog NTSC visual carrier CNR measurements, or the symbol rate bandwidth for 
single carrier quadrature amplitude modulation (SC-QAM) CNR measurements. Two calculation methods 
are included here. 
 

13.1. Noise calculation method #1 

The first method involves starting with calculation of thermal noise power in watts from a thermal noise 
source, then converting the value in watts to decibel millivolt. 
 
The power delivered by a thermal source into an impedance matched load can be calculated using the 
following formula: 
 
 

𝑃𝑃 = 𝑘𝑘𝑇𝑇𝑑𝑑 
where 
𝑃𝑃 is the thermal noise power in watts 
𝑘𝑘 is Boltzmann’s Constant (1.38 ∗ 10-23 joules/kelvin) 
𝑇𝑇 is the temperature in kelvin (K) 
𝑑𝑑 is bandwidth in hertz 
 
 
Example 1: 
What is the noise power in a 4 MHz bandwidth delivered by a thermal source at room temperature (68 °F 
or 293.15 K)? 
 
Solution 1: 
𝑃𝑃 = 𝑘𝑘𝑇𝑇𝑑𝑑 
 
𝑃𝑃 = (1.38 ∗ 10−23) ∗ 293.15 ∗ 4,000,000 
 
𝑃𝑃 = 1.62 ∗ 10−14 
 
Answer: The power is 1.62 ∗ 10–14 watt. 
 
Example 2: 
What is the thermal noise power from Example 1 expressed in dBmV, assuming 75 ohms impedance? 
 
Solution 2: 
Use the formulas in Section 11.8.6 (Converting watts to dBmV) 
 
First convert the power in watts to volts. 
 
𝐸𝐸 = √𝑃𝑃 ∗ 𝑅𝑅 
 
𝐸𝐸 = �(1.62 ∗ 10−14) ∗ 75 
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𝐸𝐸 = �1.21 ∗ 10−12 
 
𝐸𝐸 = 1.10 ∗ 10−6 
 
Answer: The voltage is 1.10 ∗ 10–6 volt. 
 
Next, convert the value in volts to millivolts: 
 
𝑚𝑚𝑉𝑉 = 𝐸𝐸 ∗ 1,000 
 
𝑚𝑚𝑉𝑉 = (1.10 ∗ 10−6) ∗ 1,000 
 
𝑚𝑚𝑉𝑉 = 1.10 ∗ 10−3 
 
Answer: The value in millivolts is 1.10 ∗ 10–3 mV, or 0.0011 mV. 
 
Finally, convert the value in millivolts to dBmV: 
 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = 20𝑙𝑙𝐿𝐿𝑎𝑎10(𝑚𝑚𝑉𝑉) 
 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = 20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(1.10 ∗ 10−3) 
 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = 20 ∗ (−2.96) 
 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = −59.16 
 
Answer: The noise power in 4 MHz delivered by a thermal source into an impedance matched load (75 
ohms) at room temperature is –59.16 dBmV. 
 

13.2. Noise calculation method #2 

The second method involves starting with calculation of open-circuit noise voltage from a resistance or 
impedance (e.g., 75 ohms), followed by calculating the voltage when the source is connected to a matched 
resistance or impedance, then converting to decibel millivolt. 
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13.2.1. Open-circuit noise voltage 

To calculate the open-circuit noise voltage from a resistance or impedance, use the formula: 
 
 

𝑝𝑝𝑖𝑖 = √4𝑘𝑘𝑇𝑇𝑑𝑑𝑅𝑅 
where 
𝑝𝑝𝑖𝑖 is the open-circuit noise voltage 
𝑘𝑘 is Boltzmann’s Constant (1.38 ∗ 10-23 joules/kelvin) 
𝑇𝑇 is the temperature in kelvin (K) 
𝑑𝑑 is bandwidth in hertz 
𝑅𝑅 is resistance (or impedance) in ohms 
 
 
Example: 
What is the open-circuit noise voltage over a 4 MHz bandwidth (the noise power bandwidth used for 
analog NTSC television channel CNR measurements) generated by a 75-ohms resistor at room 
temperature (68 °F, or 293.15 K)? 
 
Solution: 
𝑝𝑝𝑖𝑖 = √4𝑘𝑘𝑇𝑇𝑑𝑑𝑅𝑅 
 
𝑝𝑝𝑖𝑖 = �4 ∗ (1.38 ∗ 10−23) ∗ 293.15 ∗ 4,000,000 ∗ 75 
 
𝑝𝑝𝑖𝑖 = �4.8546 ∗ 10−12 
 
𝑝𝑝𝑖𝑖 = 2.2033075 ∗ 10−6 
 
Answer: The open-circuit noise voltage is 2.2033075 ∗ 10–6 volt, or about 2.2 microvolts (see Figure 13). 
 

 
Figure 13 - Open-circuit noise voltage in a 4 MHz bandwidth for a 75 ohms resistance (or 

impedance) at room temperature. 

13.2.2. Terminated noise voltage 

When the 75 ohms impedance noise source is terminated by an equal value resistance or impedance – say, 
connected to the input of a 75 ohms impedance amplifier – the thermal noise is en/2 or 1.10165375 μV. 
See Figure 14. 
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Figure 14 - When the open-circuit noise source is terminated by an equal-impedance 

load, the noise voltage is en/2, or about 1.1 µV in this example. 

13.2.3. Convert noise voltage to decibel millivolt 

To convert the terminated noise voltage to dBmV for use in carrier-to-noise ratio calculations, use the 
following formula: 
 
 

𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = 20𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝜇𝜇𝑉𝑉

1,000
� 

 
where 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 is decibel millivolt 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝜇𝜇𝑉𝑉 is the value in microvolts 
 
 
Example: 
What is the dBmV value of 1.10165375 microvolt? 
 
Solution: 

𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = 20𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝜇𝜇𝑉𝑉

1,000
� 

 

𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = 20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 �
1.10165375

1,000
� 

 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = 20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(0.00110165) 
 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = 20 ∗ (−2.95795488) 
 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = −59.16 
 
Answer: 1.10165375 microvolt equals –59.16 dBmV. 
 
For those who prefer to use the standard noise temperature T0 of 290 K rather than room temperature 
(293.15 K), the answer is –59.21 dBmV for a 4 MHz noise power bandwidth, although many cable 
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network CNR calculations assume room temperature. (Note: Some use –59.2, which accommodates either 
reference source temperature after rounding.) 
 
When calculating CNR for SC-QAM signals, the preferred noise power bandwidth for thermal noise is 
usually equal to the symbol rate bandwidth, although some prefer to use occupied bandwidth. The 
following table summarizes noise power bandwidths for downstream and upstream SC-QAM signals, 
based upon symbol rate bandwidths. 
 

Table 7 - Noise power bandwidths (symbol rate bandwidths) for downstream and 
upstream SC-QAM signals. 

Channel RF 
bandwidth15 

Symbol rate16 Noise power 
bandwidth 

Thermal noise level at 68 °F 
(75 ohms impedance) 

6 MHz 5.056941 Msym/s 5,056,941 Hz 1.24 µV  –58.14 dBmV 
6 MHz 5.360537 Msym/s 5,360,537 Hz 1.28 µV –57.89 dBmV 
8 MHz 6.952 Msym/s 6,952,000 Hz 1.45 µV –56.76 dBmV 
200 kHz 160 ksym/s 160,000 Hz 0.22 µV –73.14 dBmV 
400 kHz 320 ksym/s 320,000 Hz 0.31 µV –70.13 dBmV 
800 kHz 640 ksym/s 640,000 Hz 0.44 µV –67.12 dBmV 
1.6 MHz 1,280 ksym/s 1,280,000 Hz 0.62 µV –64.11 dBmV 
3.2 MHz 2,560 ksym/s 2,560,000 Hz 0.88 µV –61.10 dBmV 
6.4 MHz 5,120 ksym/s 5,120,000 Hz 1.25 µV –58.09 dBmV 

 
Table 8 summarizes noise power bandwidths for downstream and upstream SC-QAM signals, based upon 
occupied bandwidths. 

Table 8 - Noise power bandwidths (occupied bandwidths) for downstream and upstream 
SC-QAM signals. 

Channel RF 
bandwidth 

Symbol rate Noise power 
bandwidth 

Thermal noise level at 68 °F 
(75 ohms impedance) 

6 MHz 5.056941 and 5.360537 
Msym/s 

6 MHz 1.35 µV –57.40 dBmV 

8 MHz 6.952 Msym/s 8 MHz 1.56 µV –56.15 dBmV 
200 kHz 160 ksym/s 200,000 Hz 0.25 µV –72.17 dBmV 
400 kHz 320 ksym/s 400,000 Hz 0.35 µV –69.16 dBmV 
800 kHz 640 ksym/s 800,000 Hz 0.49 µV –66.15 dBmV 
1.6 MHz 1,280 ksym/s 1,600,000 Hz 0.70 µV –63.14 dBmV 
3.2 MHz 2,560 ksym/s 3,200,000 Hz 0.99 µV –60.13 dBmV 
6.4 MHz 5,160 ksym/s 6,400,000 Hz 1.39 µV –57.12 dBmV 

  

 
15 Occupied bandwidth 
16 DOCSIS 2.0 and later use modulation rate in kHz rather than symbol rate for upstream SC-QAM carriers. 
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14. Carrier-to-Noise Ratio 
Carrier-to-noise ratio, abbreviated C/N ratio or CNR, is in cable industry vernacular a pre-detection 
measurement – that is, a measurement performed in the frequency domain. CNR is the difference, in 
decibels, between the amplitude of an RF signal and the amplitude of noise present in the RF signal’s 
transmission path. The RF signal may be unmodulated (also called continuous wave, or CW) or 
modulated. The noise may be one or a combination of several types: thermal noise; shot noise and relative 
intensity noise (RIN) in optical fiber links; and in cable systems carrying a mix of analog TV signals and 
digitally modulated signals, non-thermal noise such as composite and intermodulation noise. This section 
focuses on thermal noise generated by passive and active devices through which the RF signal is 
transmitted. The amplitude of thermal noise is usually specified over a certain bandwidth, called noise 
power bandwidth, discussed in the previous section. 
 

14.1. CNR of an individual amplifier 

The carrier-to-noise ratio of an individual amplifier can be calculated using the following formula: 
 
 

𝐶𝐶𝑁𝑁𝑅𝑅𝑖𝑖 = 𝑁𝑁𝑓𝑓 − 𝑁𝑁𝑁𝑁 + 𝐼𝐼 
where 
𝐶𝐶𝑁𝑁𝑅𝑅𝑖𝑖 is the carrier-to-noise ratio of an individual amplifier 
𝑁𝑁𝑓𝑓 is the thermal noise level of a 75 ohms impedance in dBmV (expressed as a positive number so the 
formula’s answer will come out positive, e.g., 59.16 for NTSC TV signals with a 4 MHz noise power 
bandwidth at 68 °F). 
𝑁𝑁𝑁𝑁 is the amplifier’s noise figure in dB17 
𝐼𝐼 is the amplifier’s per-channel RF input level in dBmV 
 
 
Example 1: 
What is the standalone carrier-to-noise ratio of an amplifier with the following operating conditions? 
Assume the RF signals are analog NTSC TV signals (4 MHz noise power bandwidth). 
 
Thermal noise level 𝑁𝑁𝑓𝑓 = –59.16 dBmV 
Noise figure 𝑁𝑁𝑁𝑁 = 8 dB 
Per-channel RF input 𝐼𝐼 = +15 dBmV 
 
Solution 1: 
Remember to change the thermal noise level to a positive number. 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝑖𝑖 = 59.16 − 8 + 15 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝑖𝑖 = 66.16 
 
Answer: The CNR is 66.16 dB. 
 
 

 
17 The formula assumes that the amplifier’s plug-in attenuator and equalizer are 0 dB values. If other than 0 dB, the 
additional insertion loss must be added to the noise figure number. For example, if the amplifier’s actual noise figure 
is 10 dB, the attenuator is 0 dB, and the equalizer has 1 dB of insertion loss, change the noise figure value to 11 dB. 
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Example 2: 
What is the carrier-to-noise ratio of the amplifier from Example 1 when the signals are 6 MHz-wide 256-
QAM signals operating 6 dB below the peak envelope power of analog TV signal visual carriers? The 
noise power bandwidth for 6 MHz-wide 256-QAM signals is 5.36 MHz, which means the thermal noise 
level is –59.16 + [10log10(5.36 MHz/4 MHz)] = –57.89 dBmV (refer to Table 7 and Table 8 for a 
summary of SC-QAM noise power bandwidths). Since the operating levels are 6 dB lower, the following 
operating parameters apply. 
 
Thermal noise level 𝑁𝑁𝑓𝑓 = –57.89 dBmV 
Noise figure 𝑁𝑁𝑁𝑁 = 8 dB 
Per-channel RF input 𝐼𝐼 = +9 dBmV 
 
Solution 2: 
𝐶𝐶𝑁𝑁𝑅𝑅𝑖𝑖 = 57.89 − 8 + 9 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝑖𝑖 = 58.89 
 
Answer: The CNR is 58.89 dB. 
 

14.2. CNR of a cascade of identical amplifiers 

The carrier-to-noise ratio of a cascade of identical amplifiers can be calculated using the following 
formula: 
 
 

𝐶𝐶𝑁𝑁𝑅𝑅𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑑𝑑𝑓𝑓 = 𝐶𝐶𝑁𝑁𝑅𝑅𝑖𝑖 − 10𝑙𝑙𝐿𝐿𝑎𝑎10(𝑁𝑁) 
where 
𝐶𝐶𝑁𝑁𝑅𝑅𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑑𝑑𝑓𝑓 is the carrier-to-noise ratio at the end of a cascade of identical amplifiers 
𝐶𝐶𝑁𝑁𝑅𝑅𝑖𝑖 is the carrier-to-noise ratio of an individual amplifier 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑁𝑁 is the number of identical amplifiers in cascade 
 
 
Example: 
Referring to Figure 15, what is the carrier-to-noise ratio at the end of a cascade of eight identical 
amplifiers, each of which has an individual carrier-to-noise ratio of 58.89 dB? 
 

58.89 dB 58.89 dB 58.89 dB 58.89 dB 58.89 dB 58.89 dB 58.89 dB 58.89 dB CNRcascade = ?
 

Figure 15 - What is the CNR at the end of this cascade of identical amplifiers? 

 
Solution: 
𝐶𝐶𝑁𝑁𝑅𝑅𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑑𝑑𝑓𝑓 = 𝐶𝐶𝑁𝑁𝑅𝑅𝑖𝑖 − 10𝑙𝑙𝐿𝐿𝑎𝑎10(𝑁𝑁) 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑑𝑑𝑓𝑓 = 58.89 𝑑𝑑𝑑𝑑 − 10𝑙𝑙𝐿𝐿𝑎𝑎10(8) 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑑𝑑𝑓𝑓 = 58.89 − 10 ∗ (0.903) 
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𝐶𝐶𝑁𝑁𝑅𝑅𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑑𝑑𝑓𝑓 = 58.89 − 9.03 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑑𝑑𝑓𝑓 = 49.86 
 
Answer: The carrier-to-noise ratio at the end of the cascade is 49.86 dB. 
 

14.3. Combining different CNRs 

The following power addition formula can be used to combine individual carrier-to-noise ratios, for 
example, those in a cascade of non-identical amplifiers, or carrier-to-noise ratios in different parts of the 
network (e.g., headend, optical fiber link, and amplifier cascade). 
 
 

𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = −10 𝑙𝑙𝐿𝐿𝑎𝑎10 �10
−𝐶𝐶𝑁𝑁𝑅𝑅1

10 + 10
−𝐶𝐶𝑁𝑁𝑅𝑅2

10 + 10
−𝐶𝐶𝑁𝑁𝑅𝑅3

10 . . . +10
−𝐶𝐶𝑁𝑁𝑅𝑅𝑛𝑛

10 � 
 
where 
𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 is the total carrier-to-noise ratio 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝐶𝐶𝑁𝑁𝑅𝑅1 is the first carrier-to-noise ratio (individual amplifier, segment of plant such as optical fiber link, 
etc.)  
𝐶𝐶𝑁𝑁𝑅𝑅2 is the second carrier-to-noise ratio (individual amplifier, segment of plant such as optical fiber link, 
etc.) 
𝐶𝐶𝑁𝑁𝑅𝑅3 is the third carrier-to-noise ratio (individual amplifier, segment of plant such as optical fiber link, 
etc.)  
𝐶𝐶𝑁𝑁𝑅𝑅𝑖𝑖 is the nth carrier-to-noise ratio (individual amplifier, segment of plant such as optical fiber link, 
etc.)  
 
 
Example 1: 
Referring to Figure 16, what is the combined upstream carrier-to-noise ratio at the input to the cable 
modem termination system, assuming the CNR from receiver #1 is 32 dB, receiver #2 is 32 dB, receiver 
#3 is 34 dB, and receiver #4 is 35 dB? 
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Figure 16 - What is the combined upstream CNR at the CMTS input? (Graphic courtesy of 

Cisco) 

 
Solution 1: 

𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = −10 𝑙𝑙𝐿𝐿𝑎𝑎10 �10
−𝐶𝐶𝑁𝑁𝑅𝑅1

10 + 10
−𝐶𝐶𝑁𝑁𝑅𝑅2

10 + 10
−𝐶𝐶𝑁𝑁𝑅𝑅3

10 . . . +10
−𝐶𝐶𝑁𝑁𝑅𝑅𝑛𝑛

10 � 
 

𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 �10
−32
10 + 10

−32
10 + 10

−34
10 + 10

−35
10 � 

 
𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[10−3.2 + 10−3.2 + 10−3.4 + 10−3.5] 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[0.000631 + 0.000631 + 0.000398 + 0.000316] 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[0.001976] 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[−2.7042] 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = 27.04 
 
Answer: The combined upstream CNR is 27.04 dB. 
 
Example 2: 
What is the end-of-line carrier-to-noise ratio for a cascade of three non-identical amplifiers, the first with 
a standalone CNR of 47 dB, the second with a standalone CNR of 45 dB, and the third with a standalone 
CNR of 51 dB? 
 
Solution 2: 

𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = −10 𝑙𝑙𝐿𝐿𝑎𝑎10 �10
−𝐶𝐶𝑁𝑁𝑅𝑅1

10 + 10
−𝐶𝐶𝑁𝑁𝑅𝑅2

10 + 10
−𝐶𝐶𝑁𝑁𝑅𝑅3

10 . . . +10
−𝐶𝐶𝑁𝑁𝑅𝑅𝑛𝑛

10 � 
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𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 �10
−47
10 + 10

−45
10 + 10

−51
10 � 

 
𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[10−4.7 + 10−4.5 + 10−5.1] 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[0.00001995 + 0.00003162 + 0.00000794] 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[0.00005952] 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = −10 ∗ −4.2253 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = 42.25 
 
Answer: The end-of-line CNR is 42.25 dB. 
 
Example 3: 
If one knows the headend, optical fiber link, and coax plant carrier-to-noise ratios, these can be combined 
using the same formula to calculate the end-of-line CNR. Assume the headend, fiber link and coax plant 
have the following standalone CNRs, as shown in Figure 17. What is the end-of-line CNR? 
 
Headend CNR: 55 dB 
Fiber link CNR: 52 dB 
Coax plant CNR: 49 dB 
 

 
Figure 17 - What is the total (end-of-line) carrier-to-noise ratio? 

 
Solution 3: 

𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = −10 𝑙𝑙𝐿𝐿𝑎𝑎10 �10
−𝐶𝐶𝑁𝑁𝑅𝑅1

10 + 10
−𝐶𝐶𝑁𝑁𝑅𝑅2

10 + 10
−𝐶𝐶𝑁𝑁𝑅𝑅3

10 . . . +10
−𝐶𝐶𝑁𝑁𝑅𝑅𝑛𝑛

10 � 
 

𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 �10
−55
10 + 10

−52
10 + 10

−49
10 � 

 
𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[10−5.50 + 10−5.20 + 10−4.90] 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[0.00000316 + 0.00000631 + 0.00001259] 
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𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[0.00002206] 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = −10 ∗ [−4.6564] 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = 46.56 
 
Answer: The end-of-line CNR is 46.56 dB. 
 
Discussion: 
If the headend CNR were increased from 55 dB to, say, 60 dB, the end-of-line CNR would improve 
slightly from 46.56 dB to 47.01 dB.18 Indeed, excluding the headend CNR contribution from the 
calculation – that is, calculating the combined CNR for only the fiber link and coax plant – results in a 
change of less than 1 dB, increasing the end-of-line CNR from 46.56 dB to 47.24 dB: 
 

𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 �10
−52
10 + 10

−49
10 � 

 
𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[10−5.20 + 10−4.90] 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[0.00000631 + 0.00001259] 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[0.00001890] 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = −10 ∗ [−4.7236] 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = 47.24 
 
What if one wants to calculate the CNR of one of the contributing elements, say, the coax plant, when 
only the fiber link and end-of-line CNRs are known? This is possible, requiring a slight juggling of the 
power addition formula (subtraction is used inside the formula’s brackets rather than addition). Note that 
the headend CNR has been excluded. In the following examples, CNRtotal has been changed to CNREOL, 
CNR2 to CNRfiber, and CNR3 to CNRcoaxplant. 
 

𝐶𝐶𝑁𝑁𝑅𝑅𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑖𝑖𝑓𝑓 = −10 𝑙𝑙𝐿𝐿𝑎𝑎10 �10
−𝐶𝐶𝑁𝑁𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸

10 − 10
−𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

10 � 

 

𝐶𝐶𝑁𝑁𝑅𝑅𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑖𝑖𝑓𝑓 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 �10
−47.24

10 − 10
−52
10 � 

 
𝐶𝐶𝑁𝑁𝑅𝑅𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑖𝑖𝑓𝑓 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[10−4.724 − 10−5.20] 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑖𝑖𝑓𝑓 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[0.00001888 − 0.00000631] 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑖𝑖𝑓𝑓 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[0.00001257] 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑖𝑖𝑓𝑓 = −10 ∗ [−4.90065] 

 
18Changing the headend CNR to 60 dB gives 𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 �10

−60
10 + 10

−52
10 + 10

−49
10 � = 47.01 𝑑𝑑𝑑𝑑 
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𝐶𝐶𝑁𝑁𝑅𝑅𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑖𝑖𝑓𝑓 = 49.01 
 
From this, the coax plant’s CNR contribution is 49 dB, which agrees with the value used in the earlier 
example. If one wanted to calculate the fiber link CNR when only the coax plant and end-of-line CNRs 
were known, the following variation of the formula would be used. 
 

𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑖𝑖𝑐𝑐𝑓𝑓𝑚𝑚 = −10 𝑙𝑙𝐿𝐿𝑎𝑎10 �10
−𝐶𝐶𝑁𝑁𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸

10 − 10
−𝐶𝐶𝑁𝑁𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐

10 � 

 

𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑖𝑖𝑐𝑐𝑓𝑓𝑚𝑚 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 �10
−47.24

10 − 10
−49
10 � 

 
𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑖𝑖𝑐𝑐𝑓𝑓𝑚𝑚 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[10−4.724 − 10−4.90] 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑖𝑖𝑐𝑐𝑓𝑓𝑚𝑚 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[0.00001888 − 0.00001259] 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑖𝑖𝑐𝑐𝑓𝑓𝑚𝑚 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[0.00000629] 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑖𝑖𝑐𝑐𝑓𝑓𝑚𝑚 = −10 ∗[−5.2013] 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑖𝑖𝑐𝑐𝑓𝑓𝑚𝑚 = 52.01 
 
Here, the calculated 52 dB matches the original fiber link CNR used previously. 
 

14.4. Correction factor for low CNR measurements 

When a signal’s amplitude is close to the level of noise surrounding it, the measured signal amplitude can 
appear too high by up to several decibels (dB). This is because the spectrum analyzer actually measures 
the amplitude of the signal plus the noise. It does not matter whether the noise is the spectrum analyzer 
noise floor or the system noise, or a combination of the two. When the signal is much larger in amplitude 
than the surrounding noise, the contribution of the noise becomes negligible and the measured carrier-to-
noise (CNR) approaches its true value. 
 
As a general rule, if the signal amplitude is at least 10 dB above the noise, the measurement offset will be 
less than about 0.5 dB. If the signal is at least greater than 17 dB above the noise, the measurement offset 
will be less than about 0.1 dB and can be ignored for all practical purposes (see Figure 18). 
 
The following formula can be used to determine the correction factor to apply to the measured CNR in 
order to determine the true CNR. Note that care should be taken when the measured CNR is equal to or 
less than 3 dB, because the correction factor value calculated by the formula will become zero or 
negative. 
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𝑝𝑝𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑠𝑠𝐿𝐿𝑠𝑠_𝑓𝑓𝑎𝑎𝑝𝑝𝑡𝑡𝐿𝐿𝑝𝑝_𝑑𝑑𝑑𝑑 =  10𝑙𝑙𝐿𝐿𝑎𝑎10 �1 +
1

10(𝑘𝑘𝑓𝑓𝑐𝑐𝑚𝑚𝑜𝑜𝑚𝑚𝑓𝑓𝑑𝑑_𝑐𝑐𝑖𝑖𝑚𝑚_𝑑𝑑𝑑𝑑/10) − 1
� 

 
where 
𝑝𝑝𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑠𝑠𝐿𝐿𝑠𝑠_𝑓𝑓𝑎𝑎𝑝𝑝𝑡𝑡𝐿𝐿𝑝𝑝_𝑑𝑑𝑑𝑑 is the number of decibels to subtract from the measured carrier-to-noise ratio to 
obtain the true carrier-to-noise ratio 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑚𝑚𝑝𝑝𝑎𝑎𝐿𝐿𝑣𝑣𝑝𝑝𝑝𝑝𝑑𝑑_𝑝𝑝𝑠𝑠𝑝𝑝_𝑑𝑑𝑑𝑑 is the measured carrier-to-noise ratio in decibels 
 
 
Example: 
You measure a signal which appears to be 5.45 dB above the average noise. What is the correction factor 
that must applied to obtain the true CNR? What is the true CNR? 
 
Solution: 

𝑝𝑝𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑠𝑠𝐿𝐿𝑠𝑠_𝑓𝑓𝑎𝑎𝑝𝑝𝑡𝑡𝐿𝐿𝑝𝑝_𝑑𝑑𝑑𝑑 =  10𝑙𝑙𝐿𝐿𝑎𝑎10 �1 +
1

10(𝑘𝑘𝑓𝑓𝑐𝑐𝑚𝑚𝑜𝑜𝑚𝑚𝑓𝑓𝑑𝑑_𝑐𝑐𝑖𝑖𝑚𝑚_𝑑𝑑𝑑𝑑/10) − 1
� 

 

𝑝𝑝𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑠𝑠𝐿𝐿𝑠𝑠_𝑓𝑓𝑎𝑎𝑝𝑝𝑡𝑡𝐿𝐿𝑝𝑝_𝑑𝑑𝑑𝑑 =  10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 �1 +
1

10(5.45/10) − 1
� 

 

𝑝𝑝𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑠𝑠𝐿𝐿𝑠𝑠_𝑓𝑓𝑎𝑎𝑝𝑝𝑡𝑡𝐿𝐿𝑝𝑝_𝑑𝑑𝑑𝑑 =  10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 �1 +
1

10(0.5450) − 1
� 

 

𝑝𝑝𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑠𝑠𝐿𝐿𝑠𝑠_𝑓𝑓𝑎𝑎𝑝𝑝𝑡𝑡𝐿𝐿𝑝𝑝_𝑑𝑑𝑑𝑑 =  10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 �1 +
1

3.5075 − 1
� 

 

𝑝𝑝𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑠𝑠𝐿𝐿𝑠𝑠_𝑓𝑓𝑎𝑎𝑝𝑝𝑡𝑡𝐿𝐿𝑝𝑝_𝑑𝑑𝑑𝑑 =  10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 �1 +
1

2.5075
� 

 
𝑝𝑝𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑠𝑠𝐿𝐿𝑠𝑠_𝑓𝑓𝑎𝑎𝑝𝑝𝑡𝑡𝐿𝐿𝑝𝑝_𝑑𝑑𝑑𝑑 =  10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[1 +  0.3988] 
 
𝑝𝑝𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑠𝑠𝐿𝐿𝑠𝑠_𝑓𝑓𝑎𝑎𝑝𝑝𝑡𝑡𝐿𝐿𝑝𝑝_𝑑𝑑𝑑𝑑 =  10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[1.3988] 
 
𝑝𝑝𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑠𝑠𝐿𝐿𝑠𝑠_𝑓𝑓𝑎𝑎𝑝𝑝𝑡𝑡𝐿𝐿𝑝𝑝_𝑑𝑑𝑑𝑑 =  10 ∗ 0.1458 
 
𝑝𝑝𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑠𝑠𝐿𝐿𝑠𝑠_𝑓𝑓𝑎𝑎𝑝𝑝𝑡𝑡𝐿𝐿𝑝𝑝_𝑑𝑑𝑑𝑑 =  1.4576 
 
Answer: The correction factor that must be applied is 1.46 dB. 
 
What is the true CNR? 
 
The true CNR is the 𝑚𝑚𝑝𝑝𝑎𝑎𝐿𝐿𝑣𝑣𝑝𝑝𝑝𝑝𝑑𝑑_𝑝𝑝𝑠𝑠𝑝𝑝_𝑑𝑑𝑑𝑑 – 𝑝𝑝𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑠𝑠𝐿𝐿𝑠𝑠_𝑓𝑓𝑎𝑎𝑝𝑝𝑡𝑡𝐿𝐿𝑝𝑝_𝑑𝑑𝑑𝑑 
 
5.45 – 1.46 = 3.99  
 
Answer: The true CNR is 3.99 dB. 
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Alternatively, the true CNR can be calculated directly for a given measured CNR using the following 
formula: 
 
 

𝑡𝑡𝑝𝑝𝑣𝑣𝑝𝑝_𝑝𝑝𝑠𝑠𝑝𝑝_𝑑𝑑𝑑𝑑 =  10𝑙𝑙𝐿𝐿𝑎𝑎10�10(𝑘𝑘𝑓𝑓𝑐𝑐𝑚𝑚𝑜𝑜𝑚𝑚𝑓𝑓𝑑𝑑_𝑐𝑐𝑖𝑖𝑚𝑚_𝑑𝑑𝑑𝑑/10) − 1� 
 
where 
𝑡𝑡𝑝𝑝𝑣𝑣𝑝𝑝_𝑝𝑝𝑠𝑠𝑝𝑝_𝑑𝑑𝑑𝑑 is the calculated carrier-to-noise ratio in decibels 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑚𝑚𝑝𝑝𝑎𝑎𝐿𝐿𝑣𝑣𝑝𝑝𝑝𝑝𝑑𝑑_𝑝𝑝𝑠𝑠𝑝𝑝_𝑑𝑑𝑑𝑑 is the measured carrier-to-noise ratio in decibels 
 
 
Example: 
You measure a signal which appears to be 5.45 dB above the average noise. What is the true CNR? 
 
Solution: 
𝑡𝑡𝑝𝑝𝑣𝑣𝑝𝑝_𝑝𝑝𝑠𝑠𝑝𝑝_𝑑𝑑𝑑𝑑 =  10𝑙𝑙𝐿𝐿𝑎𝑎10�10(𝑘𝑘𝑓𝑓𝑐𝑐𝑚𝑚𝑜𝑜𝑚𝑚𝑓𝑓𝑑𝑑_𝑐𝑐𝑖𝑖𝑚𝑚_𝑑𝑑𝑑𝑑/10) − 1� 
 
𝑡𝑡𝑝𝑝𝑣𝑣𝑝𝑝_𝑝𝑝𝑠𝑠𝑝𝑝_𝑑𝑑𝑑𝑑 =  10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10�10(5.45/10) − 1� 
 
𝑡𝑡𝑝𝑝𝑣𝑣𝑝𝑝_𝑝𝑝𝑠𝑠𝑝𝑝_𝑑𝑑𝑑𝑑 =  10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10�10(0.5450) − 1� 
 
𝑡𝑡𝑝𝑝𝑣𝑣𝑝𝑝_𝑝𝑝𝑠𝑠𝑝𝑝_𝑑𝑑𝑑𝑑 =  10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(3.5075 − 1) 
 
𝑡𝑡𝑝𝑝𝑣𝑣𝑝𝑝_𝑝𝑝𝑠𝑠𝑝𝑝_𝑑𝑑𝑑𝑑 =  10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(2.5075) 
 
𝑡𝑡𝑝𝑝𝑣𝑣𝑝𝑝_𝑝𝑝𝑠𝑠𝑝𝑝_𝑑𝑑𝑑𝑑 =  10 ∗  0.3992 
 
𝑡𝑡𝑝𝑝𝑣𝑣𝑝𝑝_𝑝𝑝𝑠𝑠𝑝𝑝_𝑑𝑑𝑑𝑑 =  3.9924 
 
Answer: The true CNR is 3.99 dB. 
 

 
Figure 18 - Correction factor for low CNR measurements. 
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15. Carrier-to-Distortion Ratio 
The measurement of carrier-to-distortion ratio is performed in the frequency domain. Carrier-to-distortion 
ratio is the difference, in decibels, between the amplitude of an RF signal and the amplitude of 
intermodulation distortion products (commonly called “beats”) present in the RF signal’s transmission 
path. Second and third order distortions19 tend to be the most prevalent in cable networks (higher order 
distortions are usually too low in amplitude to be of concern). 
 
In the early days of the cable industry when analog TV channel loading (i.e., the number of active 
channels) was relatively small, say, 12 NTSC channels, intermodulation distortion products were 
relatively easily measured discrete beats. Among the dominant distortions produced by older single-ended 
12-channel amplifiers was second order distortions, which for the most part fell outside of the active 
passband. Cross modulation (XMOD), a third order distortion, was the major picture-impacting 
distortion. 
 
As the number of analog TV channels in cable networks increased over time, the number of distortion 
products also increased. Dozens or hundreds of beats could be present in each channel, with a cluster of 
discrete third-order beats falling on the visual carrier frequency and clusters of discrete second order beats 
falling 1.25 MHz below and 1.25 MHz above the visual carrier.20 Those beat clusters were given the 
name composite distortions. In cable networks carrying mostly- or all-digital channels, the distortions are 
noise-like (see Section 15.5). 
 
Composite distortions in cable networks include composite second order (CSO) distortion, composite 
triple beat (CTB) distortion, and common path distortion (CPD). XMOD and hum modulation (see 
Section 16), while not considered composite distortions, are also evaluated during cable network 
engineering analysis. CSO, CTB, XMOD, and hum modulation are generated in active devices; CPD can 
be generated in passive devices (hum also can be generated in passive devices). This section focuses on 
distortions in active devices. For an in-depth analysis of distortions in cable networks, see Appendix D. 
 

15.1. Effect of changing amplifier RF output level 

Amplifier operating levels have a significant impact on intermodulation distortions. For example, if an 
amplifier’s (absolute) input and output signal levels are increased by 1 dB, the amplitude of second order 
distortion products at the amplifier’s output will increase by 2 dB, but the carrier-to-second order 
distortion ratio will decrease (i.e., get worse) by 1 dB. Likewise, if an amplifier’s (absolute) input and 
output signal levels are increased by 1 dB, the amplitude of third order distortion products at the 
amplifier’s output will increase by 3 dB, but the carrier-to-third order distortion ratio will decrease (get 
worse) by 2 dB. 
 
Equipment manufacturers typically specify active device distortion performance with a certain number of 
active channels, input and output signal levels, and tilt. One can use the formulas in this section to 
calculate the distortion performance of an individual amplifier when the output level is changed, but the 
manufacturer’s original specified channel loading and tilt are maintained. The formulas are from [5]. 

 
19 For any two fundamental frequencies f1 and f2, the resulting second order distortions include 2f1, 2f2, f1 + f2, and f1 
– f2. For any three fundamental frequencies f1, f2, and f3, the resulting third order distortions include 3f1, 3f2, 3f3, f1 ± 
f2 ± f3, 2f1 + f2, and 2f1 – f2. 
20 For example, with 77 analog NTSC TV channels present, the number of triple beats falling in just Ch. 40 is 2,019 
(from the System Beats Table in [25]). 
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15.1.1. Composite second order 

The following formula can be used to calculate the new carrier-to-CSO distortion ratio for a single 
amplifier when output signal level is changed: 
 
 

𝐶𝐶𝑅𝑅𝐶𝐶𝑖𝑖𝑓𝑓𝑛𝑛 = 𝐶𝐶𝑅𝑅𝐶𝐶𝑚𝑚𝑓𝑓𝑓𝑓 − �𝐿𝐿𝑖𝑖𝑓𝑓𝑛𝑛 − 𝐿𝐿𝑚𝑚𝑓𝑓𝑓𝑓� 
 
where 
𝐶𝐶𝑅𝑅𝐶𝐶𝑖𝑖𝑓𝑓𝑛𝑛 is the calculated carrier-to-composite second order distortion ratio in decibels 
𝐶𝐶𝑅𝑅𝐶𝐶𝑚𝑚𝑓𝑓𝑓𝑓 is the equipment manufacturer’s specified or reference carrier-to-composite second order 
distortion ratio in decibels (expressed as a positive number) 
𝐿𝐿𝑖𝑖𝑓𝑓𝑛𝑛 is the new amplifier output RF signal level (e.g., in decibel millivolt) 
𝐿𝐿𝑚𝑚𝑓𝑓𝑓𝑓 is the equipment manufacturer’s specified or reference amplifier output RF signal level (e.g., in 
decibel millivolt) 
 
 
Example: 
Assume that a manufacturer’s specified carrier-to-CSO distortion ratio for an amplifier is 76 dB with a 
given channel loading, output signal level, and tilt. If the channel loading and tilt are kept the same but the 
output signal level is increased by 2 dB, what is the calculated carrier-to-CSO distortion ratio? Use 49 
dBmV and 51 dBmV for the reference and new signal levels respectively. 
 
Solution: 
𝐶𝐶𝑅𝑅𝐶𝐶𝑖𝑖𝑓𝑓𝑛𝑛 = 𝐶𝐶𝑅𝑅𝐶𝐶𝑚𝑚𝑓𝑓𝑓𝑓 − �𝐿𝐿𝑖𝑖𝑓𝑓𝑛𝑛 − 𝐿𝐿𝑚𝑚𝑓𝑓𝑓𝑓� 
 
𝐶𝐶𝑅𝑅𝐶𝐶𝑖𝑖𝑓𝑓𝑛𝑛 = 76 − (51 − 49) 
 
𝐶𝐶𝑅𝑅𝐶𝐶𝑖𝑖𝑓𝑓𝑛𝑛 = 76 − (2) 
 
𝐶𝐶𝑅𝑅𝐶𝐶𝑖𝑖𝑓𝑓𝑛𝑛 = 74 
 
Answer: The calculated carrier-to-CSO distortion ratio is 74 dB. 
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15.1.2. Composite triple beat 

The following formula can be used to calculate the new carrier-to-CTB distortion ratio for a single 
amplifier when output signal level is changed: 
 
 

𝐶𝐶𝑇𝑇𝑑𝑑𝑖𝑖𝑓𝑓𝑛𝑛 = 𝐶𝐶𝑇𝑇𝑑𝑑𝑚𝑚𝑓𝑓𝑓𝑓 − 2 ∗ �𝐿𝐿𝑖𝑖𝑓𝑓𝑛𝑛 − 𝐿𝐿𝑚𝑚𝑓𝑓𝑓𝑓� 
 
where 
𝐶𝐶𝑇𝑇𝑑𝑑𝑖𝑖𝑓𝑓𝑛𝑛 is the calculated carrier-to-composite triple beat distortion ratio in decibels 
𝐶𝐶𝑇𝑇𝑑𝑑𝑚𝑚𝑓𝑓𝑓𝑓 is the equipment manufacturer’s specified or reference carrier-to-composite triple beat distortion 
ratio in decibels (expressed as a positive number) 
𝐿𝐿𝑖𝑖𝑓𝑓𝑛𝑛 is the new amplifier output RF signal level (e.g., in decibel millivolt) 
𝐿𝐿𝑚𝑚𝑓𝑓𝑓𝑓 is the equipment manufacturer’s specified or reference amplifier output RF signal level (e.g., in 
decibel millivolt) 
 
 
Example: 
Assume that a manufacturer’s specified carrier-to-CTB distortion ratio for an amplifier is 81 dB with a 
given channel loading, output signal level, and tilt. If the channel loading and tilt are kept the same but the 
output signal level is increased by 2 dB, what is the calculated carrier-to-CTB distortion ratio? Use 49 
dBmV and 51 dBmV for the reference and new signal levels respectively. 
 
Solution: 
𝐶𝐶𝑇𝑇𝑑𝑑𝑖𝑖𝑓𝑓𝑛𝑛 = 𝐶𝐶𝑇𝑇𝑑𝑑𝑚𝑚𝑓𝑓𝑓𝑓 − 2 ∗ �𝐿𝐿𝑖𝑖𝑓𝑓𝑛𝑛 − 𝐿𝐿𝑚𝑚𝑓𝑓𝑓𝑓� 
 
𝐶𝐶𝑇𝑇𝑑𝑑𝑖𝑖𝑓𝑓𝑛𝑛 = 81 − 2 ∗ (51 − 49) 
 
𝐶𝐶𝑇𝑇𝑑𝑑𝑖𝑖𝑓𝑓𝑛𝑛 = 81 − 2 ∗ (2) 
 
𝐶𝐶𝑇𝑇𝑑𝑑𝑖𝑖𝑓𝑓𝑛𝑛 = 81 − 4 
 
𝐶𝐶𝑇𝑇𝑑𝑑𝑖𝑖𝑓𝑓𝑛𝑛 = 77 
 
Answer: The calculated carrier-to-CTB distortion ratio is 77 dB. 
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15.1.3. Cross modulation  

The following formula can be used to calculate the new carrier-to-XMOD ratio for a single amplifier 
when output signal level is changed: 
 
 

𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀𝑖𝑖𝑓𝑓𝑛𝑛 = 𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀𝑚𝑚𝑓𝑓𝑓𝑓 − 2 ∗ �𝐿𝐿𝑖𝑖𝑓𝑓𝑛𝑛 − 𝐿𝐿𝑚𝑚𝑓𝑓𝑓𝑓� 
 
where 
𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀𝑖𝑖𝑓𝑓𝑛𝑛 is the calculated carrier-to-cross modulation ratio in decibels 
𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀𝑚𝑚𝑓𝑓𝑓𝑓 is the equipment manufacturer’s specified or reference carrier-to-cross modulation ratio in 
decibels (expressed as a positive number) 
𝐿𝐿𝑖𝑖𝑓𝑓𝑛𝑛 is the new amplifier output RF signal level (e.g., in decibel millivolt) 
𝐿𝐿𝑚𝑚𝑓𝑓𝑓𝑓 is the equipment manufacturer’s specified or reference amplifier output RF signal level (e.g., in 
decibel millivolt) 
 
 
Example: 
Assume that a manufacturer’s specified carrier-to-XMOD ratio for an amplifier is 76 dB with a given 
channel loading, output signal level, and tilt. If the channel loading and tilt are kept the same but the 
output signal level is increased by 2 dB, what is the calculated carrier-to-XMOD ratio? Use 49 dBmV and 
51 dBmV for the reference and new signal levels respectively. 
 
Solution: 
𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀𝑖𝑖𝑓𝑓𝑛𝑛 = 𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀𝑚𝑚𝑓𝑓𝑓𝑓 − 2 ∗ �𝐿𝐿𝑖𝑖𝑓𝑓𝑛𝑛 − 𝐿𝐿𝑚𝑚𝑓𝑓𝑓𝑓� 
 
𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀𝑖𝑖𝑓𝑓𝑛𝑛 = 76 − 2 ∗ (51 − 49) 
 
𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀𝑖𝑖𝑓𝑓𝑛𝑛 = 76 − 2 ∗ (2) 
 
𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀𝑖𝑖𝑓𝑓𝑛𝑛 = 76 − 4 
 
𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀𝑖𝑖𝑓𝑓𝑛𝑛 = 72 
 
Answer: The calculated carrier-to-XMOD ratio is 72 dB. 
 

15.2. Effect of changing amplifier RF output tilt 

The amount of tilt from low frequency to high frequency at the output of an active device has an impact 
on the active device’s distortion performance. Tilt in the context used here refers to positive tilt, in which 
RF signal levels at the upper end of the spectrum are greater than RF signal levels at the lower end of the 
spectrum. The formulas in this section, from [5], are based upon empirical data. The formulas can be used 
to calculate distortion performance when tilt is changed, but the RF signal level at the upper end of the 
spectrum is left as specified in the manufacturer’s recommendations. Note: The reader is encouraged to 
consult with the manufacturer of the active devices in use for additional guidance related to the impact of 
specific tilt values on overall distortion performance. 



SCTE 270 2021r1   

SCTE OPERATIONAL PRACTICE  © SCTE 110 

15.2.1. Composite second order 

The following formula can be used to calculate the new carrier-to-CSO distortion ratio for a single 
amplifier when output tilt is changed: 
 
 

𝐶𝐶𝑅𝑅𝐶𝐶𝑖𝑖𝑓𝑓𝑛𝑛 = 𝐶𝐶𝑅𝑅𝐶𝐶𝑚𝑚𝑓𝑓𝑓𝑓 + 0.33 ∗ �𝑇𝑇𝑖𝑖𝑓𝑓𝑛𝑛 − 𝑇𝑇𝑚𝑚𝑓𝑓𝑓𝑓� 
 
where 
𝐶𝐶𝑅𝑅𝐶𝐶𝑖𝑖𝑓𝑓𝑛𝑛 is the calculated carrier-to-composite second order distortion ratio in decibels 
𝐶𝐶𝑅𝑅𝐶𝐶𝑚𝑚𝑓𝑓𝑓𝑓 is the equipment manufacturer’s specified or reference carrier-to-composite second order 
distortion ratio in decibels (expressed as a positive number) 
𝑇𝑇𝑖𝑖𝑓𝑓𝑛𝑛 is the new amplifier output tilt in decibels 
𝑇𝑇𝑚𝑚𝑓𝑓𝑓𝑓 is the equipment manufacturer’s specified or reference amplifier output tilt in decibels 
 
 
Example: 
Assume that a manufacturer’s specified carrier-to-CSO distortion ratio for an amplifier is 76 dB with a 
given channel loading, output signal level, and tilt. If the channel loading and the signal level at the upper 
end of the spectrum are unchanged but the tilt is decreased by 2 dB (i.e., the signal level at the lower end 
of the spectrum is increased), what is the calculated carrier-to-CSO distortion ratio? Use 14.5 dB and 12 
dB for the reference and new tilt values respectively. 
 
Solution: 
𝐶𝐶𝑅𝑅𝐶𝐶𝑖𝑖𝑓𝑓𝑛𝑛 = 𝐶𝐶𝑅𝑅𝐶𝐶𝑚𝑚𝑓𝑓𝑓𝑓 + 0.33 ∗ �𝑇𝑇𝑖𝑖𝑓𝑓𝑛𝑛 − 𝑇𝑇𝑚𝑚𝑓𝑓𝑓𝑓� 
 
𝐶𝐶𝑅𝑅𝐶𝐶𝑖𝑖𝑓𝑓𝑛𝑛 = 76 + 0.33 ∗ (12 − 14.5) 
 
𝐶𝐶𝑅𝑅𝐶𝐶𝑖𝑖𝑓𝑓𝑛𝑛 = 76 + [0.33 ∗ (−2.5)] 
 
𝐶𝐶𝑅𝑅𝐶𝐶𝑖𝑖𝑓𝑓𝑛𝑛 = 76 + [−0.83] 
 
𝐶𝐶𝑅𝑅𝐶𝐶𝑖𝑖𝑓𝑓𝑛𝑛 = 75.18 
 
Answer: The calculated carrier-to-CSO distortion ratio is 75.18 dB. 
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15.2.2. Composite triple beat 

The following formula can be used to calculate the new carrier-to-CTB distortion ratio for a single 
amplifier when output tilt is changed: 
 
 

𝐶𝐶𝑇𝑇𝑑𝑑𝑖𝑖𝑓𝑓𝑛𝑛 = 𝐶𝐶𝑇𝑇𝑑𝑑𝑚𝑚𝑓𝑓𝑓𝑓 + 0.8 ∗ �𝑇𝑇𝑖𝑖𝑓𝑓𝑛𝑛 − 𝑇𝑇𝑚𝑚𝑓𝑓𝑓𝑓� 
 
where 
𝐶𝐶𝑇𝑇𝑑𝑑𝑖𝑖𝑓𝑓𝑛𝑛 is the calculated carrier-to-composite triple beat distortion ratio in decibels 
𝐶𝐶𝑇𝑇𝑑𝑑𝑚𝑚𝑓𝑓𝑓𝑓 is the equipment manufacturer’s specified or reference carrier-to-composite triple beat distortion 
ratio in decibels (expressed as a positive number) 
𝑇𝑇𝑖𝑖𝑓𝑓𝑛𝑛 is the new amplifier output tilt in decibels 
𝑇𝑇𝑚𝑚𝑓𝑓𝑓𝑓 is the equipment manufacturer’s specified or reference amplifier output tilt in decibels 
 
 
Example: 
Assume that a manufacturer’s specified carrier-to-CTB distortion ratio for an amplifier is 81 dB with a 
given channel loading, output signal level, and tilt. If the channel loading and the signal level at the upper 
end of the spectrum are unchanged but the tilt is decreased by 2 dB (i.e., the signal level at the lower end 
of the spectrum is increased), what is the calculated carrier-to-CTB distortion ratio? Use 14.5 dB and 12 
dB for the reference and new tilt values respectively. 
 
Solution: 
𝐶𝐶𝑇𝑇𝑑𝑑𝑖𝑖𝑓𝑓𝑛𝑛 = 𝐶𝐶𝑇𝑇𝑑𝑑𝑚𝑚𝑓𝑓𝑓𝑓 + 0.8 ∗ �𝑇𝑇𝑖𝑖𝑓𝑓𝑛𝑛 − 𝑇𝑇𝑚𝑚𝑓𝑓𝑓𝑓� 
 
𝐶𝐶𝑇𝑇𝑑𝑑𝑖𝑖𝑓𝑓𝑛𝑛 = 81 + 0.8 ∗ (12 − 14.5) 
 
𝐶𝐶𝑇𝑇𝑑𝑑𝑖𝑖𝑓𝑓𝑛𝑛 = 81 + [0.8 ∗ (−2.5)] 
 
𝐶𝐶𝑇𝑇𝑑𝑑𝑖𝑖𝑓𝑓𝑛𝑛 = 81 + [−2.0] 
 
𝐶𝐶𝑇𝑇𝑑𝑑𝑖𝑖𝑓𝑓𝑛𝑛 = 79 
 
Answer: The calculated carrier-to-CTB distortion ratio is 79 dB. 
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15.2.3. Cross modulation 

The following formula can be used to calculate the new carrier-to-XMOD ratio for a single amplifier 
when output tilt is changed: 
 
 

𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀𝑖𝑖𝑓𝑓𝑛𝑛 = 𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀𝑚𝑚𝑓𝑓𝑓𝑓 + 0.5 ∗ �𝑇𝑇𝑖𝑖𝑓𝑓𝑛𝑛 − 𝑇𝑇𝑚𝑚𝑓𝑓𝑓𝑓� 
 
where 
𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀𝑖𝑖𝑓𝑓𝑛𝑛 is the calculated carrier-to-cross modulation ratio in decibels 
𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀𝑚𝑚𝑓𝑓𝑓𝑓 is the equipment manufacturer’s specified or reference carrier-to-cross modulation ratio in 
decibels (expressed as a positive number) 
𝑇𝑇𝑖𝑖𝑓𝑓𝑛𝑛 is the new amplifier output tilt in decibels 
𝑇𝑇𝑚𝑚𝑓𝑓𝑓𝑓 is the equipment manufacturer’s specified or reference amplifier output tilt in decibels 
  
 
Example: 
Assume that a manufacturer’s specified carrier-to-XMOD ratio for an amplifier is 76 dB with a given 
channel loading, output signal level, and tilt. If the channel loading and the signal level at the upper end of 
the spectrum are unchanged but the tilt is decreased by 2 dB (i.e., the signal level at the lower end of the 
spectrum is increased), what is the calculated carrier-to-XMOD ratio? Use 14.5 dB and 12 dB for the 
reference and new tilt values respectively. 
 
Solution: 
𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀𝑖𝑖𝑓𝑓𝑛𝑛 = 𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀𝑚𝑚𝑓𝑓𝑓𝑓 + 0.5 ∗ �𝑇𝑇𝑖𝑖𝑓𝑓𝑛𝑛 − 𝑇𝑇𝑚𝑚𝑓𝑓𝑓𝑓� 
 
𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀𝑖𝑖𝑓𝑓𝑛𝑛 = 76 + 0.5 ∗ (12 − 14.5) 
 
𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀𝑖𝑖𝑓𝑓𝑛𝑛 = 76 + [0.5 ∗ (−2.5)] 
 
𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀𝑖𝑖𝑓𝑓𝑛𝑛 = 76 + [−1.25] 
 
𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀𝑖𝑖𝑓𝑓𝑛𝑛 = 74.75 
 
Answer: The calculated carrier-to-XMOD ratio is 74.75 dB. 
 

15.3. Calculate distortion in a cascade of identical amplifiers 

End-of-line distortion performance can be calculated with the formulas in this section. All of the 
amplifiers in cascade are assumed to be identical, operating with the same channel load, output signal 
levels, and tilt.21 

 
21 During the cable network design engineering phase, individual amplifier operating parameters can be changed to 
achieve the desired end-of-line performance. For example, the maximum allowable number of amplifiers in cascade 
could be reduced. Individual amplifier RF signal levels and tilt also could be reduced (“derated”) to improve 
individual amplifier distortion performance. 
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15.3.1. Composite second order 

The following formula can be used to calculate end-of-line carrier-to-CSO distortion ratio:22 
 
 

𝐶𝐶𝑅𝑅𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐶𝐶𝑅𝑅𝐶𝐶𝐴𝐴𝑀𝑀𝑃𝑃 − 10𝑙𝑙𝐿𝐿𝑎𝑎10(𝑁𝑁) 
 
where 
𝐶𝐶𝑅𝑅𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸 is the calculated carrier-to-composite second order distortion ratio in decibels at the end of a 
cascade of identical amplifiers 
𝐶𝐶𝑅𝑅𝐶𝐶𝐴𝐴𝑀𝑀𝑃𝑃 is the carrier-to-composite second order distortion ratio in decibels for an individual amplifier 
(expressed as a positive number) 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑁𝑁 is the number of identical amplifiers in cascade 
 
 
Example: 
Assume that the carrier-to-CSO distortion ratio for an individual amplifier is 76 dB with a given channel 
loading, output signal level, and tilt. What is the carrier-to-CSO distortion ratio at the end a cascade of 10 
of these amplifiers? 
 
Solution: 
𝐶𝐶𝑅𝑅𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐶𝐶𝑅𝑅𝐶𝐶𝐴𝐴𝑀𝑀𝑃𝑃 − 10𝑙𝑙𝐿𝐿𝑎𝑎10(𝑁𝑁) 
 
𝐶𝐶𝑅𝑅𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸 = 76 − 10𝑙𝑙𝐿𝐿𝑎𝑎10(10) 
 
𝐶𝐶𝑅𝑅𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸 = 76 − [10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(10)] 
 
𝐶𝐶𝑅𝑅𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸 = 76 − [10 ∗ (1.00)] 
 
𝐶𝐶𝑅𝑅𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸 = 76 − [10] 
 
𝐶𝐶𝑅𝑅𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸 = 66 
 
Answer: The carrier-to-CSO distortion ratio at the end of the amplifier cascade is 66 dB. 
  

 
22 For very short cascades of identical amplifiers (N < 10 amplifiers), the assumption of 10log10 power addition for 
carrier-to-CSO distortion ratio no longer holds; see Appendix D. Some prefer to use 15log10(N) in this calculation. 
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15.3.2. Composite triple beat 

The following formula can be used to calculate end-of-line carrier-to-CTB distortion ratio: 
 
 

𝐶𝐶𝑇𝑇𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐶𝐶𝑇𝑇𝑑𝑑𝐴𝐴𝑀𝑀𝑃𝑃 − 20𝑙𝑙𝐿𝐿𝑎𝑎10(𝑁𝑁) 
 
where 
𝐶𝐶𝑇𝑇𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸 is the calculated carrier-to-composite triple beat distortion ratio in decibels at the end of a 
cascade of identical amplifiers 
𝐶𝐶𝑇𝑇𝑑𝑑𝐴𝐴𝑀𝑀𝑃𝑃 is the carrier-to-composite triple beat distortion ratio in decibels for an individual amplifier 
(expressed as a positive number) 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑁𝑁 is the number of identical amplifiers in cascade 
 
 
Example: 
Assume that the carrier-to-CTB distortion ratio for an individual amplifier is 81 dB with a given channel 
loading, output signal level, and tilt. What is the carrier-to-CTB distortion ratio at the end a cascade of 10 
of these amplifiers? 
 
Solution: 
𝐶𝐶𝑇𝑇𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐶𝐶𝑇𝑇𝑑𝑑𝐴𝐴𝑀𝑀𝑃𝑃 − 20𝑙𝑙𝐿𝐿𝑎𝑎10(𝑁𝑁) 
 
𝐶𝐶𝑇𝑇𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸 = 81 − 20𝑙𝑙𝐿𝐿𝑎𝑎10(10) 
 
𝐶𝐶𝑇𝑇𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸 = 81 − [20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(10)] 
 
𝐶𝐶𝑇𝑇𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸 = 81 − [20 ∗ (1)] 
 
𝐶𝐶𝑇𝑇𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸 = 81 − [20] 
 
𝐶𝐶𝑇𝑇𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸 = 61 
 
Answer: The carrier-to-CTB distortion ratio at the end of the amplifier cascade is 61 dB. 
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15.3.3. Cross modulation 

The following formula can be used to calculate end-of-line carrier-to-XMOD ratio: 
 
 

𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀𝐴𝐴𝑀𝑀𝑃𝑃 − 20𝑙𝑙𝐿𝐿𝑎𝑎10(𝑁𝑁) 
 
where 
𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸 is the calculated carrier-to-cross modulation ratio in decibels at the end of a cascade of 
identical amplifiers 
𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀𝐴𝐴𝑀𝑀𝑃𝑃 is the carrier-to-cross modulation ratio in decibels for an individual amplifier (expressed as a 
positive number) 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑁𝑁 is the number of identical amplifiers in cascade 
 
 
Example: 
Assume that the carrier-to-XMOD ratio for an individual amplifier is 76 dB with a given channel loading, 
output signal level, and tilt. What is the carrier-to-XMOD ratio at the end a cascade of 10 of these 
amplifiers? 
 
Solution: 
𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀𝐴𝐴𝑀𝑀𝑃𝑃 − 20𝑙𝑙𝐿𝐿𝑎𝑎10(𝑁𝑁) 
 
𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸 = 76 − 20𝑙𝑙𝐿𝐿𝑎𝑎10(10) 
 
𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸 = 76 − [20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(10)] 
 
𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸 = 76 − [20 ∗ (1)] 
 
𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸 = 76 − [20] 
 
𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸 = 56 
 
Answer: The carrier-to-XMOD ratio at the end of the amplifier cascade is 56 dB. 
 

15.4. Calculate distortion in a cascade of dissimilar amplifiers (and/or 
dissimilar operating levels) 

Some cable network architectures are designed with different types of active devices in cascade, each 
with different standalone distortion performance parameters. The formulas in this section can be used to 
calculate end-of-line carrier-to-distortion performance in a cascade of non-identical amplifiers, and/or in a 
cascade of identical amplifiers in which some actives operate with different output signal levels than 
others in the same cascade. The formulas also can be used to combine carrier-to-distortion ratios of 
different parts of a network, for example, the output of a headend after an active RF management system 
(i.e., active headend combiner), the node, and a cascade of amplifiers after the node. 
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15.4.1. Composite second order 

The following formula can be used to calculate end-of-line carrier-to-CSO distortion ratio:23 
 
 

𝐶𝐶𝑅𝑅𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸 = −10𝑙𝑙𝐿𝐿𝑎𝑎10�10(−𝐶𝐶𝑅𝑅𝐸𝐸1 10⁄ ) + 10(−𝐶𝐶𝑅𝑅𝐸𝐸2 10⁄ ) + 10(−𝐶𝐶𝑅𝑅𝐸𝐸3 10⁄ ) + ⋯ � 
 
where 
𝐶𝐶𝑅𝑅𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸 is the calculated carrier-to-composite second order distortion ratio at the end-of-line, in decibels 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝐶𝐶𝑅𝑅𝐶𝐶1 is the carrier-to-composite second order distortion ratio, in decibels, of the first active in cascade 
(expressed as a positive number) 
𝐶𝐶𝑅𝑅𝐶𝐶2 is the carrier-to-composite second order distortion ratio, in decibels, of the second active in cascade 
(expressed as a positive number) 
𝐶𝐶𝑅𝑅𝐶𝐶3 is the carrier-to-composite second order distortion ratio, in decibels, of the third active in cascade 
(expressed as a positive number) 
… and so on (i.e., 𝐶𝐶𝑅𝑅𝐶𝐶𝑖𝑖, where 𝑠𝑠 is the 𝑠𝑠th amplifier in cascade) 
 
 
Example: 
Assume a node+2 architecture with the following carrier-to-CSO distortion ratio values for each active in 
cascade. What is the end-of-line carrier-to-CSO distortion ratio in decibels? 
 
Node: 63 dB 
First amplifier: 76 dB 
Second amplifier: 66 dB 
 
Solution: 
𝐶𝐶𝑅𝑅𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸 = −10𝑙𝑙𝐿𝐿𝑎𝑎10�10(−𝐶𝐶𝑅𝑅𝐸𝐸1 10⁄ ) + 10(−𝐶𝐶𝑅𝑅𝐸𝐸2 10⁄ ) + 10(−𝐶𝐶𝑅𝑅𝐸𝐸3 10⁄ )� 
 
𝐶𝐶𝑅𝑅𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸 = −10𝑙𝑙𝐿𝐿𝑎𝑎10�10(−63 10⁄ ) + 10(−76 10⁄ ) + 10(−66 10⁄ )� 
 
𝐶𝐶𝑅𝑅𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10�10(−6.30) + 10(−7.60) + 10(−6.60)� 
 
𝐶𝐶𝑅𝑅𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[0.00000050 + 0.00000003 + 0.00000025] 
 
𝐶𝐶𝑅𝑅𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[0.00000078] 
 
𝐶𝐶𝑅𝑅𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸 = −10 ∗ [−6.10930254] 
 
𝐶𝐶𝑅𝑅𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸 = 61.09 
 
Answer: The end-of-line carrier-to-CSO distortion ratio is 61.09 dB. 

 
23 For very short cascades of identical amplifiers (N < 10 amplifiers), the assumption of 10log10 power addition for 
carrier-to-CSO distortion ratio no longer holds; see Appendix D. Some prefer to use 15log10(N) for this calculation, 
in which case the formula would be 𝐶𝐶𝑅𝑅𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸 = −15𝑙𝑙𝐿𝐿𝑎𝑎10�10(−𝐶𝐶𝑅𝑅𝐸𝐸1 15⁄ ) + 10(−𝐶𝐶𝑅𝑅𝐸𝐸2 15⁄ ) + 10(−𝐶𝐶𝑅𝑅𝐸𝐸3 15⁄ ) + ⋯ �. 
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15.4.2. Composite triple beat 

The following formula can be used to calculate end-of-line carrier-to-CTB distortion ratio: 
 
 

𝐶𝐶𝑇𝑇𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸 = −20𝑙𝑙𝐿𝐿𝑎𝑎10�10(−𝐶𝐶𝐶𝐶𝑑𝑑1 20⁄ ) + 10(−𝐶𝐶𝐶𝐶𝑑𝑑2 20⁄ ) + 10(−𝐶𝐶𝐶𝐶𝑑𝑑3 20⁄ ) + ⋯ � 
 
where 
𝐶𝐶𝑇𝑇𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸 is the calculated carrier-to-composite triple beat distortion ratio at the end-of-line, in decibels 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝐶𝐶𝑇𝑇𝑑𝑑1 is the carrier-to-composite triple beat distortion ratio, in decibels, of the first active in cascade 
(expressed as a positive number) 
𝐶𝐶𝑇𝑇𝑑𝑑2 is the carrier-to-composite triple beat distortion ratio, in decibels, of the second active in cascade 
(expressed as a positive number) 
𝐶𝐶𝑇𝑇𝑑𝑑3 is the carrier-to-composite triple beat distortion ratio, in decibels, of the third active in cascade 
(expressed as a positive number) 
… and so on (i.e., 𝐶𝐶𝑇𝑇𝑑𝑑𝑖𝑖, where 𝑠𝑠 is the 𝑠𝑠th amplifier in cascade) 
 
 
Example: 
Assume a node+2 architecture with the following carrier-to-CTB distortion ratio values for each active in 
cascade. What is the end-of-line carrier-to-CTB distortion ratio in decibels? 
 
Node: 68 dB 
First amplifier: 81 dB 
Second amplifier: 66 dB 
 
Solution: 
𝐶𝐶𝑇𝑇𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸 = −20𝑙𝑙𝐿𝐿𝑎𝑎10�10(−𝐶𝐶𝐶𝐶𝑑𝑑1 20⁄ ) + 10(−𝐶𝐶𝐶𝐶𝑑𝑑2 20⁄ ) + 10(−𝐶𝐶𝐶𝐶𝑑𝑑3 20⁄ )� 
 
𝐶𝐶𝑇𝑇𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸 = −20𝑙𝑙𝐿𝐿𝑎𝑎10�10(−68 20⁄ ) + 10(−81 20⁄ ) + 10(−66 20⁄ )� 
 
𝐶𝐶𝑇𝑇𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸 = −20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10�10(−3.40) + 10(−4.05) + 10(−3.30)� 
 
𝐶𝐶𝑇𝑇𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸 = −20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[0.00039811 + 0.00008913 + 0.00050119] 
 
𝐶𝐶𝑇𝑇𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸 = −20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[0.00098842] 
 
𝐶𝐶𝑇𝑇𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸 = −20 ∗ [−3.00505870] 
 
𝐶𝐶𝑇𝑇𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸 = 60.10 
 
Answer: The end-of-line carrier-to-CTB distortion ratio is 60.10 dB. 
  



SCTE 270 2021r1   

SCTE OPERATIONAL PRACTICE  © SCTE 118 

15.4.3. Cross modulation 

The following formula can be used to calculate end-of-line carrier-to-XMOD ratio: 
 
 

𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸 = −20𝑙𝑙𝐿𝐿𝑎𝑎10�10(−𝑋𝑋𝑀𝑀𝐸𝐸𝑋𝑋1 20⁄ ) + 10(−𝑋𝑋𝑀𝑀𝐸𝐸𝑋𝑋2 20⁄ ) + 10(−𝑋𝑋𝑀𝑀𝐸𝐸𝑋𝑋3 20⁄ ) + ⋯ � 
 
where 
𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸 is the calculated carrier-to-cross modulation ratio at the end-of-line, in decibels 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀1 is the carrier-to-cross modulation ratio, in decibels, of the first active in cascade (expressed as a 
positive number) 
𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀2 is the carrier-to-cross modulation ratio, in decibels, of the second active in cascade (expressed as 
a positive number) 
𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀3 is the carrier-to-cross modulation ratio, in decibels, of the third active in cascade (expressed as a 
positive number) 
… and so on (i.e., 𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀𝑖𝑖, where 𝑠𝑠 is the 𝑠𝑠th amplifier in cascade) 
 
 
Example: 
Assume a node+2 architecture with the following carrier-to-XMOD ratio values for each active in 
cascade. What is the end-of-line carrier-to-XMOD ratio in decibels? 
 
Node: 60 dB 
First amplifier: 76 dB 
Second amplifier: 63 dB 
 
Solution: 
𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸 = −20𝑙𝑙𝐿𝐿𝑎𝑎10�10(−𝑋𝑋𝑀𝑀𝐸𝐸𝑋𝑋1 20⁄ ) + 10(−𝑋𝑋𝑀𝑀𝐸𝐸𝑋𝑋2 20⁄ ) + 10(−𝑋𝑋𝑀𝑀𝐸𝐸𝑋𝑋3 20⁄ )� 
 
𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸 = −20𝑙𝑙𝐿𝐿𝑎𝑎10�10(−60 20⁄ ) + 10(−76 20⁄ ) + 10(−63 20⁄ )� 
 
𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸 = −20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10�10(−3.00) + 10(−3.80) + 10(−3.15)� 
 
𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸 = −20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[0.00100000 + 0.00015849 + 0.00070795] 
 
𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸 = −20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[0.00186644] 
 
𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸 = −20 ∗ [−2.728988711] 
 
𝑋𝑋𝑅𝑅𝐶𝐶𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸 = 54.58 
 
Answer: The end-of-line carrier-to-XMOD ratio is 54.58 dB. 
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15.5. Distortions in an all-digital network 

Contrary to some misconceptions, distortions such as CTB, CSO, and CPD don’t go away in an all-digital 
network. Rather than clusters of discrete beats that occur in a network carrying large numbers of analog 
TV channels, the “digital distortions” are noise-like. Those noise-like distortion products are variously 
known as composite intermodulation noise (CIN), composite intermodulation distortion (CID), or 
intermodulation noise (IMN) – which should not be confused with thermal noise. 
 
Confusion does occur, though. It is well-known that increasing the amplitude of RF signal levels in the 
plant usually improves the carrier-to-noise ratio (CNR).24 But in a cable network with mostly- or all-
digital channel loading, increasing the signal levels can improve CNR to a point, then the noise floor 
starts to increase and the CNR appears to get worse. That seems counterintuitive, but the now-elevated 
noise floor is no longer just thermal noise. The noise floor is a combination of thermal noise and the 
previously mentioned noise-like distortions. When characterizing plant performance in the presence of 
CIN, the term “carrier-to-composite noise (CCN) ratio” is commonly used. Indeed, CCN is a much more 
appropriate measurement metric than is CNR under these circumstances, because there is no practical 
way to differentiate thermal noise from CIN in a cable network without turning off the active RF signals. 
 
The graphic in Figure 19 illustrates the relationship of CSO and CTB to analog NTSC visual and aural 
carriers.25 Note that CTB falls on visual carrier frequencies, and CSO falls 1.25 MHz below and above 
visual carrier frequencies. Thermal noise is represented by a horizontal green line at the base of the 
carriers. Here, each 1 dB increase in RF signal levels at amplifier inputs and outputs causes the CTB ratio 
to decrease (degrade) by 2 dB, the CSO ratio to degrade by 1 dB, and the CNR to increase (improve) by 1 
dB.  
 

 
Figure 19 - In a cable network with all-analog TV signals, for each 1 dB increase in RF 

signal levels: CTB ratio degrades by 2 dB, CSO ratio degrades by 1 dB, CNR improves by 
1 dB. 

The graphic in Figure 20 illustrates a spectrum with a combination of analog NTSC TV signals and 
digital signals. In this example the horizontal green line represents thermal noise; the horizontal red line 
represents CIN (i.e., noise-like distortions); and the horizontal purple line represents composite noise (a 
mix of thermal noise and the noise-like distortions). As before, each 1 dB increase in amplifier RF input 

 
24 In this context CNR is carrier-to-thermal noise ratio. 
25 The assumption in this example is that that the NTSC channels use standard (STD) frequency assignments, as 
opposed to incremental related carrier (IRC) or harmonic related carrier (HRC) frequencies. 
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and output signal levels causes the CTB ratio to decrease (degrade) by 2 dB, the CSO ratio to degrade by 
1 dB, and the CNR to increase (improve) by 1 dB. However, the carrier-to-CIN ratio degrades by 1 to 2 
dB (mix of second and third order components). The CCN ratio degradation depends on the CIN and 
CNR values. 

 
Figure 20 - In a cable network with a mix of analog TV and digital signals, for each 1 dB 

increase in RF signal levels: CNR, CTB, and CSO ratios behave as before with all-analog 
operation; CIN ratio degrades by 1 to 2 dB (mix of 2nd and 3rd order components); CCN 

ratio degradation depends on CIN and CNR values. 

The graphic in Figure 21 illustrates all-digital operation. The horizontal green line represents thermal 
noise; the horizontal red line represents CIN (i.e., noise-like distortions); and the horizontal purple line 
represents composite noise (a mix of thermal noise and the noise-like distortions). Here, for each 1 dB 
increase in amplifier input and output RF signal levels, the CNR increases (improves) by 1 dB, the 
carrier-to-CIN ratio degrades by 1 dB to 2 dB (mix of second and third order components), and the CCN 
ratio degradation depends on CIN and CNR values. 
 

 
Figure 21 - In a cable network with all-digital operation, for each 1 dB increase in RF 

signal levels: CNR behaves as before with all-analog operation; CIN ratio degrades by 1 
to 2 dB (mix of 2nd and 3rd order components); and CCN ratio degradation depends on 

CIN and CNR values. 
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16. Hum Modulation 
§76.605(b)(10) of the FCC Rules26 states the following for analog NTSC television channels: “The peak-
to-peak variation in visual signal level caused by undesired low frequency disturbances (hum or repetitive 
transients) generated within the system, or by inadequate low frequency response, shall not exceed 3 
percent of the visual signal level. Measurements made on a single channel using a single unmodulated 
carrier may be used to demonstrate compliance with this parameter at each test location.” The 
aforementioned is commonly referred to as hum modulation, and the value in the Rules is in percent. 
However, distribution equipment manufacturers often state hum modulation as a ratio such as 60 dBc. 
This section includes formulas to convert between hum modulation in percent and as a ratio. This section 
also includes formulas to calculate end-of-line carrier-to-hum modulation ratio. 
 

16.1. Hum modulation in a cascade of identical amplifiers 

The following formula can be used to calculate end-of-line carrier-to-hum modulation ratio: 
 
 

𝐻𝐻𝐻𝐻𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐻𝐻𝐻𝐻𝑅𝑅𝐴𝐴𝑀𝑀𝑃𝑃 − 20𝑙𝑙𝐿𝐿𝑎𝑎10(𝑁𝑁) 
 
where 
𝐻𝐻𝐻𝐻𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 is the calculated carrier-to-hum modulation ratio in decibels at the end of a cascade of identical 
amplifiers 
𝐻𝐻𝐻𝐻𝑅𝑅𝐴𝐴𝑀𝑀𝑃𝑃 is the carrier-to-hum modulation ratio in decibels for an individual amplifier (expressed as a 
positive number) 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑁𝑁 is the number of identical amplifiers in cascade 
 
 
Example: 
Assume that the carrier-to-hum modulation ratio for an individual amplifier is 65 dB with 12 amperes of 
steady-state current passing through the amplifier. What is the carrier-to-hum modulation ratio at the end 
a cascade of 10 of these amplifiers? 
 
Solution: 
𝐻𝐻𝐻𝐻𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐻𝐻𝐻𝐻𝑅𝑅𝐴𝐴𝑀𝑀𝑃𝑃 − 20𝑙𝑙𝐿𝐿𝑎𝑎10(𝑁𝑁) 
 
𝐻𝐻𝐻𝐻𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 = 65 − 20𝑙𝑙𝐿𝐿𝑎𝑎10(10) 
 
𝐻𝐻𝐻𝐻𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 = 65 − [20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(10)] 
 
𝐻𝐻𝐻𝐻𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 = 65 − [20 ∗ (1)] 
 
𝐻𝐻𝐻𝐻𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 = 65 − [20] 
 
𝐻𝐻𝐻𝐻𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 = 45 

 
26 As of October 2020. 
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Answer: The carrier-to-hum modulation ratio at the end of the amplifier cascade is 45 dB.27 
 

16.2. Hum modulation in a cascade of non-identical active devices 

The following formula can be used to calculate end-of-line carrier-to-hum modulation ratio:  
 
 

𝐻𝐻𝐻𝐻𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 = −20𝑙𝑙𝐿𝐿𝑎𝑎10�10(−𝑀𝑀𝐻𝐻𝑀𝑀1 20⁄ ) + 10(−𝑀𝑀𝐻𝐻𝑀𝑀2 20⁄ ) + 10(−𝑀𝑀𝐻𝐻𝑀𝑀3 20⁄ ) + ⋯ � 
 
where 
𝐻𝐻𝐻𝐻𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 is the calculated carrier-to-hum modulation ratio at the end-of-line, in decibels 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝐻𝐻𝐻𝐻𝑅𝑅1 is the carrier-to-hum modulation ratio, in decibels, of the first amplifier in cascade (expressed as a 
positive number) 
𝐻𝐻𝐻𝐻𝑅𝑅2 is the carrier-to-hum modulation ratio, in decibels, of the second amplifier in cascade (expressed 
as a positive number) 
𝐻𝐻𝐻𝐻𝑅𝑅3 is the carrier-to-hum modulation ratio, in decibels, of the third amplifier in cascade (expressed as a 
positive number) 
… and so on (i.e., 𝐻𝐻𝐻𝐻𝑅𝑅𝑖𝑖, where 𝑠𝑠 is the 𝑠𝑠th amplifier in cascade) 
 
 
Example: 
Assume a node+2 architecture with the following carrier-to-hum modulation ratio values for each active 
in cascade. What is the end-of-line carrier-to-hum modulation ratio in decibels? 
 
Node: 65 dB @ 10 amperes 
First amplifier: 60 dB @ 12 amperes 
Second amplifier: 70 dB @ 12 amperes 
 
Solution: 
𝐻𝐻𝐻𝐻𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 = −20𝑙𝑙𝐿𝐿𝑎𝑎10�10(−𝑀𝑀𝐻𝐻𝑀𝑀1 20⁄ ) + 10(−𝑀𝑀𝐻𝐻𝑀𝑀2 20⁄ ) + 10(−𝑀𝑀𝐻𝐻𝑀𝑀3 20⁄ )� 
 
𝐻𝐻𝐻𝐻𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 = −20𝑙𝑙𝐿𝐿𝑎𝑎10�10(−65 20⁄ ) + 10(−60 20⁄ ) + 10(−70 20⁄ )� 
 
𝐻𝐻𝐻𝐻𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 = −20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10�10(−3.25) + 10(−3.00) + 10(−3.50)� 
 
𝐻𝐻𝐻𝐻𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 = −20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[0.00056234 + 0.00100000 + 0.00031623] 
 
𝐻𝐻𝐻𝐻𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 = −20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[0.00187857] 
 
𝐻𝐻𝐻𝐻𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 = −20 ∗ [−2.72617283] 
 
𝐻𝐻𝐻𝐻𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 = 54.52 
 

 
27 This example is intentionally a worst-case scenario. Practically speaking, it is unlikely that each amplifier in a 
cascade of 10 identical amplifiers would have the manufacturer’s maximum steady-state through-current in actual 
operation (12 amperes in this example). 
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Answer: The end-of-line carrier-to-hum modulation ratio is 54.58 dB.28 

16.3. Convert carrier-to-hum ratio to percent 

The following formula can be used to convert carrier-to-hum ratio in decibels to hum modulation in 
percent: 
 
 

ℎ𝑣𝑣𝑚𝑚𝑐𝑐𝑓𝑓𝑚𝑚𝑐𝑐𝑓𝑓𝑖𝑖𝑓𝑓 = �10−𝐶𝐶𝑀𝑀𝑅𝑅 20⁄ � ∗ 100 
 
where 
ℎ𝑣𝑣𝑚𝑚𝑐𝑐𝑓𝑓𝑚𝑚𝑐𝑐𝑓𝑓𝑖𝑖𝑓𝑓 is hum modulation in percent 
𝐶𝐶𝐻𝐻𝑅𝑅 is the carrier-to-hum ratio in dB (expressed as a positive number) 
 
 
Example: 
What is the hum modulation in percent for a carrier-to-hum ratio of 65 dB? 
 
Solution: 
ℎ𝑣𝑣𝑚𝑚𝑐𝑐𝑓𝑓𝑚𝑚𝑐𝑐𝑓𝑓𝑖𝑖𝑓𝑓 = �10−𝐶𝐶𝑀𝑀𝑅𝑅 20⁄ � ∗ 100 
 
ℎ𝑣𝑣𝑚𝑚𝑐𝑐𝑓𝑓𝑚𝑚𝑐𝑐𝑓𝑓𝑖𝑖𝑓𝑓 = �10−65 20⁄ � ∗ 100 
 
ℎ𝑣𝑣𝑚𝑚𝑐𝑐𝑓𝑓𝑚𝑚𝑐𝑐𝑓𝑓𝑖𝑖𝑓𝑓 = (10−3.25) ∗ 100 
 
ℎ𝑣𝑣𝑚𝑚𝑐𝑐𝑓𝑓𝑚𝑚𝑐𝑐𝑓𝑓𝑖𝑖𝑓𝑓 = (0.000562) ∗ 100 
 
ℎ𝑣𝑣𝑚𝑚𝑐𝑐𝑓𝑓𝑚𝑚𝑐𝑐𝑓𝑓𝑖𝑖𝑓𝑓 = 0.0562 
 
Answer: The hum modulation is 0.0562 percent. 
 
  

 
28 This example is intentionally a worst-case scenario. Practically speaking, it is unlikely that each active device in a 
cascade of node+2 amplifiers would have the manufacturer’s maximum steady-state through-current in actual 
operation (≥10 amperes in this example). 
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16.4. Convert percent to carrier-to-hum ratio 

The following formula can be used to convert hum modulation in percent to carrier-to-hum ratio in 
decibels: 
 
 

𝐶𝐶𝐻𝐻𝑅𝑅 = −20𝑙𝑙𝐿𝐿𝑎𝑎10 �
ℎ𝑣𝑣𝑚𝑚𝑐𝑐𝑓𝑓𝑚𝑚𝑐𝑐𝑓𝑓𝑖𝑖𝑓𝑓

100
� 

 
where 
𝐶𝐶𝐻𝐻𝑅𝑅 is the carrier-to-hum ratio in dB (expressed as a positive number) 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
ℎ𝑣𝑣𝑚𝑚𝑐𝑐𝑓𝑓𝑚𝑚𝑐𝑐𝑓𝑓𝑖𝑖𝑓𝑓 is hum modulation in percent 
 
 
Example: 
What is 3 percent hum modulation expressed as carrier-to-hum ratio in decibels? 
 
Solution: 

𝐶𝐶𝐻𝐻𝑅𝑅 = −20𝑙𝑙𝐿𝐿𝑎𝑎10 �
ℎ𝑣𝑣𝑚𝑚𝑐𝑐𝑓𝑓𝑚𝑚𝑐𝑐𝑓𝑓𝑖𝑖𝑓𝑓

100
� 

 

𝐶𝐶𝐻𝐻𝑅𝑅 = −20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 �
3

100
� 

 
𝐶𝐶𝐻𝐻𝑅𝑅 = −20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(0.03) 
 
𝐶𝐶𝐻𝐻𝑅𝑅 = −20 ∗ (−1.52) 
 
𝐶𝐶𝐻𝐻𝑅𝑅 = 30.46 
 
Answer: The carrier-to-hum ratio is 30.46 dB. 
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17. Antennas 
An antenna is a transducer that converts RF current to electromagnetic waves in transmit applications, or 
converts electromagnetic waves to RF current in receive applications. Cable operators have long used 
antennas at headends to receive over-the-air broadcast signals and satellite signals; for base station and 
vehicle two-way radios; for signal leakage monitoring and measurement; and various other purposes. 
More information on antenna theory and fundamentals can be found in [1], [2], [3], [7], [11], [13], [14], 
and [15]. 
 

17.1. Isotropic source 

From [2], “A source that radiates energy uniformly in all directions is an isotropic source.” and 
“Although the isotropic source is convenient in theory, it is not a physically realizable type.” The 
directivity of an isotropic source is D = 1, or 0 dBi, where dBi is decibel isotropic (decibels relative to an 
isotropic source). 
 
An analogy is a light bulb at the center of a sphere, illuminating the surface of that sphere uniformly. 
While isotropic sources (antennas) do not exist, they are useful for comparisons of real-world antenna 
performance. 
 

17.2. Directivity and gain 

The directivity of an antenna is a measure of the concentration of the radiated energy in a single direction, 
compared to an isotropic source. The “directivity” is a function of the direction looking from the antenna 
outward; commonly “the directivity” of an antenna is assigned the value of the maximum directivity. 
 
[2] defines directivity D of an antenna as “the ratio of the maximum radiation intensity (power per unit 
solid angle) U(θ,  𝜙𝜙)max to the average radiation intensity Uav (averaged over a sphere).” 
 
For practical antennas the concentration of radiation is not uniformly distributed, but concentrated in 
some directions more than others. Since the directivity (unless otherwise noted) is compared to the 
uniform radiation pattern of an isotropic source, for some directions the directivity is larger than 1 and for 
other directions it is less than 1, and by definition averages to 1 over the entire sphere. 
 
It is worth repeating that “the directivity” of an antenna is a measure of the concentration of the radiated 
energy in the direction of maximum radiation, unless other information is stated. The emphasis on 
radiated energy is to illustrate the distinction between antenna directivity and antenna gain. In practice, a 
portion of the power delivered to an antenna is dissipated as ohmic loss, and the power which is not 
dissipated as ohmic loss is radiated. The directivity, D, is a measure of the concentration of the radiated 
energy. The proportion of energy delivered to the antenna which becomes radiated is called the efficiency 
of the antenna, commonly noted by k. 
 
Directivity and gain are similar, but are often confused. From [2]: 
 

The gain of an antenna (referred to a lossless isotropic source) depends on both its directivity and 
its efficiency. If the efficiency is not 100 percent, the gain is less than the directivity. Thus, the 
gain 
 
G = kD (dimensionless) 
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where k = efficiency factor of antenna (0 ≤ k ≤ 1), dimensionless 
 
This efficiency has to do only with ohmic losses in the antenna. 

 
The directivity and gain for an antenna have been explained in terms of a transmitting (radiating) antenna. 
The antenna pattern and ohmic loss of an antenna are the same when used to receive, as when 
transmitting, which is known as reciprocity. The principle of reciprocity is fundamental in antenna theory 
and practice. The directivity and gain are properties of the antenna. 
 

17.3. Half-wave dipole 

The half-wave dipole antenna has long been used for signal leakage measurements by cable operators, 
and is referenced in the FCC’s signal leakage requirements.29 The dipole antenna most familiar to cable 
operators is a linear doublet that has a physical end-to-end length equal to slightly less than one-half 
wavelength at the design frequency.30 A half-wave dipole comprises two conductive elements in the same 
plane, fed at the center by a transmission line (see Figure 22).31 The transmission line can be a balanced 
transmission line (e.g., twinlead or window line), or an unbalanced transmission line such as coaxial 
cable. When fed by coaxial cable, a balun is typically used at the antenna’s terminals to accommodate the 
transition from the unbalanced transmission line to the (balanced) dipole antenna.  
 

Transmission line

~λ/2

Antenna element Antenna element

 
 

Figure 22 - Half-wave dipole antenna fed by a balanced transmission line. 

Figure 23 shows a radiation pattern azimuth plot for a 139 MHz half-wave dipole in free space. The 
directional nature of the dipole is obvious, with maximum gain broadside to the elements. Nulls in the 
pattern are evident off of the ends of the antenna. (Visualize the plot as a horizontal slice of a donut 
standing on its edge, with the dipole poking through the center of the hole in the donut.) 

 
29 See Title 47 of the Code of Federal Regulations, Part 76, §76.609(h). 
30 A thin, linear center-fed dipole antenna that is exactly one-half wavelength long at a given frequency is not 
resonant at that frequency. The dipole’s feedpoint impedance includes some inductive reactance in series with the 
antenna’s radiation resistance. To achieve resonance the dipole’s physical length must be shortened a few percent, 
which brings the reactance to zero, and reduces the radiation resistance somewhat. 
31 Not all half-wave dipoles are fed at the center. A design called an off-center-fed dipole is used in some radio 
communications applications, and is beyond the scope of this Operational Practice. For more information, see, for 
example, http://webclass.org/k5ijb/antennas/Windom_off-center-fed-dipole.htm  

http://webclass.org/k5ijb/antennas/Windom_off-center-fed-dipole.htm
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Figure 23. Azimuth plot of a 139 MHz dipole antenna's radiation pattern in free space. 

Plotted using EZNEC® Demo v. 6.0.30 software.32 

Figure 24 shows an example of a homemade dipole antenna using adjustable-length elements. The center 
support section is clear acrylic, and the feedline is a length of 75 ohms impedance mini-coax. Several 
ferrite beads (#43 mix) were threaded over the coax during assembly; the beads serve as a wide-
frequency-range current choke balun. The dipole’s resonant frequency is set by adjusting the lengths of 
the elements to the correct value for the frequency of interest. 
 

 
 

Figure 24. Homemade half-wave dipole antenna using telescoping elements. This 
particular antenna was designed to be used over a frequency range from about 100 MHz 

(elements fully extended) to 300 MHz (elements fully collapsed). 

 
32 EZNEC® is a registered trademark of Roy W. Lewellen. 
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17.3.1. Dipole antenna end-to-end length 

The end-to-end length of a fixed or adjustable half-wave dipole in inches can be calculated using the 
formula: 
 
 

𝐿𝐿𝑖𝑖𝑖𝑖𝑐𝑐ℎ𝑓𝑓𝑚𝑚 =
5901.43

𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀
∗ 𝐾𝐾 

 
where 
𝐿𝐿𝑖𝑖𝑖𝑖𝑐𝑐ℎ𝑓𝑓𝑚𝑚 is the dipole’s end-to-end length in inches 
𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀 is the frequency in megahertz 
𝐾𝐾 is a factor accounting for the antenna element half wavelength-to-diameter ratio (see Section 17.3.2.1) 
 
 
Example: 
What is the end-to-end length of a half-wave dipole antenna for a frequency of 139.25 MHz? Assume the 
antenna element diameter is 0.25 inch (6.35 mm) and K = 0.967. 
 
Solution: 

𝐿𝐿𝑖𝑖𝑖𝑖𝑐𝑐ℎ𝑓𝑓𝑚𝑚 =
5901.43

𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀
∗ 𝐾𝐾 

 

𝐿𝐿𝑖𝑖𝑖𝑖𝑐𝑐ℎ𝑓𝑓𝑚𝑚 =
5901.43
139.25

∗ 0.967 
 
𝐿𝐿𝑖𝑖𝑖𝑖𝑐𝑐ℎ𝑓𝑓𝑚𝑚 = 42.38 ∗ 0.967 
 
𝐿𝐿𝑖𝑖𝑖𝑖𝑐𝑐ℎ𝑓𝑓𝑚𝑚 = 40.98 
 
Answer: The end-to-end length is 40.98 inches. 
 
Note: Each element should be of equal length, measured from the center of the support to the element 
ends. The final end-to-end length will be affected by such things as presence of insulation on the 
elements, the diameter of the elements, and the proximity to the ground and/or nearby objects. If 
available, an antenna analyzer should be used for final adjustment of the elements’ end-to-end length. 
 

17.3.2. Monopole antenna end-to-end length 

A quarter-wavelength monopole antenna, sometimes called a vertical whip antenna, is commonly 
installed on vehicles. A monopole element functions as half of a half-wave dipole, and the surface on 
which the monopole is mounted – for instance, a vehicle’s roof – functions as the other half, or “image” 
of the monopole element. For best performance, a monopole should be located on a relatively flat surface 
such as a vehicle’s metallic roof (ideally in the center of the roof), which can function as an effective 
ground plane. Monopole antennas are often used with two-way radios and for mobile signal leakage 
monitoring. 
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The length of a quarter-wavelength monopole in inches can be calculated using the formula: 
 
 

𝐿𝐿𝑖𝑖𝑖𝑖𝑐𝑐ℎ𝑓𝑓𝑚𝑚 =
2950.71

𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀
∗ 𝐾𝐾 

 
where 
𝐿𝐿𝑖𝑖𝑖𝑖𝑐𝑐ℎ𝑓𝑓𝑚𝑚 is the monopole’s end-to-end length in inches 
𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀 is the frequency in megahertz 
𝐾𝐾 is a factor accounting for the antenna element half wavelength-to-diameter ratio (see Section 17.3.2.1) 
 
 
Example: 
What is the length of a quarter-wavelength monopole antenna for a frequency of 139.25 MHz? Assume 
the antenna element diameter is 0.1 inch (2.54 mm) and K = 0.972. 
 
Solution: 

𝐿𝐿𝑖𝑖𝑖𝑖𝑐𝑐ℎ𝑓𝑓𝑚𝑚 =
2950.71

𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀
∗ 𝐾𝐾 

 

𝐿𝐿𝑖𝑖𝑖𝑖𝑐𝑐ℎ𝑓𝑓𝑚𝑚 =
2950.71
139.25

∗ 0.972 
 
𝐿𝐿𝑖𝑖𝑖𝑖𝑐𝑐ℎ𝑓𝑓𝑚𝑚 = 21.19 ∗ 0.972 
 
𝐿𝐿𝑖𝑖𝑖𝑖𝑐𝑐ℎ𝑓𝑓𝑚𝑚 = 20.60 
 
Answer: The length is 20.60 inches. 
 
Note: The final length will be affected by such things as presence of insulation on the element, the 
diameter of the element, placement on a vehicle, and the proximity to nearby objects on the vehicle (e.g., 
ladder or lift/bucket, other antennas). If available, an antenna analyzer should be used for final adjustment 
of the element’s length. 
 

17.3.2.1. Calculate K factor for antenna elements 

As mentioned in Footnote 30, to achieve resonance a dipole’s [or monopole’s] physical length must be 
shortened from the free-space value by a few percent in order to bring the reactance to zero. The antenna 
element length is affected by the ratio of the half-wavelength to element diameter (for a detailed 
discussion on this, see [1] and [15]). To account for the element half wavelength-to-diameter ratio, a 
multiplying factor must be applied to the free-space quarter- or half-wavelength calculation. 
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The multiplying factor is known as the K factor, and can be calculated with the formula 
 
 

𝐾𝐾 = 0.978701 +
−11.864971

⎣
⎢
⎢
⎡
1 + �

�𝜆𝜆 2⁄
𝑀𝑀 �

0.000449�

1.792529

⎦
⎥
⎥
⎤

0.3004597 

where 
𝐾𝐾 is the K factor 
𝜆𝜆 2⁄  is the free-space half-wavelength 
𝑀𝑀 is antenna element diameter in the same units as 𝜆𝜆 2⁄  
 
 
Example: 
What is the K factor for a half-wave dipole antenna for 139.25 MHz that uses 0.25 inch diameter 
elements? 
 
Solution: 
First calculate the free-space half-wavelength in inches for 139.25 MHz with the formula λ/2inches = 
5901.43/fMHz = 5901.43/139.25 = 42.38 inches. 
 

𝐾𝐾 = 0.978701 +
−11.864971

⎣
⎢
⎢
⎡
1 + �

�𝜆𝜆 2⁄
𝑀𝑀 �

0.000449�

1.792529

⎦
⎥
⎥
⎤

0.3004597 

 

𝐾𝐾 = 0.978701 +
−11.864971

�1 + �
�42.38 𝑠𝑠𝑠𝑠𝑝𝑝ℎ𝑝𝑝𝐿𝐿

0.25 𝑠𝑠𝑠𝑠𝑝𝑝ℎ �
0.000449 �

1.792529

�

0.3004597 

 

𝐾𝐾 = 0.978701 +
−11.864971

�1 + � (169.52)
0.000449�

1.792529
�

0.3004597 

 

𝐾𝐾 = 0.978701 +
−11.864971

[1 + (377550.11)1.792529]0.3004597 

 

𝐾𝐾 = 0.978701 +
−11.864971

[1 + 9928615848.95]0.3004597 

 

𝐾𝐾 = 0.978701 +
−11.864971

[9928615849.95]0.3004597 
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𝐾𝐾 = 0.978701 +
−11.864971

1008.47
 

 
𝐾𝐾 = 0.978701 + (−0.01) 
 
𝐾𝐾 = 0.967 
 
Answer: The K factor is 0.967. 
 

17.3.3. Dipole antenna directivity 

The directivity of a half-wave dipole can be calculated as follows: 
 
 

𝑀𝑀 =
4

𝐶𝐶𝑠𝑠𝑠𝑠(2𝜋𝜋) ≈ 1.64 

where 
𝑀𝑀 is directivity 
𝐶𝐶𝑠𝑠𝑠𝑠 is cosine integral Cin(x) 
 
Note: The cosine integral Cin(x) is not the same as the cosine integral Ci(x). According to 
https://en.wikipedia.org/wiki/Dipole_antenna, “Both MATLAB and Mathematica have inbuilt functions 
which compute Ci(x), but not Cin(x). See the Wikipedia page on cosine integral for the relationship 
between these functions.” 
 
 
The directivity of a half-wave dipole in decibels can be calculated as follows: 
 
 

𝑀𝑀𝑑𝑑𝑑𝑑𝑖𝑖 = 10𝑙𝑙𝐿𝐿𝑎𝑎10(1.64) = 2.15 𝑑𝑑𝑑𝑑𝑠𝑠 
 
where 
𝑀𝑀𝑑𝑑𝑑𝑑𝑖𝑖 is directivity in decibel isotropic 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
 
 
In this document, the gain of a resonant half-wave dipole is considered to be equal to its directivity, or 
2.15 dBi, with an implicit assumption that the ohmic losses are negligible. In practice, the real gain of a 
dipole will be slightly less, depending on the ohmic losses in the antenna. 
 
Note: The literature defines antenna directivity relative to an isotropic source. However, practice has 
developed such that for antenna gain, a reference must be included. The most common is dBi (decibel 
isotropic, or decibels relative to an isotropic source) and occasionally also dBd (decibel dipole, or 
decibels relative to a dipole antenna). From this, one can correctly state that certain design of a Yagi-Uda 
antenna’s gain is, for example, 8.15 dBi or 6 dBd. Gain stated in just decibels is meaningless. 
 

https://en.wikipedia.org/wiki/Dipole_antenna
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17.3.4. Antenna factor for dipole antennas 

In the world of electromagnetic compatibility (EMC) and electromagnetic interference (EMI) testing, a 
parameter known as antenna factor is commonly used. Antenna factor is not widely known in the cable 
industry, although it is built-in to the calculations used for signal leakage measurements as the “0.021” 
and “f” (frequency) in the well-known microvolts per meter-to-dBmV conversion formula. For more on 
the mathematics of field strength measurements, refer to Appendix H. 
 
Antenna factor is the ratio of an electromagnetic field incident upon an antenna to the voltage output at its 
terminals. In other words, antenna factor is the ratio of the field strength of an electromagnetic field 
incident upon an antenna to the voltage produced by that field across a load of impedance Z0 connected to 
antenna’s terminals. The field strength can be calculated by multiplying the voltage at the antenna’s 
terminals by the antenna factor. Many prefer to use logarithms and decibels, and antenna factor is 
commonly expressed in decibel format rather than the previously discussed linear format. When antenna 
factor is stated in decibels, field strength in decibel microvolt per meter (dBµV/m) is calculated by adding 
the signal level at the antenna terminals in decibel microvolt (dBµV)33 to the antenna factor in 
decibel/meter (dB/m). 
 

17.3.4.1. Calculate dipole antenna factor for 50 Ω 

Half-wave dipole antenna factor in 50 ohms impedance can be calculated with the formula: 
 
 

𝐴𝐴𝑁𝑁50Ω = 20𝑙𝑙𝐿𝐿𝑎𝑎10(𝑓𝑓) − 10𝑙𝑙𝐿𝐿𝑎𝑎10(𝐺𝐺) − 29.7707 
 
where 
𝐴𝐴𝑁𝑁50𝛺𝛺 is antenna factor in dB/m for a half-wave dipole connected to a load of Z0 = 50 ohms 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑓𝑓 is frequency in megahertz 
𝐺𝐺 is a dipole antenna’s linear gain (𝐺𝐺 = 1.64) 
 
 
Example: 
What is the antenna factor for a half-wave dipole resonant at 139.25 MHz connected to a load impedance 
of 50 ohms? 
 
Solution: 
𝐴𝐴𝑁𝑁50Ω ≈ 20𝑙𝑙𝐿𝐿𝑎𝑎10(𝑓𝑓) − 10𝑙𝑙𝐿𝐿𝑎𝑎10(𝐺𝐺) − 29.7707 
 
𝐴𝐴𝑁𝑁50Ω ≈ 20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(139.25) − 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(1.64) − 29.7707 
 
𝐴𝐴𝑁𝑁50Ω ≈ 20 ∗ (2.144) − 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(0.215) − 29.7707 
 
𝐴𝐴𝑁𝑁50Ω ≈ 42.876 − 2.148 − 29.7707 
 
𝐴𝐴𝑁𝑁50Ω ≈ 10.957 

 
33 In North America, signal leakage field strength is usually stated in microvolt per meter (µV/m) rather than decibel 
microvolt per meter (dBµV/m). Signal levels are usually stated in decibel millivolt (dBmV) rather than decibel 
microvolt (dBµV). Conversions for all of these are included elsewhere in this document. 
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Answer: The approximate antenna factor is 10.957 dB/m. 
 

17.3.4.2. Calculate approximate dipole antenna factor for 73 Ω 

A thin linear half-wave dipole in free space has an impedance of approximately 73 ohms, a common 
value used in cable applications (e.g., signal leakage measurements). 
  
The approximate half-wave dipole antenna factor in 73 ohms impedance can be calculated with the 
formula: 
 
 

𝐴𝐴𝑁𝑁73Ω ≈ 20𝑙𝑙𝐿𝐿𝑎𝑎10(𝑓𝑓) − 10𝑙𝑙𝐿𝐿𝑎𝑎10(𝐺𝐺) − 31.4142 
 
where 
𝐴𝐴𝑁𝑁73𝛺𝛺 is antenna factor in dB/m for a half-wave dipole connected to a load of Z0 = 73 ohms 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑓𝑓 is frequency in megahertz 
𝐺𝐺 is a dipole antenna’s linear gain (𝐺𝐺 = 1.64) 
 
 
Example: 
What is the approximate antenna factor for a half-wave dipole resonant at 139.25 MHz connected to a 
load impedance of 73 ohms? 
 
Solution: 
𝐴𝐴𝑁𝑁73Ω ≈ 20𝑙𝑙𝐿𝐿𝑎𝑎10(𝑓𝑓) − 10𝑙𝑙𝐿𝐿𝑎𝑎10(𝐺𝐺) − 31.4142 
 
𝐴𝐴𝑁𝑁73Ω ≈ 20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(139.25) − 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(1.64) − 31.4142 
 
𝐴𝐴𝑁𝑁73Ω ≈ 20 ∗ (2.144) − 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(0.215) − 31.4142 
 
𝐴𝐴𝑁𝑁73Ω ≈ 42.876 − 2.148 − 31.4142 
 
𝐴𝐴𝑁𝑁73Ω ≈ 9.313 
Answer: The approximate antenna factor is 9.313 dB/m. 
 

17.3.4.3. Calculate approximate dipole antenna factor for 75 Ω 

The approximate half-wave dipole antenna factor in 75 ohms impedance can be calculated with the 
following formula: 
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𝐴𝐴𝑁𝑁75Ω ≈ 20𝑙𝑙𝐿𝐿𝑎𝑎10(𝑓𝑓) − 10𝑙𝑙𝐿𝐿𝑎𝑎10(𝐺𝐺) − 31.5315 

 
where 
𝐴𝐴𝑁𝑁75𝛺𝛺 is antenna factor in dB/m for a half-wave dipole connected to a load of Z0 = 75 ohms 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑓𝑓 is frequency in megahertz 
𝐺𝐺 is a dipole antenna’s linear gain (𝐺𝐺 = 1.64) 
 
 
Example: 
What is the approximate antenna factor for a half-wave dipole resonant at 139.25 MHz connected to a 
load impedance of 75 ohms? 
 
Solution: 
𝐴𝐴𝑁𝑁75Ω ≈ 20𝑙𝑙𝐿𝐿𝑎𝑎10(𝑓𝑓) − 10𝑙𝑙𝐿𝐿𝑎𝑎10(𝐺𝐺) − 31.5315 
 
𝐴𝐴𝑁𝑁75Ω ≈ 20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(139.25) − 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(1.64) − 31.5315 
 
𝐴𝐴𝑁𝑁75Ω ≈ 20 ∗ (2.144) − 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(0.215) − 31.5315 
 
𝐴𝐴𝑁𝑁75Ω ≈ 42.876 − 2.148 − 31.5315 
 
𝐴𝐴𝑁𝑁75Ω ≈ 9.196 
 
Answer: The approximate antenna factor is 9.196 dB/m. 
 

17.4. Effective aperture 

Effective aperture is the geometric area over which an antenna receives power from an incident RF signal 
and delivers that power to a connected load. If the antenna is considered lossless, effective aperture is 
called maximum effective aperture (Aem). For a half-wave dipole antenna, Aem can be approximated by a 
rectangle that has dimensions of 0.5λ by 0.25λ, or an ellipse whose area is 0.13λ2. See Figure 25. 
 

 
Figure 25 - A linear half-wave dipole’s maximum effective aperture Aem can be 

represented by an ellipse with an area of 0.13λ2. Adapted from [2]. 
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17.4.1. Calculate the effective aperture of an antenna (linear) 

 

𝐴𝐴𝑓𝑓 = �
𝜆𝜆2

4 ∗ 𝜋𝜋
� ∗ 𝐺𝐺 

where 
𝐴𝐴𝑓𝑓 is the effective aperture of the antenna in square meters (m2) 
𝜆𝜆 is the wavelength in meters 
𝐺𝐺 is the linear gain of the antenna  
 

Example 1: 
What is the effective aperture of a half-wave dipole antenna with a linear gain of 1.64 and tuned to 
receive 139.25 MHz? 
 
Solution 1: 

𝐴𝐴𝑓𝑓 = �
𝜆𝜆2

4 ∗ 𝜋𝜋
� ∗ 𝐺𝐺 

 

𝐴𝐴𝑓𝑓 = �
�299.79

139.25�
2

4 ∗ 3.14
� ∗ 1.64 

 

𝐴𝐴𝑓𝑓 = �
4.63

12.56
� ∗ 1.64 

 
𝐴𝐴𝑓𝑓 = 0.37 ∗ 1.64 
 
𝐴𝐴𝑓𝑓 = 0.61 
 
Answer: The affective aperture is 0.61 m2. 
 
Example 2: 
What is the effective aperture of a C-band earth station antenna with a linear gain of 1,585 receiving a 
satellite signal at 4,000 MHz? 

Solution 2: 

𝐴𝐴𝑓𝑓 = 10𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝜆𝜆2

4 ∗ 𝜋𝜋
� ∗ 𝐺𝐺 

 

𝐴𝐴𝑓𝑓 = 10𝑙𝑙𝐿𝐿𝑎𝑎10 �
�299.79

4,000 �
2

4 ∗ 3.14
� ∗ 1,585 

 

𝐴𝐴𝑓𝑓 = �
0.0056
12.56

� ∗ 1,585 
 
𝐴𝐴𝑓𝑓 = 0.00047 ∗ 1,585 
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𝐴𝐴𝑓𝑓 = 0.71  
 
Answer: The affective aperture is 0.71 m2. 
 

17.4.2. Calculate the effective aperture of an antenna (logarithmic) 

 

𝐴𝐴𝑓𝑓 = 10𝑙𝑙𝐿𝐿𝑎𝑎10

⎣
⎢
⎢
⎡�𝑝𝑝

𝑓𝑓�
2

4 ∗ 𝜋𝜋
⎦
⎥
⎥
⎤

+ 𝐺𝐺 

where 
𝐴𝐴𝑓𝑓 is the effective aperture of the antenna in dB per square meter (dB/m2) 

𝑝𝑝 is the speed of light (299.79 megameters per second) 
𝑓𝑓 is the frequency in megahertz 
𝐺𝐺 is the gain of the antenna in dBi 
 

Example 1: 
What is the effective aperture of a half-wave dipole antenna with a gain of 2.15 dBi and tuned to receive 
139.25 MHz? 
 
Solution 1: 

𝐴𝐴𝑓𝑓 = 10𝑙𝑙𝐿𝐿𝑎𝑎10

⎣
⎢
⎢
⎡�𝑝𝑝

𝑓𝑓�
2

4 ∗ 𝜋𝜋
⎦
⎥
⎥
⎤

+ 𝐺𝐺 

 

𝐴𝐴𝑓𝑓 = 10𝑙𝑙𝐿𝐿𝑎𝑎10 �
�299.79

139.25�
2

4 ∗ 3.14
� + 2.15 

 

𝐴𝐴𝑓𝑓 = 10𝑙𝑙𝐿𝐿𝑎𝑎10 �
4.63

12.56
� + 2.15 

 
𝐴𝐴𝑓𝑓 = −4.33 + 2.15 
 
𝐴𝐴𝑓𝑓 = −2.18 
 
Answer: The affective aperture is –2.18 dB/m2. 
 
Example 2: 
What is the effective aperture of a C-band earth station antenna with a gain of 32 dBi receiving a satellite 
signal at 4000 MHz? 
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Solution 2: 

𝐴𝐴𝑓𝑓 = 10𝑙𝑙𝐿𝐿𝑎𝑎10

⎣
⎢
⎢
⎡�𝑝𝑝

𝑓𝑓�
2

4 ∗ 𝜋𝜋
⎦
⎥
⎥
⎤

+ 𝐺𝐺 

 

𝐴𝐴𝑓𝑓 = 10𝑙𝑙𝐿𝐿𝑎𝑎10 �
�299.79

4000 �
2

4 ∗ 3.14
� + 32 

 

𝐴𝐴𝑓𝑓 = 10𝑙𝑙𝐿𝐿𝑎𝑎10 �
0.0056
12.56

� + 32 
 
𝐴𝐴𝑓𝑓 = −33.49 + 32 
 
𝐴𝐴𝑓𝑓 = −1.49 
 
Answer: The affective aperture is –1.49 dB/m2. 
 

17.5. Horizontal antenna spacing to reduce off-axis interference 

A pair of identical antennas can be spaced horizontally on a tower or similar support structure to 
reduce off-axis interference such as a reflection (multipath) off of a building, hillside, etc., or co-
channel interference from another signal on the same frequency. This method works because the 
off-axis interference arrives at one antenna a half wavelength before it reaches the other antenna, 
resulting in a 180° phase shift and cancellation of the interference when the antenna outputs are 
combined (see Figure 26). 
 

d

φ 

De
sir

ed
 si

gn
al

De
sir

ed
 si

gn
al

 
Figure 26 - Horizontal antenna spacing to cancel off-axis interference. 
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The horizontal spacing in wavelengths can be calculated with the formulas (from [13] and [14]): 
 
 

𝑑𝑑𝜆𝜆 =
1

2 ∗ 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠
 

where 
𝑑𝑑𝜆𝜆 is the spacing between the antennas, in wavelengths 

𝑠𝑠 is the angle in degrees between the desired signal and the interference 
 
A variation of the formula to calculate horizontal spacing is 

𝑑𝑑 =
𝜆𝜆𝐼𝐼

2 ∗ 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠
 

 
where 
𝑑𝑑 is the spacing between the antennas (same units as 𝜆𝜆𝐼𝐼) 
𝜆𝜆𝐼𝐼 is the wavelength of the interfering signal 
𝑠𝑠 is the angle in degrees between the desired signal and the interfering signal 
 

Example 1: 
Assume interference to UHF Ch. 14 (470 MHz to 476 MHz) is being received at a headend site 
35° off axis from the desired signal (refer to Figure 27), and that the interfering signal is on the 
same frequency as the desired signal. What is the horizontal spacing in wavelengths between a 
pair of identical antennas to reduce or eliminate the off-axis interference? 
 

d = 0.87 λ 

35° 35° 

Desired signal: 
UHF Ch. 14
(473 MHz)

 
Figure 27 - Calculated horizontal spacing for 35° off-axis interference on UHF Ch. 14 is 

0.87 λ. 

 
Solution 1: 
First calculate the wavelength of UHF Ch. 14 (473 MHz center frequency), in feet, with the 
formula 𝜆𝜆 = 983.57 𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀⁄ . 
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𝜆𝜆 = 983.57 473⁄  
 
𝜆𝜆 = 2.08 feet 
 
Next, calculate the necessary antenna separation in wavelengths: 
 

𝑑𝑑𝜆𝜆 =
1

2 ∗ 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠
 

 

𝑑𝑑𝜆𝜆 =
1

2 ∗ 𝐿𝐿𝑠𝑠𝑠𝑠35°
 

 

𝑑𝑑𝜆𝜆 =
1

2 ∗ 0.57
 

 

𝑑𝑑𝜆𝜆 =
1

1.15
 

 
𝑑𝑑𝜆𝜆 = 0.87 
 
Answer: The separation is 0.87 wavelength. Since one wavelength at 473 MHz = 2.08 feet, the 
antenna separation in feet is 0.87 ∗ 2.08 feet = 1.81 feet. 
 
Example 2: 
Use the second formula to calculate the separation. Assume the same parameters as Example 1. 
 
Solution 2: 
First calculate the wavelength of UHF Ch. 14 (473 MHz center frequency), in feet, with the 
formula 𝜆𝜆 = 983.57 𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀⁄ . In this example 𝜆𝜆 = 𝜆𝜆𝐼𝐼. 
 
𝜆𝜆 = 983.57 473⁄  
 
𝜆𝜆 = 2.08 feet 
 
Using the second formula 
 

𝑑𝑑 =
𝜆𝜆𝐼𝐼

2 ∗ 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠
 

 

𝑑𝑑 =
2.08 

2 ∗ 𝐿𝐿𝑠𝑠𝑠𝑠35°
 

 

𝑑𝑑 =
2.08 

2 ∗ 0.57
 

 

𝑑𝑑 =
2.08 
1.15

 
 
𝑑𝑑 = 1.81 
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The answer is 1.81 feet. 
 

17.6. Parabolic antennas 

Parabolic or “dish” antennas are commonly used for satellite and microwave applications because of their 
relatively high gain and narrow beamwidth. The cable industry has long used parabolic antennas for 
television receive only (TVRO) satellite downlinks, typically in the C-band (4.0 GHz to 4.2 GHz). 
Parabolic antennas are also used for point-to-point and point-to-multipoint microwave service, such as 
CARS-band (12.7 GHz to 13.2 GHz) microwave installations. 
 

17.6.1. Calculate the gain of a parabolic antenna 

The formulas in this section are used to calculate the main beam gain of a parabolic antenna, excluding 
the effect of sidelobes. When doing path or link analysis, one should use antenna gain values available 
from the manufacturer. The manufacturer’s gain specifications are often based upon actual measurements, 
and take into account the actual antenna efficiency. If the manufacturer’s gain figures are not available, 
the formulas included here will provide calculated gain values that are satisfactory for modeling. 
 
The main beam gain of a parabolic antenna with a diameter in meters can be calculated using the 
following formula: 
 
 

𝐺𝐺 = 10𝑙𝑙𝐿𝐿𝑎𝑎10(𝑀𝑀2 ∗ 𝑓𝑓2 ∗ 𝑘𝑘) 
 
where  
𝐺𝐺 is the main beam gain of the antenna in dBi 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑀𝑀 is the antenna diameter in meters 
𝑓𝑓 is the frequency in gigahertz 
𝑘𝑘 is the antenna efficiency as a percentage (typ. 55% to 70%) 
 
 
Example 1: 
Assuming an antenna efficiency of 55%, what is the main beam gain of a 4.5 meters diameter earth 
station antenna at a C-band frequency of 4 GHz? 
 
Solution: 
𝐺𝐺 = 10𝑙𝑙𝐿𝐿𝑎𝑎10(𝑀𝑀2 ∗ 𝑓𝑓2 ∗ 𝑘𝑘) 
 
𝐺𝐺 = 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(4.52 ∗ 42 ∗ 55) 
 
𝐺𝐺 = 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(20.25 ∗ 16 ∗ 55) 
 
𝐺𝐺 = 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(17820) 
 
𝐺𝐺 = 10 ∗ (4.25) 
 
𝐺𝐺 = 42.51 



SCTE 270 2021r1   

SCTE OPERATIONAL PRACTICE  © SCTE 141 

 
Answer: The main beam gain is 42.51 dBi 
 
Example 2: 
Assuming an antenna efficiency of 62%, what is the main beam gain of a 2.4 meters (8 ft.) diameter 
microwave antenna at the CARS-band frequency of 12.7 GHz? 
 
Solution: 
𝐺𝐺 = 10𝑙𝑙𝐿𝐿𝑎𝑎10(𝑀𝑀2 ∗ 𝑓𝑓2 ∗ 𝑘𝑘) 
 
𝐺𝐺 = 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(2.42 ∗ 12.72 ∗ 62) 
 
𝐺𝐺 = 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(5.76 ∗ 161.29 ∗ 62) 
 
𝐺𝐺 = 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(57599.88) 
 
𝐺𝐺 = 10 ∗ (4.76) 
 
𝐺𝐺 = 47.6 
 
Answer: The main beam gain is 47.6 dBi 
 
The main beam gain of a parabolic antenna with a diameter in feet can be calculated using the following 
formula: 
 
 

𝐺𝐺 = 20𝑙𝑙𝐿𝐿𝑎𝑎10𝑀𝑀 + 10𝑙𝑙𝐿𝐿𝑎𝑎10(10.2𝐸𝐸) + 20𝑙𝑙𝐿𝐿𝑎𝑎10𝑓𝑓 
 
where  
𝐺𝐺 is the main beam gain of the antenna in dBi 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑀𝑀 is the antenna diameter in feet 
𝐸𝐸 is the antenna efficiency (typ. 55% to 70%) in decimal form 
𝑓𝑓 is the frequency in gigahertz 
 
 
Example: 
Assuming an antenna efficiency of 55%, what is the main beam gain of an 8 ft. diameter microwave 
antenna at the CARS-band frequency 12.7 GHz? 
 
Solution: 
𝐺𝐺 = 20𝑙𝑙𝐿𝐿𝑎𝑎10𝑀𝑀 + 10𝑙𝑙𝐿𝐿𝑎𝑎10(10.2𝐸𝐸) + 20𝑙𝑙𝐿𝐿𝑎𝑎10𝑓𝑓 
 
𝐺𝐺 = 20𝑙𝑙𝐿𝐿𝑎𝑎108 + 10𝑙𝑙𝐿𝐿𝑎𝑎10(10.2 ∗ 0.55) + 20𝑙𝑙𝐿𝐿𝑎𝑎1012.7 
 
𝐺𝐺 = 20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(8) + 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(10.2 ∗ 0.55) + 20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(12.7) 
 
𝐺𝐺 = 20 ∗ (0.90) + 10 ∗ (0.75) + 20 ∗ (1.10) 
 
𝐺𝐺 = 18.06 + 7.49 + 22.08 
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𝐺𝐺 = 47.63 
 
The answer is 47.63 dBi. 
 

17.6.2. Parabolic antenna half-power beamwidth 

A parabolic antenna’s half-power beamwidth (HPBW) – also called the 3 dB beamwidth – can be 
calculated with the formulas in this section. When doing path or link analysis, one should use HPBW 
values available from the antenna manufacturer. The manufacturer’s HPBW specifications are often 
based upon measurements, and take into account the actual antenna efficiency. If the manufacturer’s 
HPBW figures are not available, the formulas included here will provide calculated values that are 
satisfactory for modeling. Expressed mathematically: 
 
 

𝐻𝐻𝑃𝑃𝑑𝑑𝑚𝑚 =
70

𝑀𝑀 ∗ 𝑓𝑓𝐺𝐺𝑀𝑀𝑀𝑀
 

 
where 
𝐻𝐻𝑃𝑃𝑑𝑑𝑚𝑚 is the half-power (-3 dB) beamwidth in degrees 
𝑀𝑀 is the antenna’s diameter in feet 
𝑓𝑓𝐺𝐺𝑀𝑀𝑀𝑀 is the frequency in gigahertz 
 

𝐻𝐻𝑃𝑃𝑑𝑑𝑚𝑚 = 70 ∗ �
𝜆𝜆
𝑀𝑀

� 
 
where  
𝐻𝐻𝑃𝑃𝑑𝑑𝑚𝑚 is the half-power (-3 dB) beamwidth of the antenna in degrees 
𝜆𝜆 is the wavelength in meters (λ = 299.79/fMHz) 
𝑀𝑀 is the antenna’s diameter in meters 
 
 
Example 1 (using the first formula): 
What is the half-power beamwidth of an 8 ft. diameter CARS band parabolic antenna at 12.7 GHz? 

Solution 1: 

𝐻𝐻𝑃𝑃𝑑𝑑𝑚𝑚 =
70

𝑀𝑀 ∗ 𝑓𝑓𝐺𝐺𝑀𝑀𝑀𝑀
 

 

𝐻𝐻𝑃𝑃𝑑𝑑𝑚𝑚 =
70

8 ∗ 12.7
 

 

𝐻𝐻𝑃𝑃𝑑𝑑𝑚𝑚 =
70

101.6
 

 
𝐻𝐻𝑃𝑃𝑑𝑑𝑚𝑚 = 0.69 
 
Answer: The half-power beamwidth is 0.69 degree. 
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Example 2 (using the second formula): 
What is the half-power beamwidth of a 6 meters (19.7 ft.) diameter earth station antenna at the C-
band frequency 4,180 MHz? 
 
Solution 2: 

𝐻𝐻𝑃𝑃𝑑𝑑𝑚𝑚 = 70 ∗ �
𝜆𝜆
𝑀𝑀

� 
 

𝐻𝐻𝑃𝑃𝑑𝑑𝑚𝑚 = 70 ∗ �
�299.79

4,180 �

6
� 

 

𝐻𝐻𝑃𝑃𝑑𝑑𝑚𝑚 = 70 ∗ �
0.072

6
� 

 
𝐻𝐻𝑃𝑃𝑑𝑑𝑚𝑚 = 70 ∗ 0.012 
 
𝐻𝐻𝑃𝑃𝑑𝑑𝑚𝑚 = 0.84 
 
Answer: The half-power beamwidth is 0.84 degree. 
  



SCTE 270 2021r1   

SCTE OPERATIONAL PRACTICE  © SCTE 144 

18. Calculate Power Density 
Power density (sometimes referred to as “power flux density”) is the measure of power per unit area 
normal to the direction of electromagnetic wave propagation and a certain distance from the source, 
usually expressed in units of watts per square meter (W/m2). 
 

18.1. Power density in watt per square meter 

Power density in watt per square meter (W/m2) at a certain distance from a source (e.g., transmitter) and 
an antenna with a known linear gain can be calculated using the following formula: 
 
 

𝑃𝑃𝑑𝑑 = �
𝐺𝐺𝑓𝑓 ∗ 𝑃𝑃𝑓𝑓

4 ∗ 𝜋𝜋 ∗ 𝑀𝑀2� 
 
where  
𝑃𝑃𝑑𝑑  is the power density in watts per square meter (W/m2) 
𝐺𝐺𝑓𝑓  is the linear gain of the source antenna 
𝑃𝑃𝑓𝑓  is the input power in watts to the source antenna 
𝑀𝑀 is the distance in meters 
 
 
Example: 
What is the power density in W/m2 at a distance of 10 meters from a source with a power of 1 watt at the 
input to the source antenna and a linear antenna gain of 4? 
 
Solution: 

𝑃𝑃𝑑𝑑 = �
𝐺𝐺𝑓𝑓 ∗ 𝑃𝑃𝑓𝑓

4 ∗ 𝜋𝜋 ∗ 𝑀𝑀2� 
 

𝑃𝑃𝑑𝑑 = �
4 ∗ 1

4 ∗ 3.1416 ∗ 102� 
 

𝑃𝑃𝑑𝑑 = �
4

12.56 ∗ 100
� 

 

𝑃𝑃𝑑𝑑 = �
4

1256
� 

 
𝑃𝑃𝑑𝑑 = 0.003183 
 
Answer: The power density is 0.003183 W/m2 
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18.2. Power density in decibel watt per square meter 

The power density can be also expressed in decibel watt per square meter (dBW/m2) using the following 
formula: 
 
 

𝑃𝑃𝑑𝑑 = 10𝑙𝑙𝐿𝐿𝑎𝑎10(𝑃𝑃𝑓𝑓) + 10𝑙𝑙𝐿𝐿𝑎𝑎10(𝐺𝐺𝑓𝑓) − 20𝑙𝑙𝐿𝐿𝑎𝑎10(𝑀𝑀) − 10𝑙𝑙𝐿𝐿𝑎𝑎10(4 ∗ 𝜋𝜋) 
 
where  
𝑃𝑃𝑑𝑑  is the power density in decibel watt per square meter (dBW/m2) 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑃𝑃𝑓𝑓  is the input power in watts to the source antenna 
𝐺𝐺𝑓𝑓  is the linear gain of the source antenna  
𝑀𝑀 is the distance in meters 
 
 
Example: 
What is the power density in dBW/m2 at a distance of 10 meters from a source with a power of 1 watt at 
the input to the source antenna and a linear antenna gain of 4? 
 
Solution: 
 
𝑃𝑃𝑑𝑑 = 10𝑙𝑙𝐿𝐿𝑎𝑎10(𝑃𝑃𝑓𝑓) + 10𝑙𝑙𝐿𝐿𝑎𝑎10(𝐺𝐺𝑓𝑓) − 20𝑙𝑙𝐿𝐿𝑎𝑎10(𝑀𝑀) − 10𝑙𝑙𝐿𝐿𝑎𝑎10(4 ∗ 𝜋𝜋) 
 
𝑃𝑃𝑑𝑑 = [10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(1)] + [10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(4)] − [20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(10)] − [10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(12.56)] 
 
𝑃𝑃𝑑𝑑 = [10 ∗ (0)] + [10 ∗ (0.602)] − [20 ∗ (1)] − [10 ∗ (1.099)] 
 
𝑃𝑃𝑑𝑑 = 0 + 6.02 − 20 − 10.99 
 
𝑃𝑃𝑑𝑑 = −24.97 
 
Answer: The power density is –24.97 dBW/m2 

 

18.3. Convert power density to received power 

The power intercepted by a receive antenna can be found by multiplying the power density present at the 
antenna by the antenna’s effective aperture: 
 
 

𝑃𝑃𝑚𝑚 =  𝑃𝑃𝑑𝑑 ∗  𝐴𝐴𝑓𝑓 
 
where 
𝑃𝑃𝑚𝑚  is the power at the output of the receive antenna in watts 
𝑃𝑃𝑑𝑑  is the power density present at the receive antenna in watts per square meter (W/m2) 
𝐴𝐴𝑓𝑓 is the effective aperture of the receive antenna in square meters (m2) 
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Example: 
Assuming a power density of 0.003183 W/m2 present at a receive antenna with an effective aperture of 
0.0004323 m2, what is the power at the output of the antenna in watts? 
 
Solution: 
𝑃𝑃𝑚𝑚 =  𝑃𝑃𝑑𝑑 ∗  𝐴𝐴𝑓𝑓 
 
𝑃𝑃𝑚𝑚 =  0.003183 ∗  0.0004323 
 
𝑃𝑃𝑚𝑚 =  1.376 ∗ 10−6 
 
Answer: The power at the output of the receiving antenna is 1.376 ∗ 10–6 (1.376E–6) watts. 
 
The power at the output of the receive antenna can be also expressed in decibel watts (dBW) using the 
following formula: 
 
 

𝑃𝑃𝑚𝑚 = 𝑃𝑃𝑑𝑑 − 20𝑙𝑙𝐿𝐿𝑎𝑎10(𝑓𝑓) + (𝐺𝐺𝑚𝑚) +  38.54 
 
where 
𝑃𝑃𝑚𝑚  is the power at the output of the receiving antenna in decibel watts (dBW) 
𝑃𝑃𝑑𝑑  is the power density present at the receive antenna in decibel watts per square meter (dBW/m2) 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑓𝑓 is the frequency in megahertz 
𝐺𝐺𝑚𝑚  is the gain of the receiving antenna in dBi 
 
 
Example: 
Assuming a power density of –24.97 dBW/m2, what is the power at the output of a receive antenna with 
with a gain of 3.00 dBi and tuned to receive 5,745 MHz? 
 
Solution: 
𝑃𝑃𝑚𝑚 = 𝑃𝑃𝑑𝑑 − 20𝑙𝑙𝐿𝐿𝑎𝑎10(𝑓𝑓) + (𝐺𝐺𝑚𝑚) +  38.54 
 
𝑃𝑃𝑚𝑚 = −24.97 − [20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(5,745)] + (3.00) +  38.54 
 
𝑃𝑃𝑚𝑚 = −24.97 − [20 ∗  (3.759)] + (3.00) +  38.54 
 
𝑃𝑃𝑚𝑚 = −24.97 − 75.18 + 3.00 +  38.54 
 
𝑃𝑃𝑚𝑚 = −58.61 
 
Answer: The power at the output of the receiving antenna is –58.61 dBW. 
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19. Signal Leakage Formulas 
The following formulas are used to calculate various signal leakage-related parameters and to convert 
between various signal leakage-related units. When dealing with leakage measurements and distance(s) 
from a leakage source, it is assumed that all field strength measurements are in the far-field. 
 

19.1. Calculate wavelength (λ) 

Wavelength in meters and feet can be calculated with the following formulas: 
 
 

𝑤𝑤𝑎𝑎𝑎𝑎𝑝𝑝𝑙𝑙𝑝𝑝𝑠𝑠𝑎𝑎𝑡𝑡ℎ𝑘𝑘𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚 =
299.792458

𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀
, 𝑎𝑎𝑠𝑠𝑑𝑑 

𝑤𝑤𝑎𝑎𝑎𝑎𝑝𝑝𝑙𝑙𝑝𝑝𝑠𝑠𝑎𝑎𝑡𝑡ℎ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
983.571056

𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀
 

 
where 
𝑤𝑤𝑎𝑎𝑎𝑎𝑝𝑝𝑙𝑙𝑝𝑝𝑠𝑠𝑎𝑎𝑡𝑡ℎ𝑘𝑘𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚 is wavelength in meters 
𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀 is frequency in megahertz 
𝑤𝑤𝑎𝑎𝑎𝑎𝑝𝑝𝑙𝑙𝑝𝑝𝑠𝑠𝑎𝑎𝑡𝑡ℎ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is wavelength in feet 
 
 
Example: 
What is the approximate length of a half-wave dipole tuned to receive 139.25 MHz? 
 
Solution in meters: 

𝑤𝑤𝑎𝑎𝑎𝑎𝑝𝑝𝑙𝑙𝑝𝑝𝑠𝑠𝑎𝑎𝑡𝑡ℎ𝑘𝑘𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚 =
299.792458

𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀
 

𝑤𝑤𝑎𝑎𝑎𝑎𝑝𝑝𝑙𝑙𝑝𝑝𝑠𝑠𝑎𝑎𝑡𝑡ℎ𝑘𝑘𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚 =
299.792458

139.25
 

𝑤𝑤𝑎𝑎𝑎𝑎𝑝𝑝𝑙𝑙𝑝𝑝𝑠𝑠𝑎𝑎𝑡𝑡ℎ𝑘𝑘𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚 = 2.15 
 
Answer: Divide the free-space wavelength by 2 to get the free-space half wavelength: 2.15/2 = 1.08 
meters. A half-wave dipole’s physical length is approximately 95% of the free-space half wavelength 
value, or 1.02 meters in this example. A more accurate end-to-end length can be determined by 
multiplying the free-space half-wavelength by a K factor, as discussed in Section 17.3.2.1. 
 
Solution in feet: 

𝑤𝑤𝑎𝑎𝑎𝑎𝑝𝑝𝑙𝑙𝑝𝑝𝑠𝑠𝑎𝑎𝑡𝑡ℎ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
983.571056

𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀
 

𝑤𝑤𝑎𝑎𝑎𝑎𝑝𝑝𝑙𝑙𝑝𝑝𝑠𝑠𝑎𝑎𝑡𝑡ℎ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
983.571056

139.25
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𝑤𝑤𝑎𝑎𝑎𝑎𝑝𝑝𝑙𝑙𝑝𝑝𝑠𝑠𝑎𝑎𝑡𝑡ℎ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 7.06 
 
Answer: Divide the free-space wavelength (7.06 feet) by 2 to get the free-space half wavelength: 7.06/2 = 
3.53 feet. A half-wave dipole’s physical length is approximately 95% of the free-space half wavelength 
value, or 3.35 feet in this example. A more accurate end-to-end length can be determined by multiplying 
the free-space half-wavelength by a K factor, as discussed in Section 17.3.2.1. 
 

19.2. Calculate the radiating near-field, far-field boundary 

 

𝑅𝑅 =
2𝑀𝑀2

𝜆𝜆
 

 
where 
𝑅𝑅 = distance from the antenna elements 
𝑀𝑀 = largest dimension of the antenna aperture (for a resonant half-wave dipole, D is equal to 
approximately 0.5λ to 0.6λ34) 
𝜆𝜆 = wavelength 
 
Note: All variables must be in the same units (feet, meters, etc.) 
 
 
Example: 
What is the approximate distance defining the radiating near-field and radiating far-field boundary for a 
half-wave dipole tuned for resonance at 139.25 MHz? Assume the free-space wavelength is 7.06 feet, 
0.5λ is 3.53 feet, and 0.6λ is 4.24 feet. 
 
Solution: 

𝑅𝑅 =
2𝑀𝑀2

𝜆𝜆
 

𝑅𝑅 =
2(3.532)

7.06
 

𝑅𝑅 =
2(12.46)

7.06
 

𝑅𝑅 =
24.92
7.06

 

𝑅𝑅 = 3.53 

to 
 

34 In [2], the maximum effective aperture of a dipole “…is approximately represented by a rectangle ½ by ¼λ on a 
side.” Using this definition, a half wavelength is the largest dimension of a dipole antenna’s aperture, so D is 0.5 λ. 
The author also says maximum effective aperture can be “…represented by elliptical area of 0.13λ2.” Here the 
largest dimension of the aperture (width of the ellipse) is approximately 0.6 λ. 
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𝑅𝑅 =
2𝑀𝑀2

𝜆𝜆
 

𝑅𝑅 =
2(4.242)

7.06
 

𝑅𝑅 =
2(17.98)

7.06
 

𝑅𝑅 =
35.96
7.06

 

𝑅𝑅 = 5.09 
 
Answer: The approximate distance defining the radiating near-field and radiating far-field boundary for a 
half-wave dipole tuned for resonance at 139.25 MHz 3.5 feet to 5.1 feet. 

 
Figure 28 - Approximate distance from dipole to near-field/far-field boundary 

19.3. Calculate free space path loss 

 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = 20 𝑙𝑙𝐿𝐿𝑎𝑎10(𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀) + 20 𝑙𝑙𝐿𝐿𝑎𝑎10(𝑑𝑑𝑘𝑘𝑘𝑘) + 32.45 

 
where 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 is free space path loss in decibels 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀 is frequency in megahertz 
𝑑𝑑𝑘𝑘𝑘𝑘 is path length in kilometers (1 meter = 0.001 km) 
 
 
Example 1: 
What is the free-space path loss at 139.25 MHz between a leakage source and an antenna 3 meters away 
from the leak? (Note: 3 meters is equal to 0.003 kilometer) 
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Solution 1: 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = 20 𝑙𝑙𝐿𝐿𝑎𝑎10(𝑓𝑓) + 20 𝑙𝑙𝐿𝐿𝑎𝑎10(𝑑𝑑𝑘𝑘𝑘𝑘) + 32.45 
 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = 20 𝑙𝑙𝐿𝐿𝑎𝑎10(139.25) + 20 𝑙𝑙𝐿𝐿𝑎𝑎10(0.003) + 32.45 
 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = (20 ∗ [𝑙𝑙𝐿𝐿𝑎𝑎10(139.25)]) + (20 ∗ [𝑙𝑙𝐿𝐿𝑎𝑎10(0.003)]) + 32.45 
 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = (20 ∗ [2.14]) + (20 ∗ [−2.52]) + 32.45 
 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = (42.88) + (−50.46) + 32.45 
 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = 24.87 
 
Answer: The free-space path loss at 139.25 MHz between a leakage source and an antenna 3 meters away 
from the leak is 24.87 dB. 
 
Where the distance is in feet: 
 
 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = 20 𝑙𝑙𝐿𝐿𝑎𝑎10(𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀) + 20 𝑙𝑙𝐿𝐿𝑎𝑎10�𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓� − 37.89 
 
where 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 is free space path loss in decibels 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀 is frequency in megahertz 
𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is path length in feet 
 
 
Example 2: 
What is the free-space loss at 139.25 MHz between a leakage source and an antenna 9.84 feet away from 
the leak? 
 
Solution 2: 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = 20 𝑙𝑙𝐿𝐿𝑎𝑎10(𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀) + 20 𝑙𝑙𝐿𝐿𝑎𝑎10�𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓� − 37.89 
 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = 20 𝑙𝑙𝐿𝐿𝑎𝑎10(139.25) + 20 𝑙𝑙𝐿𝐿𝑎𝑎10(9.84) − 37.89 
 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = (20 ∗ [𝑙𝑙𝐿𝐿𝑎𝑎10(139.25)]) + (20 ∗ [𝑙𝑙𝐿𝐿𝑎𝑎10(9.84)]) − 37.89 
 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = (20 ∗ [2.14]) + (20 ∗ [0.99]) − 37.89 
 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = (42.88) + (19.86) − 37.89 
 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = 24.85 
 
Answer: The free-space loss at 139.25 MHz between a leakage source and an antenna 9.84 feet away 
from the leak is 24.85 dB. 
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19.4. Convert microvolt (µV) to microvolt per meter (µV/m) 

 
𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘⁄ = 𝜇𝜇𝑉𝑉 ∗ 0.021 ∗ 𝑓𝑓 

 
where 
𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘⁄  is field strength in microvolt per meter 
𝜇𝜇𝑉𝑉 is RF signal level in microvolt at the terminals of a resonant half-wave dipole 
𝑓𝑓 is frequency in megahertz 
 
 
Example: 
What is the µV/m equivalent of 4 µV at 139.25 MHz? 
 
Solution: 
𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘⁄ = 𝜇𝜇𝑉𝑉 ∗ 0.021 ∗ 𝑓𝑓 
 
𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘⁄ = 𝜇𝜇𝑉𝑉 ∗ 0.021 ∗ 139.25 
 
𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘⁄ = 4 ∗ 2.92 
 
𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘⁄ = 11.7 
 
Answer: The µV/m equivalent of 4 µV at 139.25 MHz is 11.7 µV/m. 
 

19.5. Convert microvolt per meter (µV/m) to microvolt (µV) 

 

𝜇𝜇𝑉𝑉 =
𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘⁄

0.021 ∗ 𝑓𝑓
 

 
where 
𝜇𝜇𝑉𝑉 is RF signal level in microvolt at the terminals of a resonant half-wave dipole 
𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘⁄  is field strength in microvolt per meter 
𝑓𝑓 is frequency in megahertz 
 
 
Example: 
What is the voltage equivalent of 11.7 µV/m at 139.25 MHz? 
 
Solution: 

𝜇𝜇𝑉𝑉 =
𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘⁄

0.021 ∗ 𝑓𝑓
 

 

𝜇𝜇𝑉𝑉 =
11.7

0.021 ∗ 139.25
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𝜇𝜇𝑉𝑉 =
11.7
2.92

 
 
𝜇𝜇𝑉𝑉 = 4 
 
Answer: The voltage equivalent of 11.7 µV/m at 139.25 MHz is 4 µV. 
 

19.6. Convert microvolt per meter (µV/m) to decibel millivolt (dBmV) 

 

𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = 20𝑙𝑙𝐿𝐿𝑎𝑎 �
�

𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘⁄
0.021 ∗ 𝑓𝑓�

1,000
� 

 
where 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 is RF signal level in decibel millivolt at the terminals of a resonant half-wave dipole antenna 
𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘⁄  is field strength in microvolt per meter 
𝑓𝑓 is frequency in megahertz 
 
 
Example: 
What is the power, in dBmV, delivered to the terminals of a resonant half-wave dipole antenna by a 
139.25 MHz leak whose field strength is 20 µV/m at the point of measurement? 
 
Solution: 

𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = 20𝑙𝑙𝐿𝐿𝑎𝑎10 �
�

𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘⁄
0.021 ∗ 𝑓𝑓�

1,000
� 

 

𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = 20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 �
� 20

0.021 ∗ 139.25�
1,000

� 

 

𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = 20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 �
� 20

2.92�
1,000

� 

 

𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = 20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 �
(6.84)
1,000

� 

 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = 20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[0.006839] 
 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = 20 ∗ [−2.16] 
 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = −43.30 
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Answer: The power delivered to the terminals of the dipole antenna is –43.3 dBmV. 
 

19.7. Convert decibel millivolt (dBmV) to microvolt per meter (µV/m) 

 

𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘⁄ = 21 ∗ 𝑓𝑓 ∗ 10
𝑑𝑑𝑑𝑑𝑘𝑘𝑑𝑑

20  
 
where 
𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘⁄  is field strength in microvolt per meter 
𝑓𝑓 is frequency in megahertz 
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 is RF signal level in decibel millivolt at the terminals of a resonant half-wave dipole antenna 
 
 
Example: 
What is the field strength in microvolts per meter when the power delivered to the terminals of a resonant 
half-wave dipole is –48 dBmV at 139.25 MHz? 
 
Solution: 

𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘⁄ = 21 ∗ 𝑓𝑓 ∗ 10
𝑑𝑑𝑑𝑑𝑘𝑘𝑑𝑑

20  
 

𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘⁄ = 21 ∗ 139.25 ∗ 10
𝑑𝑑𝑑𝑑𝑘𝑘𝑑𝑑

20  
 

𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘⁄ = 21 ∗ 139.25 ∗ 10
−48
20  

 
𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘⁄ = 21 ∗ 139.25 ∗ 0.004 
 
𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘⁄ = 11.7 
 
Answer: The field strength is 11.7 µV/m. 
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19.8. Using a link budget to calculate received signal power at a resonant half-
wave dipole antenna’s terminals 

 
𝑃𝑃𝑚𝑚𝑓𝑓𝑐𝑐𝑓𝑓𝑖𝑖𝑟𝑟𝑓𝑓 = 𝑡𝑡𝑝𝑝𝑎𝑎𝑠𝑠𝐿𝐿𝑚𝑚𝑠𝑠𝑡𝑡 𝑝𝑝𝐿𝐿𝑤𝑤𝑝𝑝𝑝𝑝(𝑑𝑑𝑑𝑑𝑚𝑚) − 𝑡𝑡𝑝𝑝𝑎𝑎𝑠𝑠𝐿𝐿𝑚𝑚𝑠𝑠𝑡𝑡 𝑓𝑓𝑝𝑝𝑝𝑝𝑑𝑑𝑙𝑙𝑠𝑠𝑠𝑠𝑝𝑝 𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿(𝑑𝑑𝑑𝑑) + 𝑡𝑡𝑝𝑝𝑎𝑎𝑠𝑠𝐿𝐿𝑚𝑚𝑠𝑠𝑡𝑡 𝑎𝑎𝑠𝑠𝑡𝑡𝑝𝑝𝑠𝑠𝑠𝑠𝑎𝑎 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠(𝑑𝑑𝑑𝑑𝑠𝑠)

− 𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝 𝐿𝐿𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝 𝑝𝑝𝑎𝑎𝑡𝑡ℎ 𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿(𝑑𝑑𝑑𝑑) + 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑎𝑎𝑝𝑝 𝑎𝑎𝑠𝑠𝑡𝑡𝑝𝑝𝑠𝑠𝑠𝑠𝑎𝑎 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠(𝑑𝑑𝑑𝑑𝑠𝑠) 
 
where 
𝑃𝑃𝑚𝑚𝑓𝑓𝑐𝑐𝑓𝑓𝑖𝑖𝑟𝑟𝑓𝑓 is the RF power in decibel milliwatt (dBm) at the terminals of a receive antenna 
𝑡𝑡𝑝𝑝𝑎𝑎𝑠𝑠𝐿𝐿𝑚𝑚𝑠𝑠𝑡𝑡 𝑝𝑝𝐿𝐿𝑤𝑤𝑝𝑝𝑝𝑝(𝑑𝑑𝑑𝑑𝑚𝑚) is the transmitter’s output power in decibel milliwatt 
𝑡𝑡𝑝𝑝𝑎𝑎𝑠𝑠𝐿𝐿𝑚𝑚𝑠𝑠𝑡𝑡 𝑓𝑓𝑝𝑝𝑝𝑝𝑑𝑑𝑙𝑙𝑠𝑠𝑠𝑠𝑝𝑝 𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿(𝑑𝑑𝑑𝑑) is the attenuation in decibels of the feedline between the transmitter and its 
antenna (if a filter is used between the transmitter and antenna, its loss in decibels should be added to the 
feedline loss) 
𝑡𝑡𝑝𝑝𝑎𝑎𝑠𝑠𝐿𝐿𝑚𝑚𝑠𝑠𝑡𝑡 𝑎𝑎𝑠𝑠𝑡𝑡𝑝𝑝𝑠𝑠𝑠𝑠𝑎𝑎 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠(𝑑𝑑𝑑𝑑𝑠𝑠) is the transmitter’s antenna gain in decibel isotropic 
𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝 𝐿𝐿𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝 𝑝𝑝𝑎𝑎𝑡𝑡ℎ 𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿(𝑑𝑑𝑑𝑑) is the free space path loss in decibels between the transmit antenna and 
receive antenna 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑎𝑎𝑝𝑝 𝑎𝑎𝑠𝑠𝑡𝑡𝑝𝑝𝑠𝑠𝑠𝑠𝑎𝑎 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠(𝑑𝑑𝑑𝑑𝑠𝑠) is the receiver’s antenna gain in decibel isotropic (2.15 dBi for a resonant 
half-wave dipole) 
 
 
Example: 
What is the received power at the terminals of a resonant half-wave dipole given the following: 

• Transmit power = 46 dBm @ 752 MHz 
• Transmit feedline loss = 2 dB 
• Transmit antenna gain = 18 dBi 
• Free-space path loss = 108 dB 
• Receive antenna gain = 2.15 dBi 

Solution: 
Preceive = transmit power (dBm) – transmit feedline loss (dB) + transmit antenna gain (dBi) – free space 
path loss (dB) + receive antenna gain (dBi) 
 
Preceive = 46 – 2 + 18 – 108 + 2.15 
 
Preceive = –43.85 
 
Answer: The received power at the dipole terminals is –43.85 dBm. 
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19.9. Convert microvolt per meter (µV/m) to decibel microvolt per meter 
(dBµV/m) 

 
𝑑𝑑𝑑𝑑𝜇𝜇𝑉𝑉 𝑚𝑚⁄ = 20𝑙𝑙𝐿𝐿𝑎𝑎10�𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘⁄ � 

 
where 
𝑑𝑑𝑑𝑑𝜇𝜇𝑉𝑉 𝑚𝑚⁄  is field strength in decibel microvolt per meter 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘⁄  is field strength in microvolt per meter 
 
 
Example: 
What is the dBµV/m equivalent of 50 µV/m? 
 
Solution: 
𝑑𝑑𝑑𝑑𝜇𝜇𝑉𝑉 𝑚𝑚⁄ = 20𝑙𝑙𝐿𝐿𝑎𝑎10�𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘⁄ � 
 
𝑑𝑑𝑑𝑑𝜇𝜇𝑉𝑉 𝑚𝑚⁄ = 20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(50) 
 
𝑑𝑑𝑑𝑑𝜇𝜇𝑉𝑉 𝑚𝑚⁄ = 20 ∗ 1.70 𝑑𝑑𝑑𝑑𝜇𝜇𝑉𝑉 𝑚𝑚⁄ = 34 
 
Answer: The dBµV/m equivalent of 50 µV/m is 34 dBµV/m. 
 

19.10. Convert decibel microvolt per meter (dBµV/m) to microvolt per meter 
(µV/m) 

 

𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘⁄ = 10
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑘𝑘⁄

20  
 
 
where 
𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘⁄  is field strength in microvolt per meter 
𝑑𝑑𝑑𝑑𝜇𝜇𝑉𝑉 𝑚𝑚⁄  is field strength in decibel microvolt per meter 
 
 
Example: 
What is the µV/m equivalent of 34 dBµV/m? 
 
Solution: 

𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘⁄ = 10
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑘𝑘⁄

20  
 

𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘⁄ = 10
34
20 

 
𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘⁄ = 101.70 
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𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘⁄ = 50.12 
 
Answer: The µV/m equivalent of 34 dBµV/m is 50.12 µV/m. 
 

19.11. Convert leakage field strength at 30 meters measurement distance to 
an equivalent field strength at 3 meters measurement distance 

 

𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘 ⁄  𝑎𝑎𝑡𝑡 3 𝑚𝑚𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝐿𝐿 =  𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘⁄  𝑎𝑎𝑡𝑡 30 𝑚𝑚𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝐿𝐿 ∗ �
30
3

� 
 
where 
𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘 ⁄  𝑎𝑎𝑡𝑡 3 𝑚𝑚𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝐿𝐿 is field strength in microvolt per meter at a 3 meters measurement distance 
𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘⁄  𝑎𝑎𝑡𝑡 30 𝑚𝑚𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝐿𝐿 is field strength in microvolt per meter at a 30 meters measurement distance 
 
 
Example: 
What would be the equivalent field strength at 3 meters given a measured value of 15 µV/m at 30 meters? 
 
Solution: 

𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘 ⁄  𝑎𝑎𝑡𝑡 3 𝑚𝑚𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝐿𝐿 =  𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘⁄  𝑎𝑎𝑡𝑡 30 𝑚𝑚𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝐿𝐿 ∗ �
30
3

� 
 

𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘 ⁄  𝑎𝑎𝑡𝑡 3 𝑚𝑚𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝐿𝐿 = 15 ∗ �
30
3

� 
 
𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘 ⁄  𝑎𝑎𝑡𝑡 3 𝑚𝑚𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝐿𝐿 =  150 
 
Answer: The equivalent field strength at 3 meters is 150 µV/m. 
 

19.12. Convert leakage field strength at 3 meters measurement distance to 
an equivalent field strength at 30 meters measurement distance 

 

𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘⁄  𝑎𝑎𝑡𝑡 30 𝑚𝑚𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝐿𝐿 = 𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘⁄  𝑎𝑎𝑡𝑡 3 𝑚𝑚𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝐿𝐿 ∗ �
3

30
� 

 
where 
𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘⁄  𝑎𝑎𝑡𝑡 30 𝑚𝑚𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝐿𝐿 is field strength in microvolt per meter at a 30 meters measurement distance 
𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘⁄  𝑎𝑎𝑡𝑡 3 𝑚𝑚𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝐿𝐿 is field strength in microvolt per meter at a 3 meters measurement distance 
 
 
Example: 
What is the equivalent field strength at 30 meters given a measured value of 150 µV/m at 3 meters? 
 
Solution: 

𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘 ⁄  𝑎𝑎𝑡𝑡 30 𝑚𝑚𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝐿𝐿 =  𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘⁄  𝑎𝑎𝑡𝑡 3 𝑚𝑚𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝐿𝐿 ∗ �
3

30
� 
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𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘 ⁄  𝑎𝑎𝑡𝑡 30 𝑚𝑚𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝐿𝐿 = 150 ∗ �
3

30
� 

 
𝐸𝐸𝑑𝑑𝑑𝑑 𝑘𝑘 ⁄  𝑎𝑎𝑡𝑡 30 𝑚𝑚𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝐿𝐿 =  15 
 
Answer: The equivalent field strength at 30 meters is 15 µV/m. 
 

19.13. Calculate leakage field strength difference in decibels at new 
measurement distance versus reference measurement distance 

 

𝐶𝐶𝑑𝑑𝑑𝑑 = 20𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝑑𝑑𝑖𝑖𝑓𝑓𝑛𝑛

𝑑𝑑𝑚𝑚𝑓𝑓𝑓𝑓
� 

 
where 
𝐶𝐶𝑑𝑑𝑑𝑑  is the correction factor in decibels 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑑𝑑𝑖𝑖𝑓𝑓𝑛𝑛  is the new measurement distance 
𝑑𝑑𝑚𝑚𝑓𝑓𝑓𝑓 is the reference measurement distance (e.g., 3 meters) 
 
 
Example: 
What is the difference in decibels between a field strength of 15 µV/m measured at 30 meters and a field 
strength of 150 µV/m measured at 3 meters? 
 
Solution: 

𝐶𝐶𝑑𝑑𝑑𝑑 = 20𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝑑𝑑𝑖𝑖𝑓𝑓𝑛𝑛

𝑑𝑑𝑚𝑚𝑓𝑓𝑓𝑓
� 

𝐶𝐶𝑑𝑑𝑑𝑑 = 20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 �
30
3

� 
 
𝐶𝐶𝑑𝑑𝑑𝑑 = 20 
 
Answer: The difference is 20 dB. 
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19.14. Calculate leakage field strength difference in decibels between two 
values of the same signal measured at different distances from the 
source 

 

𝐶𝐶𝑑𝑑𝑑𝑑 = 20𝑙𝑙𝐿𝐿𝑎𝑎10 �
µ𝑉𝑉/𝑚𝑚𝑖𝑖𝑓𝑓𝑛𝑛

µ𝑉𝑉/𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓
� 

 
where 
𝐶𝐶𝑑𝑑𝑑𝑑  is the correction factor in decibels 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
µ𝑉𝑉/𝑚𝑚𝑖𝑖𝑓𝑓𝑛𝑛  is the new measured value 
µ𝑉𝑉/𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓 is the measured reference value 
 
 
Example: 
What is the difference in decibels between a field strength of 150 µV/m measured at 3 meters and field 
strength of 15 µV/m measured at 30 meters? 
 
Solution: 

𝐶𝐶𝑑𝑑𝑑𝑑 = 20𝑙𝑙𝐿𝐿𝑎𝑎10 �
µ𝑉𝑉/𝑚𝑚𝑖𝑖𝑓𝑓𝑛𝑛

µ𝑉𝑉/𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓
� 

 

𝐶𝐶𝑑𝑑𝑑𝑑 = 20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 �
150
15

� 
 
𝐶𝐶𝑑𝑑𝑑𝑑 = 20 
 
Answer: The difference is 20 dB. 
 

19.15. Convert the FCC’s 25 kHz and 30 kHz bandwidths to a wider 
equivalent bandwidth 

 
The values in the following table assume 75 ohms impedance: 

∆𝑑𝑑𝑑𝑑 = 10𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝑑𝑑𝑚𝑚𝑖𝑖𝑓𝑓𝑛𝑛

𝑑𝑑𝑚𝑚𝑁𝑁𝐶𝐶𝐶𝐶
� 

where 
∆𝑑𝑑𝑑𝑑 is the correction factor in decibels to add to the FCC’s power threshold 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑑𝑑𝑚𝑚𝑖𝑖𝑓𝑓𝑛𝑛 is the new bandwidth (e.g., 6 MHz), expressed in Hz 
𝑑𝑑𝑚𝑚𝑁𝑁𝐶𝐶𝐶𝐶  is the bandwidth used in Part 76 of the FCC Rules (i.e., 25 kHz or 30 kHz), expressed in Hz 
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Table 9 - Power conversion 
Power (exp.) Power (µW) Power (dBmV) 

10–4 watt 100 38.750613 
  ̶ 75.85 37.550168 
10–5 watt 10 28.750613 

 
Example 1: 
What is the FCC’s 100 microwatts (µW) power threshold across a 25 kHz bandwidth [ref. §76.610] in a 6 
MHz equivalent bandwidth? 
 
Solution 1: 

∆𝑑𝑑𝑑𝑑 = 10𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝑑𝑑𝑚𝑚𝑖𝑖𝑓𝑓𝑛𝑛

𝑑𝑑𝑚𝑚𝑁𝑁𝐶𝐶𝐶𝐶
� 

 

∆𝑑𝑑𝑑𝑑 = 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 �
6000000

25000
� 

 
∆𝑑𝑑𝑑𝑑 = 23.80 
 
From the table, 100 µW is 38.75 dBmV. Add 23.80 dB to 38.75 dBmV. The answer is 62.55 dBmV. 
 
Example 2: 
What is the FCC’s 10–5 watt power threshold across a 30 kHz bandwidth [ref. §76.616(b)] in a 6 MHz 
equivalent bandwidth? 
 
Solution 2: 
 

∆𝑑𝑑𝑑𝑑 = 10𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝑑𝑑𝑚𝑚𝑖𝑖𝑓𝑓𝑛𝑛

𝑑𝑑𝑚𝑚𝑁𝑁𝐶𝐶𝐶𝐶
� 

∆𝑑𝑑𝑑𝑑 = 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 �
6000000

30000
� 

∆𝑑𝑑𝑑𝑑 = 23.01 
 
From the table, 10–5 watt is 28.75 dBmV. Add 23.01 dB to 28.75 dBmV. The answer is 51.76 dBmV. 
 

19.16. Calculate cumulative leakage index 

The FCC Rules on signal leakage require that cable systems demonstrate compliance with the signal 
leakage performance criteria associated with either a drive-out or a flyover test method.35 This section 
covers how to determine whether or not a cable network has met the signal leakage performance criteria 
associated with the drive-out test method. 
 
With respect to the drive-out test method, §76.611(a)(1) of the FCC Rules states that “[P]rior to carriage 
of signals in the aeronautical radio bands and at least once each calendar year, with no more than 12 
months between successive tests thereafter, based on a sampling of at least 75% of the cable strand, and 

 
35 See Title 47 of the Code of Federal Regulations, Part 76, §76.611(a). 
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including any portion of the cable system which are known to have or can reasonably be expected to have 
less leakage integrity than the average of the system, the cable operator demonstrates compliance with a 
cumulative signal leakage index by showing that 10 log I∞ is equal to or less than 64...”36 
 
The following formula can be used to calculate the cumulative leakage index:37 
 
 

𝐼𝐼∞ =
1
𝜃𝜃

� 𝐸𝐸𝑖𝑖
2

𝑖𝑖

𝑖𝑖=1

  

 
where  
𝐼𝐼∞ is the value used to compute the cumulative leakage index by showing that 10log10 (I∞) is equal to or 
less than 64. 
𝜃𝜃 is the fraction of the system cable length actually examined for leakage sources and is equal to the 
strand miles of plant tested divided by the total strand miles in the plant 
𝐸𝐸𝑖𝑖 is the electric field strength in microvolts per meter (µV/m) measured 3 meters from the leak i 
𝑠𝑠 is the number of leaks found of field strength equal to or greater than 50 µV/m 
 
More simply stated: 
 

𝐶𝐶𝐿𝐿𝐼𝐼(𝐼𝐼∞) = 10𝑙𝑙𝐿𝐿𝑎𝑎10 ��
𝑡𝑡𝐿𝐿𝑡𝑡𝑎𝑎𝑙𝑙 𝑝𝑝𝑙𝑙𝑎𝑎𝑠𝑠𝑡𝑡 𝑚𝑚𝑠𝑠𝑙𝑙𝑝𝑝𝐿𝐿

𝑝𝑝𝑙𝑙𝑎𝑎𝑠𝑠𝑡𝑡 𝑚𝑚𝑠𝑠𝑙𝑙𝑝𝑝𝐿𝐿 𝑡𝑡𝑝𝑝𝐿𝐿𝑡𝑡𝑝𝑝𝑑𝑑
� ∗  (𝐿𝐿𝑣𝑣𝑚𝑚 𝐿𝐿𝑓𝑓 𝑝𝑝𝑎𝑎𝑝𝑝ℎ 𝑙𝑙𝑝𝑝𝑎𝑎𝑘𝑘2)� 

 
where 
𝐶𝐶𝐿𝐿𝐼𝐼(𝐼𝐼∞) is cumulative leakage index (𝐼𝐼∞, sometimes called the “I sub infinity method”) 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
 
 
Example: 
A small cable system has 500 total plant miles. Field technicians have driven out 475 miles testing for 
signal leakage and have collected the following list of leaks measuring 50 µV/m or more: 

Table 10 - Signal leakage data used for this example. 
Number of 
signal leaks 

Leakage level 
(µV/m) 

20 50 
15 75 
10 100 
5 500 

 
Calculate the cumulative leakage index for this system based on this list of measured leaks. 
 
  

 
36 As of November 2020. 
37 Cumulative leakage index (CLI) is a commonly misused term. CLI is not the same as signal leakage. CLI is a 
figure of merit that provides a snapshot of the magnitude of a cable system’s overall signal leakage. It is not possible 
to measure or test CLI; one must measure signal leakage in order to calculate CLI. 
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Solution: 

𝐶𝐶𝐿𝐿𝐼𝐼∞ = 10𝑙𝑙𝐿𝐿𝑎𝑎10 ��
𝑡𝑡𝐿𝐿𝑡𝑡𝑎𝑎𝑙𝑙 𝑝𝑝𝑙𝑙𝑎𝑎𝑠𝑠𝑡𝑡 𝑚𝑚𝑠𝑠𝑙𝑙𝑝𝑝𝐿𝐿

𝑝𝑝𝑙𝑙𝑎𝑎𝑠𝑠𝑡𝑡 𝑚𝑚𝑠𝑠𝑙𝑙𝑝𝑝𝐿𝐿 𝑡𝑡𝑝𝑝𝐿𝐿𝑡𝑡𝑝𝑝𝑑𝑑
� ∗  (𝐿𝐿𝑣𝑣𝑚𝑚 𝐿𝐿𝑓𝑓 𝑝𝑝𝑎𝑎𝑝𝑝ℎ 𝑙𝑙𝑝𝑝𝑎𝑎𝑘𝑘2)� 

 

𝐶𝐶𝐿𝐿𝐼𝐼∞ = 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 ��
500
475

� ∗ ([20 ∗ 502] +  [15 ∗ 752] +  [10 ∗ 1002]  +  [5 ∗ 5002])� 
 
𝐶𝐶𝐿𝐿𝐼𝐼∞ = 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 [(1.05263158) ∗ ([20 ∗ 2500] +  [15 ∗ 5625] +  [10 ∗ 10000]  +  [5 ∗ 250000])] 
 
𝐶𝐶𝐿𝐿𝐼𝐼∞ = 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 [(1.05263158) ∗ ([50000] +  [84375] +  [100000]  +  [1250000])] 
 
𝐶𝐶𝐿𝐿𝐼𝐼∞ = 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 [(1.05263158) ∗ (1484375)] 
 
𝐶𝐶𝐿𝐿𝐼𝐼∞ = 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 (1562500) 
 
𝐶𝐶𝐿𝐿𝐼𝐼∞ = 10 ∗ (6.19382003) 
 
𝐶𝐶𝐿𝐿𝐼𝐼∞ = 61.94 
 
Answer: The cumulative leakage index for this system is 61.94. 
 
Note: The FCC provides an online cumulative leakage index calculator at 
https://www.fcc.gov/media/cumulative-leakage-index-calculator 
 
  

https://www.fcc.gov/media/cumulative-leakage-index-calculator
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20. Coaxial Cable 

20.1. Characteristic impedance 

The characteristic impedance, Z0, of coaxial cable is expressed in ohms, and is related to the outside 
diameter of the inner or center conductor, the inside diameter of the outer conductor or shield, and the 
dielectric constant38 (relative permittivity) of the insulating material (dielectric) separating the two 
conductors. 
 
 

𝑍𝑍0 =
138
√𝜀𝜀

𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝑀𝑀
𝑑𝑑

� 

 
where 
𝑍𝑍0 is the cable’s characteristic impedance in ohms 
𝜀𝜀 is the dielectric constant 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑀𝑀 is the inside diameter of the outer conductor or shield 
𝑑𝑑 is the outside diameter of the inner or center conductor 
 
 
Example: 
What is the characteristic impedance of coaxial cable whose center conductor diameter d is 0.109 inch, 
inside diameter of the shield D is 0.452 inch, and has a dielectric constant ε of 1.32? 
 
Solution: 

𝑍𝑍0 =
138

√1.32
𝑙𝑙𝐿𝐿𝑎𝑎10 �

0.452
0.109

� 

 

𝑍𝑍0 =
138

1.149
∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(4.147) 

 
𝑍𝑍0 = 120.114 ∗ 0.618 
 
𝑍𝑍0 = 74.2 
 
Answer: The characteristic impedance of the coaxial cable is 74.2 ohms. 
 
Note: Most coaxial cable manufacturers specify a nominal value for characteristic impedance, such as 75 
ohms ±2 ohms. In this example, the calculated characteristic impedance is within the tolerance common 
for nominal values. 

 
38 Dielectric constant is generally not specified by coaxial cable manufacturers, but can be derived from the cable’s 
published velocity factor. See Section 20.4. 
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20.2. Skin depth 

Skin depth, denoted by the symbol δ, is a measure of skin effect39 and is the depth at which the current 
density is 1/e of the current density at the surface of the conductor. Note: “e” is the mathematical constant 
that is the base of the natural logarithm (“LN” on some scientific calculators) and is equal to about 2.718, 
so 1/e ≈ 37%. 
 
Figure 29 illustrates skin depth δ in a metallic conductor, the depth at which current density is 
approximately 37% of the value at the surface. RF current doesn’t stop at the dashed line, but decreases 
logarithmically with respect to depth in the conductor.  

 
Figure 29 - Concept of skin depth (not to scale). 

 
Skin depth can be calculated using the following formula. 
 
 

𝛿𝛿 = �
2𝜌𝜌

(2𝜋𝜋𝑓𝑓)(𝜇𝜇0𝜇𝜇𝑚𝑚)
 

 
where 
𝛿𝛿 is skin depth in meters 
𝜌𝜌 is resistivity of the conductor in ohm-meter (Ω·m), 1.678 ∗ 10-8 for copper at room temperature40 
𝑓𝑓 is frequency in hertz 
𝜇𝜇0 is the permittivity of free space (4π ∗ 10-7) 
𝜇𝜇𝑚𝑚 is relative permittivity of the conductor (0.999991 for copper) 
 
 
Example 1: 
What is the skin depth in a copper conductor for a 60 Hz alternating current? 
 
Solution 1: 

 
39 For alternating current (AC) applications – which includes RF – conduction of current is largely confined to a 
region at and near the surface of the conductor. The higher the frequency, the shallower the region (and closer to the 
surface) in which the current is conducted. This phenomenon is known as skin effect. 
40 The resistivity for copper at 20 °C (68 ˚F) is about 1.68 ∗ 10-8 Ω·m, and the resistivity for annealed copper is 
about 1.72 ∗ 10–8 Ω·m. For this example, 1.68 ∗ 10–8 Ω·m is being used. 
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𝛿𝛿 = �
2 ∗ (1.678 ∗ 10−8)

(2 ∗ 𝜋𝜋 ∗ 60)(4𝜋𝜋 ∗ 10−7)(0.999991)
 

 

𝛿𝛿 = �
3.356 ∗ 10−8

(376.991)(1.257 ∗ 10−6)(0.999991)
 

 

𝛿𝛿 = �3.356 ∗ 10−8

4.737 ∗ 10−4 

 
𝛿𝛿 = �7.082 ∗ 10−5 
 
𝛿𝛿 = 0.00841 
 
Answer: The skin depth in a copper conductor for 60 Hz AC is 0.00841 meter, or 8.41 millimeters (about 
1/3 inch). 

Example 2: 
What is the skin depth in a copper conductor for a 100 MHz RF signal? 
 
Solution 2: 

𝛿𝛿 = �
2 ∗ (1.678 ∗ 10−8)

(2 ∗ 𝜋𝜋 ∗ 100,000,000)(4𝜋𝜋 ∗ 10−7)(0.999991)
 

 

𝛿𝛿 = �
3.356 ∗ 10−8

(628,318,530.718)(1.257 ∗ 10−6)(0.999991)
 

 

𝛿𝛿 = �3.356 ∗ 10−8

789.789
 

 
𝛿𝛿 = �4.249 ∗ 10−11 
 
𝛿𝛿 = 6.519 ∗ 10−6 
 
Answer: The skin depth in a copper conductor for a 100 MHz RF signal is 6.519 micrometers (µm), or 
about 0.00025 inch. 
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20.3. Coaxial cable attenuation 

20.3.1. Attenuation versus frequency 

Coaxial cable attenuation can be calculated using the following formula:41 
 
 

𝛼𝛼 = �
3296

𝑍𝑍
∗ �

�𝑃𝑃𝑖𝑖

𝑑𝑑 ∗ 𝑘𝑘𝑚𝑚
+

�𝑃𝑃𝑜𝑜

𝑀𝑀
�� ∗ �𝑓𝑓 + �

0.884 ∗ 𝜋𝜋 ∗ 𝜎𝜎
𝑉𝑉𝑁𝑁

� ∗ 𝑓𝑓 

 
where 
𝛼𝛼 is attenuation in decibels per 100 feet 
𝑍𝑍 is nominal impedance in ohms 
𝑃𝑃𝑖𝑖 is resistivity of the inner conductor in Ω·m 
𝑃𝑃𝑜𝑜 is resistivity of the outer conductor in Ω·m 
𝑑𝑑 is the outside diameter of the inner (center) conductor 
𝑀𝑀 is the inside diameter of the outer conductor (shield) 
𝑘𝑘𝑚𝑚 is a stranding factor (1.0 for a solid shield, and a slightly smaller value for braided drop cable)  
𝑓𝑓 is frequency in megahertz 
𝜎𝜎 is dissipation factor for the dielectric 
𝑉𝑉𝑁𝑁 is the cable’s velocity factor 
 
 
Example: 
What is the attenuation of 0.500 hardline coaxial cable at 1 GHz? 
 
Solution: 
Assume the following values for the formula’s terms. 
 
𝑍𝑍 = 75 ohms 
𝑃𝑃𝑖𝑖 = 1.7241 ∗ 10–8 Ω·m 
𝑃𝑃𝑜𝑜 = 2.828 ∗ 10–8 Ω·m 
𝑑𝑑 = 0.109 inch 
𝑀𝑀 = 0.450 inch 
𝑘𝑘𝑚𝑚 = 1.0 
𝑓𝑓 = 1,000 MHz 
𝜋𝜋 = 3.1416 
𝜎𝜎 = 7 ∗ 10–5 
𝑉𝑉𝑁𝑁 = 0.8825 
 

𝛼𝛼 = �
3296

75
∗ �

√1.7241 ∗ 10−8

0.109 ∗ 1.0
+

√2.828 ∗ 10−8

0.450
�� ∗ √1000 + �

0.884 ∗ 3.1416 ∗ (7 ∗ 10−5)
0.8825

� ∗ 1000 

 

𝛼𝛼 = �43.947 ∗ �
1.313 ∗ 10−4

0.109
+

1.682 ∗ 10−4

0.450
�� ∗ 31.623 + �

1.944 ∗ 10−4

0.8825
� ∗ 1000 

 
 

41 The coaxial attenuation-versus-frequency formula and assumptions used in the example are courtesy of Amphenol 
Broadband Solutions. 
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𝛼𝛼 = [43.947 ∗ (0.0012 + (3.737 ∗ 10−4))] ∗ 31.623 + (2.203 ∗ 10−4) ∗ 1000 
 
𝛼𝛼 = [43.947 ∗ (0.001578)] ∗ 31.623 + (0.2203) 
 
𝛼𝛼 = 0.069 ∗ 31.623 + (0.2203) 
 
𝛼𝛼 = 2.193 + (0.2203) 
 
𝛼𝛼 = 2.4137 
 
Answer: The cable’s attenuation at 1 GHz is about 2.41 dB/100 ft. 
 
Note: Manufacturers sometimes specify typical and maximum attenuation values, and sometimes just 
maximum values. The calculated value is closer to what can be considered a typical value. Maximum 
values are generally a few percent higher than the typical values. For instance, adding 4% to 5% to the 
calculated value here gives 2.51 dB to 2.53 dB, which are closer to published maximum values for 0.500 
hardline coax. 
 

20.3.2. Cable loss ratio (square root of frequency method) 

The ratio of coaxial cable attenuation, in decibels, at two frequencies is approximately equal to the square 
root of the ratio of the two frequencies. From this, one can calculate the approximate loss at one 
frequency when the loss at another frequency is known, using the following formulas: 
 
 

𝐿𝐿𝑀𝑀 ≅ 𝐿𝐿𝐸𝐸 ∗ ��
𝑓𝑓𝑀𝑀

𝑓𝑓𝐸𝐸
� 

where 
𝐿𝐿𝑀𝑀 is the approximate loss in decibels at frequency 𝑓𝑓𝑀𝑀 
𝐿𝐿𝐸𝐸 is the known loss in decibels at frequency 𝑓𝑓𝐸𝐸  
𝑓𝑓𝑀𝑀 is the high frequency of interest 
𝑓𝑓𝐸𝐸 is the low frequency of interest 
 

𝐿𝐿𝐸𝐸 ≅ 𝐿𝐿𝑀𝑀 ∗ ��
𝑓𝑓𝐸𝐸

𝑓𝑓𝑀𝑀
� 

where 
𝐿𝐿𝐸𝐸 is the approximate loss in decibels at frequency 𝑓𝑓𝐸𝐸   
𝐿𝐿𝑀𝑀 is the known loss in decibels at frequency 𝑓𝑓𝑀𝑀 
𝑓𝑓𝐸𝐸 is the low frequency of interest 
𝑓𝑓𝑀𝑀 is the high frequency of interest 
 
 
Example 1: 
If a 100 ft. length of widely used 0.500 hardline coax has a published loss of 1.82 dB at 550 MHz, what is 
the approximate loss at 1002 MHz? 
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Solution 1: 

𝐿𝐿𝑀𝑀 ≅ 1.82 ∗ ��
1002
550

� 

𝐿𝐿𝑀𝑀 ≅ 1.82 ∗ �(1.822) 
 
𝐿𝐿𝑀𝑀 ≅ 1.82 ∗ 1.350 
 
𝐿𝐿𝑀𝑀 ≅ 2.457 
 
Answer: The approximate loss at 1002 MHz is 2.46 dB. 
 
Note: The published loss for the example 0.500 hardline coax at 1002 MHz is 2.54 dB, showing that this 
approach can provide a reasonable approximation of the loss at the higher frequency. 

Example 2: 
If a 100 ft. length of widely used 0.500 hardline coax has a published loss of 2.54 dB at 1002 MHz, what 
is the approximate loss at 550 MHz? 
 
Solution 2: 

𝐿𝐿𝐸𝐸 ≅ 2.54 ∗ ��
550

1002
� 

𝐿𝐿𝑀𝑀 ≅ 2.54 ∗ �(0.549) 
 
𝐿𝐿𝑀𝑀 ≅ 2.54 ∗ 0.741 
 
𝐿𝐿𝑀𝑀 ≅ 1.882 
 
Answer: The approximate loss at 550 MHz is 1.88 dB. 
 
Note: The published loss for the example 0.500 hardline coax at 550 MHz is 1.82 dB, showing that this 
approach can provide a reasonable approximation of the loss at the lower frequency. 
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20.3.3. Convert cable tilt to cable loss 

The following formula can be used to calculate the approximate cable loss at a higher frequency 𝑓𝑓2 when 
the cable’s attenuation-related tilt between a lower frequency 𝑓𝑓1 and the higher frequency 𝑓𝑓2 is known. 
 
 

𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑓𝑓2 ≅
𝑡𝑡𝑠𝑠𝑙𝑙𝑡𝑡

1 − �𝑓𝑓1
𝑓𝑓2

 

 
where 
𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑓𝑓2 is the cable’s approximate loss at a higher frequency 𝑓𝑓2 
𝑡𝑡𝑠𝑠𝑙𝑙𝑡𝑡 is the cable’s attenuation-related tilt in decibels between frequencies 𝑓𝑓1 and 𝑓𝑓2 
𝑓𝑓1 is the lower frequency 
𝑓𝑓2 is the higher frequency 
 
 
Example 1: 
What is the loss in a length of feeder cable at 750 MHz (𝑓𝑓2) when the tilt is 15 dB between 55 MHz (𝑓𝑓1) 
and 750 MHz? Refer to Figure 30. 
 

 
Figure 30. Attenuation vs. frequency for a length of 0.500 feeder cable. 

Solution: 

𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑓𝑓2 ≅
𝑡𝑡𝑠𝑠𝑙𝑙𝑡𝑡

1 − �𝑓𝑓1
𝑓𝑓2

 

 

𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑓𝑓2 ≅
15

1 − � 55
750

 

 

𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑓𝑓2 ≅
15

1 − √0.0733
 

 

𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑓𝑓2 ≅
15

1 − 0.2708
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𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑓𝑓2 ≅
15

0.7292
 

 
𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑓𝑓2 ≅ 20.57 
 
Answer: The approximate loss at 750 MHz (𝑓𝑓2) is 20.57 dB. 
 

20.3.4. Attenuation versus temperature 

Coaxial cable attenuation in decibels changes about 1% for every 10 °F ambient temperature change. As 
the temperature increases, cable attenuation increases; as the temperature decreases, cable attenuation 
decreases. Both downstream and upstream RF signal levels are affected by temperature-related cable 
attenuation variations. 
 
If one knows the coaxial cable’s attenuation at the manufacturer’s reference temperature, the attenuation 
at a different temperature can be calculated using the following formulas: 
 
 

𝐴𝐴(℉)𝑖𝑖𝑓𝑓𝑛𝑛 = 𝐴𝐴𝑚𝑚𝑓𝑓𝑓𝑓 ∗ �1 + �0.0011 ∗ �𝑇𝑇𝑖𝑖𝑓𝑓𝑛𝑛 − 𝑇𝑇𝑚𝑚𝑓𝑓𝑓𝑓��� 
 
where 
𝐴𝐴(℉)𝑖𝑖𝑓𝑓𝑛𝑛 is attenuation in decibels at the new temperature in degrees Fahrenheit 
𝐴𝐴𝑚𝑚𝑓𝑓𝑓𝑓 is attenuation in decibels at the cable manufacturer’s reference temperature (typ. 68 ˚F) 
𝑇𝑇𝑖𝑖𝑓𝑓𝑛𝑛 is the new temperature 
𝑇𝑇𝑚𝑚𝑓𝑓𝑓𝑓 is the cable manufacturer’s reference temperature (typ. 68 ˚F) 
 

𝐴𝐴(℃)𝑖𝑖𝑓𝑓𝑛𝑛 = 𝐴𝐴𝑚𝑚𝑓𝑓𝑓𝑓 ∗ �1 + �0.002 ∗ �𝑇𝑇𝑖𝑖𝑓𝑓𝑛𝑛 − 𝑇𝑇𝑚𝑚𝑓𝑓𝑓𝑓��� 
 
where 
𝐴𝐴(℃)𝑖𝑖𝑓𝑓𝑛𝑛 is attenuation in decibels at the new temperature in degrees Celsius 
𝐴𝐴𝑚𝑚𝑓𝑓𝑓𝑓 is attenuation in decibels at the cable manufacturer’s reference temperature (typ. 20 ˚C) 
𝑇𝑇𝑖𝑖𝑓𝑓𝑛𝑛 is the new temperature 
𝑇𝑇𝑚𝑚𝑓𝑓𝑓𝑓 is the cable manufacturer’s reference temperature (typ. 20 ˚C) 
 
 
Example 1: 
Assume a coaxial cable manufacturer’s published attenuation at 870 MHz for a length of express feeder is 
15 dB at 68 ˚F. What is the attenuation at 870 MHz of that express feeder at –10 ˚F? 
 
Solution 1: 
𝐴𝐴(℉)𝑖𝑖𝑓𝑓𝑛𝑛 = 𝐴𝐴𝑚𝑚𝑓𝑓𝑓𝑓 ∗ �1 + �0.0011 ∗ �𝑇𝑇𝑖𝑖𝑓𝑓𝑛𝑛 − 𝑇𝑇𝑚𝑚𝑓𝑓𝑓𝑓��� 
 
𝐴𝐴(℉)𝑖𝑖𝑓𝑓𝑛𝑛 = 15 ∗ (1 + [0.0011 ∗ (−10 − 68)]) 
 
𝐴𝐴(℉)𝑖𝑖𝑓𝑓𝑛𝑛 = 15 ∗ (1 + [0.0011 ∗ (−78)]) 
 
𝐴𝐴(℉)𝑖𝑖𝑓𝑓𝑛𝑛 = 15 ∗ (1 + [−0.0858]) 
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𝐴𝐴(℉)𝑖𝑖𝑓𝑓𝑛𝑛 = 15 ∗ (0.9142) 
 
𝐴𝐴(℉)𝑖𝑖𝑓𝑓𝑛𝑛 = 13.71 
 
Answer: The attenuation at 870 MHz of the span of express feeder cable at –10 ˚F is 13.71 dB. 
 
Example 2: 
Assume a coaxial cable manufacturer’s published attenuation at 1002 MHz for a length of express feeder 
is 16.1 dB at 20 ˚C. What is the attenuation at 1002 MHz of that express feeder at 40 ˚C? 
 
Solution 2: 
𝐴𝐴(℃)𝑖𝑖𝑓𝑓𝑛𝑛 = 𝐴𝐴𝑚𝑚𝑓𝑓𝑓𝑓 ∗ �1 + �0.002 ∗ �𝑇𝑇𝑖𝑖𝑓𝑓𝑛𝑛 − 𝑇𝑇𝑚𝑚𝑓𝑓𝑓𝑓��� 
 
𝐴𝐴(℃)𝑖𝑖𝑓𝑓𝑛𝑛 = 16.1 ∗ (1 + [0.002 ∗ (40 − 20)]) 
 
𝐴𝐴(℃)𝑖𝑖𝑓𝑓𝑛𝑛 = 16.1 ∗ (1 + [0.002 ∗ (20)]) 
 
𝐴𝐴(℃)𝑖𝑖𝑓𝑓𝑛𝑛 = 16.1 ∗ (1 + [0.0400]) 
 
𝐴𝐴(℃)𝑖𝑖𝑓𝑓𝑛𝑛 = 16.1 ∗ (1.0400) 
 
𝐴𝐴(℃)𝑖𝑖𝑓𝑓𝑛𝑛 = 16.74 
 
Answer: The attenuation at 1002 MHz of the length of express feeder cable at 40 ˚C is 16.74 dB. 
 

20.4. Coaxial cable velocity factor and velocity of propagation 

Velocity factor is the ratio – in decimal form – of the speed of electromagnetic signals propagating 
through coaxial cable to the speed of light in a vacuum. 
 
 
Velocity factor is calculated with the formula 

𝑉𝑉𝑁𝑁 =
1

√𝜀𝜀
 

 
where 
𝑉𝑉𝑁𝑁 is the velocity factor 
𝜀𝜀 is the dielectric constant 
 
Dielectric constant is calculated with the formula 

𝜀𝜀 =
1

𝑉𝑉𝑁𝑁2 
 
 
Example 1: 
What is the velocity factor for coaxial cable with a dielectric constant of 1.32?  
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Solution 1: 

𝑉𝑉𝑁𝑁 =
1

√1.32
 

𝑉𝑉𝑁𝑁 =
1

1.149
 

𝑉𝑉𝑁𝑁 = 0.87 
 
Example 2: 
What is the dielectric constant for coaxial cable with a velocity factor of 0.92? 
 
Solution 2: 

𝜀𝜀 =
1

0.922 
 

𝜀𝜀 =
1

0.846
 

 
𝜀𝜀 = 1.181 
 
Velocity of propagation is velocity factor expressed as a percentage: 
 
 

𝑉𝑉𝐿𝐿𝑃𝑃 = 𝑉𝑉𝑁𝑁 ∗ 100 
 
where 
𝑉𝑉𝐿𝐿𝑃𝑃 is velocity of propagation 
𝑉𝑉𝑁𝑁 is the velocity factor 
 
 
Example: 
What is the velocity of propagation for coaxial cable with a velocity factor of 0.87?  
 
Solution: 
VoP = 0.87 ∗ 100 
VoP = 87% 
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20.5. Wavelength in coaxial cable 

The wavelength in feet in coaxial cable can be calculated using the following formulas: 
 
 

𝜆𝜆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
(983.571 ∗ 𝑉𝑉𝑁𝑁)

𝑓𝑓
 

 
where 
𝜆𝜆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is wavelength in feet 
𝑉𝑉𝑁𝑁 is velocity factor 
𝑓𝑓 is frequency in MHz 
 

𝜆𝜆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
983.571
𝑓𝑓 ∗ √𝜀𝜀

 

where 
𝜆𝜆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is wavelength in feet 
𝑓𝑓 is frequency in MHz 
𝜀𝜀 is the cable’s dielectric constant 
 
 
Example: 
What is the wavelength of a 100 MHz signal in coaxial cable with a velocity factor of 0.87?  
 
Solution: 

𝜆𝜆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
(983.571 ∗ 0.87)

100
 

 

𝜆𝜆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
(855.707)

100
 

 
𝜆𝜆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 8.557 
 
Answer: One wavelength is 8.557 feet. 
 

20.6. Coaxial cable TE mode cutoff frequency 
 
The desired mode of propagation in coaxial cable is known as the transverse electromagnetic (TEM) 
mode. Higher modes such as transverse electric (TE) are undesirable, in part because the electric and 
magnetic fields are non-uniform, and the interactions between the fundamental TEM mode and higher 
modes can cause unwanted problems. The first higher order mode, called TE11, can propagate above the 
TE mode cutoff frequency 𝑓𝑓𝑐𝑐. Ideally, the maximum operating frequency in coaxial cable should not 
exceed 𝑓𝑓𝑐𝑐, such that only TEM mode is supported. The following formula can be used to calculate 𝑓𝑓𝑐𝑐 for 
TE11 mode in coaxial cable. 
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𝑓𝑓𝑐𝑐 =
11.8

√𝜀𝜀 ∗ 𝜋𝜋 ∗ �𝑀𝑀 + 𝑑𝑑
2 �

 

 
where 
𝑓𝑓𝑐𝑐 is the TE11 mode cutoff frequency in gigahertz (GHz) 
𝜀𝜀 is the cable’s dielectric constant 
𝑀𝑀 is the inner diameter of the cable’s shield, in inches 
𝑑𝑑 is the outer diameter of the cable’s center conductor, in inches 
 
 
Example: 
What is 𝑓𝑓𝑐𝑐 for .500 hardline coaxial cable, assuming the center conductor diameter is 0.109 inch, the inner 
diameter of the shield is 0.452 inch, and the dielectric constant is 1.32? 
 
Solution: 

𝑓𝑓𝑐𝑐 =
11.8

√𝜀𝜀 ∗ 𝜋𝜋 ∗ �𝑀𝑀 + 𝑑𝑑
2 �

 

 

𝑓𝑓𝑐𝑐 =
11.8

√1.32 ∗ 𝜋𝜋 ∗ �0.452 + 0.109
2 �

 

 
 

𝑓𝑓𝑐𝑐 =
11.8

1.1489 ∗ 𝜋𝜋 ∗ �0.5610
2 �

 

 

𝑓𝑓𝑐𝑐 =
11.8

1.1489 ∗ 𝜋𝜋 ∗ (0.2805) 

 

𝑓𝑓𝑐𝑐 =
11.8

1.0124
 

 
𝑓𝑓𝑐𝑐 = 11.6551 
 
Answer: The TE11 mode cutoff frequency 𝑓𝑓𝑐𝑐 for .500 hardline coax is about 11.66 GHz. 
 
Note: The calculated 𝑓𝑓𝑐𝑐 for .750 hardline coaxial cable (𝑀𝑀 = 0.680 inch, 𝑑𝑑 = 0.167 inch, and 𝜀𝜀 = 1.32) is 
about 7.7 GHz, and 𝑓𝑓𝑐𝑐 for Series 6 drop cable (𝑀𝑀 = 0.18 inch, 𝑑𝑑 = 0.04 inch, and 𝜀𝜀 = 1.38) is about 29.06 
GHz.  
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20.7. Equalizer loss 
Equalizers are passive circuits used to compensate for the attenuation characteristics of coaxial cable at 
different frequencies. The following formula can be used to calculate the loss of an equalizer at any 
frequency: 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑎𝑎𝑡𝑡 𝑓𝑓1 = 𝐸𝐸𝐸𝐸 − ��𝐸𝐸𝐸𝐸�
𝑓𝑓1

𝑓𝑓2
� − 1� 

 
where 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑎𝑎𝑡𝑡 𝑓𝑓1 is the equalizer’s loss at frequency 𝑓𝑓1 
𝐸𝐸𝐸𝐸 is the equalizer value in decibels at frequency 𝑓𝑓2 
 
 
Example: 
What is the loss in decibels at 54 MHz (𝑓𝑓1) of an equalizer for 20 dB of cable at 750 MHz (𝑓𝑓2)? 
 
Solution: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑎𝑎𝑡𝑡 𝑓𝑓1 = 𝐸𝐸𝐸𝐸 − ��𝐸𝐸𝐸𝐸�
𝑓𝑓1

𝑓𝑓2
� − 1� 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑎𝑎𝑡𝑡 𝑓𝑓1 = 20 − ��20� 54
750

� − 1� 

 
 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑎𝑎𝑡𝑡 𝑓𝑓1 = 20 − ��20 ∗ √0.0720� − 1� 
 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑎𝑎𝑡𝑡 𝑓𝑓1 = 20 − [(20 ∗ 0.2683) − 1] 
 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑎𝑎𝑡𝑡 𝑓𝑓1 = 20 − [(5.3666) − 1] 
 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑎𝑎𝑡𝑡 𝑓𝑓1 = 20 − [4.3666] 
 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑎𝑎𝑡𝑡 𝑓𝑓1 = 15.63 
 
Answer: The equalizer’s loss at 54 MHz is 15.63 dB. 
 

20.8. Calculate RF signal levels in coax plant 

The cable network design process is a complex subject that involves many facets, and a detailed overview 
is beyond the scope of this Operational Practice. This section includes simplified examples of 
downstream and upstream RF signal level calculations in the coaxial cable portion of an HFC network 
(refer to Section 25.8 for an example fiber optic link loss budget analysis). Note: Modern cable network 
designs generally use conditioned taps, that is, taps that support plug-in reverse attenuators, forward 
equalizers, and forward inverse equalizers. Those plug-ins allow for optimization of tap output levels, and 
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manage reverse path tap losses to help achieve a narrow window of cable modem transmit levels. The 
examples here do NOT use conditioned taps. 
 
The power of the decibel allows the math to be mostly addition and subtraction. 
 
In the example shown in Figure 31, the task is to calculate 1) the downstream RF signal levels at the cable 
modem input, and 2) the cable modem’s upstream RF transmit level, given the provided parameters and 
specifications. 
 

23 20

Cable 
modem

To STB

150 feet

75
 fe

et

50 feet

Upstream input (5 MHz): +15 dBmV
Downstream output (55 MHz): +42 dBmV 
Downstream output (750 MHz): +50 dBmV

Upstream output (5 MHz): ?
Downstream input (55 MHz): ?
Downstream input (750 MHz): ?

0.500 feeder

Series 6 drop

 
Figure 31 - Cable network details for examples in this section. 

 

20.8.1. Cable and passive device specifications 

Assume the following specifications for the half-inch hardline feeder coaxial cable, Series 6 subscriber 
drop coaxial cable, distribution passives (taps), and the two-way splitter used at the subscriber premises. 

Table 11 - Coaxial cable attenuation specifications (at 20 ˚C or 68 ˚F) 
Frequency 

(MHz) 
0.500 feeder cable 

attenuation 
(dB/100 ft) 

Series 6 drop 
cable attenuation 

(dB/100 ft) 
5 0.16 0.58 
55 0.54 1.60 
750 2.16 5.65 

 
 



SCTE 270 2021r1   

SCTE OPERATIONAL PRACTICE  © SCTE 176 

Table 12 - Tap specifications 
Frequency 

(MHz) 
23 dB tap 
insertion 
loss (dB) 

20 dB tap 
insertion 
loss (dB)* 

5 0.16 0.58 
55 0.54 1.60 
750 2.16 5.65 

*Note to table: The 20 dB tap’s insertion (through) 
loss values are not used in the accompanying 
examples, but are provided for reference. 

 

Table 13 - Drop splitter specifications 
Frequency 

(MHz) 
2-way splitter 
insertion loss 

(dB) 
5 3.6 
55 3.6 
750 4.5 
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20.8.2. Calculate coaxial cable attenuation 

The first step is to calculate the attenuation of the three lengths of coaxial cable at the three frequencies of 
interest (5 MHz, 55 MHz, and 750 MHz), which can be done using the following formula: 
 
 

𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = �
𝑑𝑑𝑑𝑑𝑚𝑚𝑐𝑐𝑓𝑓𝑐𝑐

100
� ∗ 𝑙𝑙𝑝𝑝𝑠𝑠𝑎𝑎𝑡𝑡ℎ𝑓𝑓𝑓𝑓 

where 
𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 is the attenuation at the frequency of interest in the given length of coaxial cable, in decibels 
(dB) 
𝑑𝑑𝑑𝑑𝑚𝑚𝑐𝑐𝑓𝑓𝑐𝑐  is the published coaxial cable attenuation at the frequency of interest, in dB per 100 feet 
𝑙𝑙𝑝𝑝𝑠𝑠𝑎𝑎𝑡𝑡ℎ𝑓𝑓𝑓𝑓 is the length of the coaxial cable, in feet 
 
 
Example: 
What is the attenuation of the 150 ft. span of half-inch hardline feeder cable at 5 MHz, 55 MHz, and 750 
MHz? Refer to Table 11 for the published attenuation specifications. 
 
Solution (5 MHz): 

𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = �
𝑑𝑑𝑑𝑑𝑚𝑚𝑐𝑐𝑓𝑓𝑐𝑐

100
� ∗ 𝑙𝑙𝑝𝑝𝑠𝑠𝑎𝑎𝑡𝑡ℎ𝑓𝑓𝑓𝑓 

 

𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = �
0.16
100

� ∗ 150 
 
𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = (0.0016) ∗ 150 
 
𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = 0.24 
 
Answer: The attenuation at 5 MHz in 150 feet of half-inch hardline coaxial cable is 0.24 dB. 
 
Solution (55 MHz): 

𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = �
0.54
100

� ∗ 150 
 
𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = (0.0054) ∗ 150 
 
𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = 0.81 
 
Answer: The attenuation at 55 MHz in 150 feet of half-inch hardline coaxial cable is 0.81 dB. 
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Solution (750 MHz): 

𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = �
2.16
100

� ∗ 150 
 
𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = (0.0216) ∗ 150 
 
𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = 3.24 
 
Answer: The attenuation at 750 MHz in 150 feet of half-inch hardline coaxial cable is 3.24 dB. 
 
Example: 
What is the attenuation of the 75 ft length of Series 6 drop cable at 5 MHz, 55 MHz, and 750 MHz? Refer 
to Table 11 for the published attenuation specifications. 
 
Solution (5 MHz): 

𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = �
𝑑𝑑𝑑𝑑𝑚𝑚𝑐𝑐𝑓𝑓𝑐𝑐

100
� ∗ 𝑙𝑙𝑝𝑝𝑠𝑠𝑎𝑎𝑡𝑡ℎ𝑓𝑓𝑓𝑓 

 

𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = �
0.58
100

� ∗ 75 
 
𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = (0.0058) ∗ 75 
 
𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = 0.435 
 
Answer: The attenuation at 5 MHz in 75 feet of Series 6 drop cable is 0.435 dB. 
 
Solution (55 MHz): 

𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = �
1.60
100

� ∗ 75 
 
𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = (0.0160) ∗ 75 
 
𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = 1.20 
 
Answer: The attenuation at 55 MHz in 75 feet of Series 6 drop cable is 1.20 dB. 
 
Solution (750 MHz): 

𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = �
5.65
100

� ∗ 75 
 
𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = (0.0565) ∗ 75 
 
𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = 4.2375 
 
Answer: The attenuation at 55 MHz in 75 feet of Series 6 drop cable is 4.2375 dB. 
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Example: 
What is the attenuation of the 50 ft length of Series 6 drop cable at 5 MHz, 55 MHz, and 750 MHz? Refer 
to Table 11 for the published attenuation specifications. 
 
Solution (5 MHz): 

𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = �
𝑑𝑑𝑑𝑑𝑚𝑚𝑐𝑐𝑓𝑓𝑐𝑐

100
� ∗ 𝑙𝑙𝑝𝑝𝑠𝑠𝑎𝑎𝑡𝑡ℎ𝑓𝑓𝑓𝑓 

 

𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = �
0.58
100

� ∗ 50 
 
𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = (0.0058) ∗ 50 
 
𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = 0.29 
 
Answer: The attenuation at 5 MHz in 50 feet of Series 6 drop cable is 0.29 dB. 
 
Solution (55 MHz): 

𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = �
1.60
100

� ∗ 50 
 
𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = (0.0160) ∗ 50 
 
𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = 0.80 
 
Answer: The attenuation at 55 MHz in 50 feet of Series 6 drop cable is 0.80 dB. 
 
Solution (750 MHz): 

𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = �
5.65
100

� ∗ 50 
 
𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = (0.0565) ∗ 50 
 
𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = 2.8250 
 
Answer: The attenuation at 55 MHz in 50 feet of Series 6 drop cable is 2.825 dB. 
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20.8.3. Calculate cable modem input signal level 

The following formula can be used to calculate the downstream RF input signal level to the cable modem 
at each frequency of interest: 
 
 

𝐶𝐶𝑅𝑅𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑚𝑚𝑝𝑝𝑜𝑜𝑜𝑜𝑓𝑓 − (𝐿𝐿1 + 𝐿𝐿2 + 𝐿𝐿3 + 𝐿𝐿4 + 𝐿𝐿5 + 𝐿𝐿6) 
 
where 
𝐶𝐶𝑅𝑅𝑖𝑖𝑖𝑖 is the cable modem’s downstream RF input signal level, in decibel millivolt (dBmV) 
𝑎𝑎𝑚𝑚𝑝𝑝𝑜𝑜𝑜𝑜𝑓𝑓  is the amplifier’s downstream RF output signal level at the specified frequency, in dBmV 
𝐿𝐿1 is the insertion loss (through loss) of the 23 dB tap 
𝐿𝐿2 is the attenuation in the span of hardline coaxial cable between the two taps, in decibels (dB) 
𝐿𝐿3 is the tap loss of the 20 dB tap 
𝐿𝐿4 is the attenuation in the subscriber drop cable between the tap and splitter, in dB 
𝐿𝐿5 is the insertion loss of the two-way splitter at the subscriber premises, in dB 
𝐿𝐿6 is the attenuation in the length of subscriber drop cable between the splitter and cable modem, 
in dB 
 
 
Example: 
What is the cable modem’s downstream RF input signal level at 55 MHz? From Figure 31, 𝑎𝑎𝑚𝑚𝑝𝑝𝑜𝑜𝑜𝑜𝑓𝑓 is 
+42 dBmV; from Table 12, 𝐿𝐿1 is 0.54 dB; from the previous calculations, 𝐿𝐿2 is 0.81 dB; 𝐿𝐿3 is 20 dB; 
from the previous calculations 𝐿𝐿4 is 1.20 dB; from Table 13 𝐿𝐿5 is 3.6 dB; and from the previous 
calculations, 𝐿𝐿6 is 0.80 dB. 
 
Solution: 
𝐶𝐶𝑅𝑅𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑚𝑚𝑝𝑝𝑜𝑜𝑜𝑜𝑓𝑓 − (𝐿𝐿1 + 𝐿𝐿2 + 𝐿𝐿3 + 𝐿𝐿4 + 𝐿𝐿5 + 𝐿𝐿6) 
 
𝐶𝐶𝑅𝑅𝑖𝑖𝑖𝑖 = 42 − (0.54 + 0.81 + 20 + 1.20 + 3.60 + 0.80) 
 
𝐶𝐶𝑅𝑅𝑖𝑖𝑖𝑖 = 42 − (26.95) 
 
𝐶𝐶𝑅𝑅𝑖𝑖𝑖𝑖 = 15.05 
 
Answer: The cable modem’s downstream RF input signal level at 55 MHz is +15.05 dBmV. 
 
Example: 
What is the cable modem’s downstream RF input signal level at 750 MHz? From Figure 31, 𝑎𝑎𝑚𝑚𝑝𝑝𝑜𝑜𝑜𝑜𝑓𝑓 is 
+50 dBmV; from Table 12, 𝐿𝐿1 is 2.16 dB; from the previous calculations, 𝐿𝐿2 is 3.24 dB; 𝐿𝐿3 is 20 dB; 
from the previous calculations 𝐿𝐿4 is 4.2375 dB; from Table 13 𝐿𝐿5 is 4.50 dB; and from the previous 
calculations, 𝐿𝐿6 is 2.825 dB. 
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Solution: 
𝐶𝐶𝑅𝑅𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑚𝑚𝑝𝑝𝑜𝑜𝑜𝑜𝑓𝑓 − (𝐿𝐿1 + 𝐿𝐿2 + 𝐿𝐿3 + 𝐿𝐿4 + 𝐿𝐿5 + 𝐿𝐿6) 
 
𝐶𝐶𝑅𝑅𝑖𝑖𝑖𝑖 = 50 − (2.16 + 3.24 + 20 + 4.2375 + 4.50 + 2.825) 
 
𝐶𝐶𝑅𝑅𝑖𝑖𝑖𝑖 = 50 − (36.9625) 
 
𝐶𝐶𝑅𝑅𝑖𝑖𝑖𝑖 = 13.04 
 
Answer: The cable modem’s downstream RF input signal level at 750 MHz is +13.04 dBmV. 
 

20.8.4. Calculate cable modem upstream transmit signal level 

The following formula can be used to calculate the cable modem’s upstream transmit level at the 
frequency of interest: 
 
 

𝐶𝐶𝑅𝑅𝑜𝑜𝑜𝑜𝑓𝑓 = 𝑎𝑎𝑚𝑚𝑝𝑝𝑖𝑖𝑖𝑖 + (𝐿𝐿1 + 𝐿𝐿2 + 𝐿𝐿3 + 𝐿𝐿4 + 𝐿𝐿5 + 𝐿𝐿6) 
 
where 
𝐶𝐶𝑅𝑅𝑜𝑜𝑜𝑜𝑓𝑓  is the cable modem’s upstream RF output signal level, in decibel millivolt (dBmV) 
𝑎𝑎𝑚𝑚𝑝𝑝𝑖𝑖𝑖𝑖 is the amplifier’s upstream RF input signal level at the specified frequency, in dBmV 
𝐿𝐿1 is the insertion loss (through loss) of the 23 dB tap 
𝐿𝐿2 is the attenuation in the span of hardline coaxial cable between the two taps, in decibels (dB) 
𝐿𝐿3 is the tap loss of the 20 dB tap 
𝐿𝐿4 is the attenuation in the subscriber drop cable between the tap and splitter, in dB 
𝐿𝐿5 is the insertion loss of the two-way splitter at the subscriber premises, in dB 
𝐿𝐿6 is the attenuation in the length of subscriber drop cable between the splitter and cable modem, 
in dB 
 
 
Example: 
What is the cable modem’s upstream RF output signal level at 5 MHz? From Figure 31, 𝑎𝑎𝑚𝑚𝑝𝑝𝑖𝑖𝑖𝑖 is +15 
dBmV; from Table 12, 𝐿𝐿1 is 0.16 dB; from the previous calculations, 𝐿𝐿2 is 0.24 dB; 𝐿𝐿3 is 20 dB; from the 
previous calculations 𝐿𝐿4 is 0.435 dB; from Table 13 𝐿𝐿5 is 3.6 dB; and from the previous calculations, 𝐿𝐿6 
is 0.29 dB. 
 
Solution: 
𝐶𝐶𝑅𝑅𝑜𝑜𝑜𝑜𝑓𝑓 = 𝑎𝑎𝑚𝑚𝑝𝑝𝑖𝑖𝑖𝑖 + (𝐿𝐿1 + 𝐿𝐿2 + 𝐿𝐿3 + 𝐿𝐿4 + 𝐿𝐿5 + 𝐿𝐿6) 
 
𝐶𝐶𝑅𝑅𝑜𝑜𝑜𝑜𝑓𝑓 = 15 + (0.16 + 0.24 + 20 + 0.435 + 3.6 + 0.29) 
 
𝐶𝐶𝑅𝑅𝑜𝑜𝑜𝑜𝑓𝑓 = 15 + (24.725) 
 
𝐶𝐶𝑅𝑅𝑜𝑜𝑜𝑜𝑓𝑓 = 39.725 
 
Answer: The cable modem’s upstream transmit signal level at 5 MHz is +39.73 dBmV. 
 



SCTE 270 2021r1   

SCTE OPERATIONAL PRACTICE  © SCTE 182 

21. Characterizing Impedance Mismatches: Reflection Coefficient, 
Reflection Loss, Standing Wave Ratio, and Return Loss 

The coaxial cable portion of our networks has long been designed and built to have a nominal impedance 
of 75 ohms. The word “nominal” is used to describe the impedance, because it is impossible for the 
impedance to be exactly 75 ohms, especially across a wide frequency range. Another way to look at this is 
to understand that all connectors, passive and active devices, and even the coaxial cable itself represent an 
impedance mismatch of some sort. 
 
When the impedance of a load equals the characteristic impedance of the transmission line connected to 
that load, an incident wave is completely absorbed by the load. In the real world, there are no perfectly 
reflectionless loads, which means impedance mismatches exist. Impedance mismatches cause reflections. 
Reflected waves interact with incident waves to produce a distribution of fields in the transmission line 
known as standing waves. 
 
The question is just how severe is each impedance mismatch? There are several ways to characterize 
impedance mismatches, among them reflection coefficient, reflection loss, standing wave ratio, and return 
loss. Formulas for each of the aforementioned parameters and examples of their use are included in this 
section. 
 

21.1. Reflection coefficient 

Reflection coefficient is the ratio of reflected voltage to incident voltage, and is commonly represented by 
the Greek letter gamma (Γ), and sometimes by the Greek letter rho (ρ). The magnitude of reflection 
coefficient, |Γ|, can have values from 0 (indicating a reflectionless load – that is, all of the incident energy 
is absorbed by the load) to 1 (indicating that all of the incident energy is reflected by the load). For the 
latter, the load would be an open, short, or pure reactance. Reflection coefficient for voltage is expressed 
mathematically as: 
 
 

Γ =
𝐸𝐸𝑚𝑚𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑑𝑑

𝐸𝐸𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑑𝑑𝑓𝑓𝑖𝑖𝑓𝑓
 

 
where 
Γ is reflection coefficient 
𝐸𝐸𝑚𝑚𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑑𝑑 is reflected voltage in units of volts 
𝐸𝐸𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑑𝑑𝑓𝑓𝑖𝑖𝑓𝑓 is incident voltage in the same units of volts as 𝐸𝐸𝑚𝑚𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑑𝑑 
 
 
Example: 
What is the reflection coefficient when the incident voltage is 1.2 volts and the reflected voltage is 0.7 
volt?  
 
Solution: 

Γ =
0.7
1.2

 

Γ = 0.58 
Answer: The reflection coefficient is 0.58. 
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21.1.1. Other formulas for reflection coefficient 

The following formulas can also be used to calculate reflection coefficient: 
 
 

Γ =
1

10(𝑅𝑅 20⁄ ) 

 
where 
Γ is reflection coefficient 
𝑅𝑅 is return loss in decibels 
 

Γ = 10(−𝑅𝑅 20⁄ ) 
 
where 
Γ is reflection coefficient 
𝑅𝑅 is return loss in decibels 
 

Γ = �
𝑃𝑃𝑚𝑚𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑑𝑑

𝑃𝑃𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑑𝑑𝑓𝑓𝑖𝑖𝑓𝑓
 

 
where 
Γ is reflection coefficient 
𝑃𝑃𝑚𝑚𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑑𝑑 in reflected power in units of watts 
𝑃𝑃𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑑𝑑𝑓𝑓𝑖𝑖𝑓𝑓 is incident power in the same units of watts as 𝑃𝑃𝑚𝑚𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑑𝑑  
 
 
Example 1: 
What is the reflection coefficient when the return loss is 14 dB? 
 
Solution 1: 

Γ =
1

10(𝑅𝑅 20⁄ ) 

 

Γ =
1

10(14 20⁄ ) 

 

Γ =
1

10(0.7) 

Γ =
1

5.0119
 

 
Γ = 0.1995 
 
Answer: The reflection coefficient is 0.1995. 
 



SCTE 270 2021r1   

SCTE OPERATIONAL PRACTICE  © SCTE 184 

Example 2: 
What is the reflection coefficient when the return loss is 14 dB? 
 
Solution 2: 
Γ = 10(−𝑅𝑅 20⁄ ) 
 
Γ = 10(−14 20⁄ ) 
 
Γ = 10(−0.7) 
 
Γ = 0.1995 
 
Answer: The reflection coefficient is 0.1995. 
 
Example 3: 
What is the reflection coefficient when the incident power is 5 watts and the reflected power is 0.19905 
watt? 
 
Solution 3: 

Γ = �
𝑃𝑃𝑚𝑚𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑑𝑑

𝑃𝑃𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑑𝑑𝑓𝑓𝑖𝑖𝑓𝑓
 

 

Γ = �0.19905
5

 

 
Γ = √0.0398 
 
Γ = 0.1995 
 
Answer: The reflection coefficient is 0.1995. 
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21.1.2. Calculate magnitude of complex reflection coefficient 

Reflection coefficients are complex quantities, which means they have magnitude and phase. Considering 
reflection coefficients as complex quantities, the reflection coefficient for voltage can be calculated using 
the following formulas: 
 
 

Γ𝐸𝐸 =
𝑍𝑍𝐸𝐸 − 𝑍𝑍0

𝑍𝑍𝐸𝐸 + 𝑍𝑍0
 

 
where 
Γ𝐸𝐸 is reflection coefficient for voltage 
𝑍𝑍0 is the characteristic impedance of the transmission line 
𝑍𝑍𝐸𝐸 is the load impedance 
 
Note: The above formula is equal to 
 

Γ =
(𝑅𝑅𝐸𝐸 ± 𝑗𝑗𝑋𝑋𝐸𝐸) − (𝑅𝑅0 ± 𝑗𝑗𝑋𝑋0)
(𝑅𝑅𝐸𝐸 ± 𝑗𝑗𝑋𝑋𝐸𝐸) + (𝑅𝑅0 ± 𝑗𝑗𝑋𝑋0) 

 
where 
Γ is reflection coefficient 
𝑗𝑗 represents the imaginary unit, satisfying the equation 𝑗𝑗2 = −1 
𝑅𝑅𝐸𝐸 is the load resistance 
𝑋𝑋𝐸𝐸 is the load reactance 
𝑅𝑅0 is the real part of the transmission line characteristic impedance 
𝑋𝑋0 is the reactive part of the transmission line characteristic impedance 
 
From [15], “For high-quality, low-loss transmission lines at low frequencies, the characteristic impedance 
Z0 is almost completely resistive, meaning that 𝑍𝑍0 ≅ 𝑅𝑅0 and 𝑋𝑋0 ≅ 0. The magnitude of the complex 
reflection coefficient … then simplifies to:” 
 

|Γ| = �
(𝑅𝑅𝐸𝐸 − 𝑅𝑅0)2 + 𝑋𝑋𝐸𝐸

2

(𝑅𝑅𝐸𝐸 + 𝑅𝑅0)2 + 𝑋𝑋𝐸𝐸
2 

 
where 
|Γ| is the magnitude of the complex reflection coefficient 
𝑅𝑅𝐸𝐸 is the load resistance 
𝑅𝑅0 is the real part of the transmission line characteristic impedance 
𝑋𝑋𝐸𝐸 is the load reactance 
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Example: 
What is the magnitude of the reflection coefficient when the characteristic impedance of a transmission 
line is Z0 = 75 ohms and the load impedance is ZL = 125 – j80 ohms (that is, 125 ohms in series with a 
capacitive reactance of –80 ohms)? 
 
Solution: 

|Γ| = �
(𝑅𝑅𝐸𝐸 − 𝑅𝑅0)2 + 𝑋𝑋𝐸𝐸

2

(𝑅𝑅𝐸𝐸 + 𝑅𝑅0)2 + 𝑋𝑋𝐸𝐸
2 

 

|Γ| = �
(75 − 125)2 + (−80)2

(75 + 125)2 + (−80)2 

 

|Γ| = �
(−50)2 + (−80)2

(200)2 + (−80)2  

 

|Γ| = � 2500 + 6400
40000 + 6400

 

 

|Γ| = � 8900
46400

 

 
|Γ| = √0.1918 
 
|Γ| = 0.438 
 
Answer: The magnitude of the reflection coefficient is 0.438. 
 

21.1.3. Convert SWR to magnitude of reflection coefficient 

A common way to describe the magnitude of the reflection is standing wave ratio (discussed later). The 
SWR is related to the magnitude |Γ| of the reflection coefficient with the following formula: 
 
 

|Γ| =
(𝑅𝑅𝑚𝑚𝑅𝑅 − 1)
(𝑅𝑅𝑚𝑚𝑅𝑅 + 1) 

 
where 
|Γ| is the magnitude of the reflection coefficient 
𝑅𝑅𝑚𝑚𝑅𝑅 is standing wave ratio 
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Example: 
What is the magnitude of the reflection coefficient when the standing wave ratio is 1.5? 

Solution: 

|Γ| =
(𝑅𝑅𝑚𝑚𝑅𝑅 − 1)
(𝑅𝑅𝑚𝑚𝑅𝑅 + 1) 

 

|Γ| =
(1.5 − 1)
(1.5 + 1) 

 

|Γ| =
(0.5)
(2.5) 

 
|Γ| = 0.20 
 
Answer: The magnitude of the reflection coefficient is 0.20. 
 

21.2. Reflection loss 

Reflection loss (sometimes called transmission loss) is the loss, as the result of a reflection, in the power 
absorbed by a load. Expressed mathematically: 
 
 

𝐿𝐿𝑚𝑚𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑐𝑐𝑓𝑓𝑖𝑖𝑜𝑜𝑖𝑖 = 10𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝑃𝑃𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑑𝑑𝑓𝑓𝑖𝑖𝑓𝑓

𝑃𝑃𝑐𝑐𝑐𝑐𝑚𝑚𝑜𝑜𝑚𝑚𝑐𝑐𝑓𝑓𝑑𝑑
� 

 
where 
𝐿𝐿𝑚𝑚𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑐𝑐𝑓𝑓𝑖𝑖𝑜𝑜𝑖𝑖 is reflection loss in decibels 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑃𝑃𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑑𝑑𝑓𝑓𝑖𝑖𝑓𝑓 is incident power in watts 
𝑃𝑃𝑐𝑐𝑐𝑐𝑚𝑚𝑜𝑜𝑚𝑚𝑐𝑐𝑓𝑓𝑑𝑑 is power in watts absorbed by the load or termination 
 
Another formula for reflection loss is  
 

𝐿𝐿𝑚𝑚𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑐𝑐𝑓𝑓𝑖𝑖𝑜𝑜𝑖𝑖 = 10𝑙𝑙𝐿𝐿𝑎𝑎10 �
1

1 − |Γ|2� 

 
where 
𝐿𝐿𝑚𝑚𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑐𝑐𝑓𝑓𝑖𝑖𝑜𝑜𝑖𝑖 is reflection loss in decibels 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
|Γ| is the magnitude of the reflection coefficient 
 
Note: If a load absorbs 100% of the incident power, there is no reflection loss. 
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Example 1: 
What is the reflection loss when the incident power is 0.01333 watt (13.33 mW) and the power absorbed 
by the load is 0.0100 watt (10 mW)? 
 
Solution 1: 

𝐿𝐿𝑚𝑚𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑐𝑐𝑓𝑓𝑖𝑖𝑜𝑜𝑖𝑖 = 10𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝑃𝑃𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑑𝑑𝑓𝑓𝑖𝑖𝑓𝑓

𝑃𝑃𝑐𝑐𝑐𝑐𝑚𝑚𝑜𝑜𝑚𝑚𝑐𝑐𝑓𝑓𝑑𝑑
� 

 

𝐿𝐿𝑚𝑚𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑐𝑐𝑓𝑓𝑖𝑖𝑜𝑜𝑖𝑖 = 10𝑙𝑙𝐿𝐿𝑎𝑎10 �
0.0133 𝑤𝑤𝑎𝑎𝑡𝑡𝑡𝑡
0.0100 𝑤𝑤𝑎𝑎𝑡𝑡𝑡𝑡

� 
 
𝐿𝐿𝑚𝑚𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑐𝑐𝑓𝑓𝑖𝑖𝑜𝑜𝑖𝑖 = 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(13.3300) 
 
𝐿𝐿𝑚𝑚𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑐𝑐𝑓𝑓𝑖𝑖𝑜𝑜𝑖𝑖 = 10 ∗ (0.1239) 
 
𝐿𝐿𝑚𝑚𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑐𝑐𝑓𝑓𝑖𝑖𝑜𝑜𝑖𝑖 = 1.24 
 
Answer: The reflection loss is 1.24 dB. 
 
Example 2: 
What is the reflection loss when the reflection coefficient Γ = 0.8? 
 
Solution 2: 

𝐿𝐿𝑚𝑚𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑐𝑐𝑓𝑓𝑖𝑖𝑜𝑜𝑖𝑖 = 10𝑙𝑙𝐿𝐿𝑎𝑎10 �
1

1 − |Γ|2� 

 

𝐿𝐿𝑚𝑚𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑐𝑐𝑓𝑓𝑖𝑖𝑜𝑜𝑖𝑖 = 10𝑙𝑙𝐿𝐿𝑎𝑎10 �
1

1 − |0.8|2� 

 

𝐿𝐿𝑚𝑚𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑐𝑐𝑓𝑓𝑖𝑖𝑜𝑜𝑖𝑖 = 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 �
1

1 − 0.82� 
 

𝐿𝐿𝑚𝑚𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑐𝑐𝑓𝑓𝑖𝑖𝑜𝑜𝑖𝑖 = 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 �
1

1 − 0.64
� 

 

𝐿𝐿𝑚𝑚𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑐𝑐𝑓𝑓𝑖𝑖𝑜𝑜𝑖𝑖 = 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 �
1

0.36
� 

 
𝐿𝐿𝑚𝑚𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑐𝑐𝑓𝑓𝑖𝑖𝑜𝑜𝑖𝑖 = 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(2.78) 
 
𝐿𝐿𝑚𝑚𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑐𝑐𝑓𝑓𝑖𝑖𝑜𝑜𝑖𝑖 = 10 ∗ (0.4437) 
 
𝐿𝐿𝑚𝑚𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑐𝑐𝑓𝑓𝑖𝑖𝑜𝑜𝑖𝑖 = 4.437 
 
Answer: The reflection loss is 4.44 dB. 
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21.3. Standing wave ratio 

When the load impedance does not equal the characteristic impedance of a transmission line, a reflection 
occurs. As mentioned previously, reflected waves interact with incident waves to produce a distribution of 
fields in the transmission line known as standing waves. Another consequence of an impedance mismatch 
is variation of the signal amplitude as a function of frequency, aka amplitude ripple.42 The standing wave 
ratio (SWR) is the ratio of maximum voltage to minimum voltage,43 and depends on the magnitude of the 
reflection coefficient. Figure 32 illustrates a standing wave in a transmission line. Note that the distance 
between adjacent minima or adjacent maxima is a half wavelength.  
 

 
Figure 32. Standing wave of voltage (green trace) along a transmission line in which the 

load resistance R is less than the transmission line’s characteristic impedance Z0 
(adapted from [15]). 

 
Standing wave ratio can be calculated using the following formulas: 
 
 

SWR =
𝐸𝐸𝑘𝑘𝑐𝑐𝑐𝑐

𝐸𝐸𝑘𝑘𝑖𝑖𝑖𝑖
 

 
where 
𝑅𝑅𝑚𝑚𝑅𝑅 is standing wave ratio 
𝐸𝐸𝑘𝑘𝑐𝑐𝑐𝑐 in the maximum voltage in the standing wave 
𝐸𝐸𝑘𝑘𝑖𝑖𝑖𝑖 is the minimum voltage in the standing wave 
 

𝑅𝑅𝑚𝑚𝑅𝑅 =
(1 + |Γ|)
(1 − |Γ|)

 

where 
𝑅𝑅𝑚𝑚𝑅𝑅 is standing wave ratio 
|Γ| is the magnitude of the reflection coefficient 
 
 

 
42 Amplitude ripple in the frequency response as seen on a broadband sweep receiver display is commonly (but 
incorrectly) called a standing wave; amplitude ripple is technically the correct terminology to describe that 
frequency response variation. 
43 An impedance mismatch also results in a current standing wave. Indeed, either voltage or current can be used to 
determine the standing wave ratio, since SWR = Emax/Emin = Imax/Imin. For more on this, see [15] and [18]. 

R<Z0

0° 90° 180° 270° 360° 

EmaxEmax

EminEmin Emin

Transmission line
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Example 1: 
What is the standing wave ratio when the maximum and minimum voltages in the standing wave are 
0.8000 volt and 0.5339 volt respectively? 
 
Solution 1: 

SWR =
𝐸𝐸𝑘𝑘𝑐𝑐𝑐𝑐

𝐸𝐸𝑘𝑘𝑖𝑖𝑖𝑖
 

 

SWR =
0.8000
0.5339

 
 
SWR = 1.4984 
 
Answer: The SWR is about 1.5 (sometimes written as 1.5:1). 
 
Example 2: 
What is the standing wave ratio when the magnitude of the reflection coefficient is 0.1995? 
 
Solution 2: 

𝑅𝑅𝑚𝑚𝑅𝑅 =
(1 + |Γ|)
(1 − |Γ|)

 

 

𝑅𝑅𝑚𝑚𝑅𝑅 =
(1 + |0.1995|)
(1 − |0.1995|)

 

 

𝑅𝑅𝑚𝑚𝑅𝑅 =
(1.1995)
(0.8005) 

 
𝑅𝑅𝑚𝑚𝑅𝑅 = 1.4984 
 
Answer: The SWR is about 1.5 (sometimes written as 1.5:1). 
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21.3.1. Calculate SWR for purely resistive load  

When the load contains no reactance and the characteristic impedance of the transmission line is assumed 
to be essentially resistive, SWR can be calculated as follows: 
 
 
When R > Z0: 
 

SWR =
𝑅𝑅
𝑍𝑍0

 

 
When R < Z0: 
 

SWR =
𝑍𝑍0

𝑅𝑅
 

 
where 
SWR is standing wave ratio 
𝑅𝑅 is the load resistance 
𝑍𝑍0 is the transmission line characteristic impedance 
 
 
Example 1: 
What is the standing wave ratio when a 75 ohms impedance transmission line is connected to a resistive 
load of 100 ohms? 
 
Solution 1: 
Since R > Z0, use the formula 

SWR =
𝑅𝑅
𝑍𝑍0

 

 

SWR =
100
75

 
 
SWR = 1.3333 
 
Answer: The standing wave ratio is 1.33 (sometimes written as 1.33:1). 
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Example 2: 
What is the standing wave ratio when a 75 ohms impedance transmission line is connected to a resistive 
load of 50 ohms? 
 
Solution 2: 
Since R < Z0, use the formula 
 

SWR =
𝑍𝑍0

𝑅𝑅
 

 

SWR =
75
50

 
 
SWR = 1.50 
 
Answer: The standing wave ratio is 1.50 (sometimes written as 1.50:1). 
 

21.3.2. Distance to impedance mismatch or length of echo tunnel 

When amplitude ripple is present on a broadband sweep receiver display or other test equipment, a 
technician can calculate the distance to an impedance mismatch, or more commonly, the length of an echo 
tunnel44 that produces the amplitude ripple, using the following formula: 
 
 

D = 492 ∗ �
𝑉𝑉𝑁𝑁

𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀
� 

 
where 
𝑀𝑀 is distance in feet 
𝑉𝑉𝑁𝑁 is the coaxial cable’s velocity factor 
𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀 is the frequency separation in megahertz between the amplitude ripple’s adjacent peaks or adjacent 
valleys 
 
 
Example: 
What is the length of an echo tunnel that produces the amplitude ripple shown in Figure 33, where the 
frequency separation between adjacent peaks is 45 MHz? Assume the coaxial cable has a velocity factor 
of 0.87. 
 

 
44 An echo tunnel (sometimes called an echo cavity) is the span of coaxial cable between two impedance mismatches 
that result in amplitude ripple in the frequency response. One end of the echo tunnel might be an amplifier or 
similar, and the other end a damaged device such as a corroded tap. 
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Figure 33 - Full band capture spectrum display showing amplitude ripple, with a 

frequency separation of 45 MHz between adjacent peaks or adjacent valleys (courtesy of 
Akleza). 

 
Solution: 

D = 492 ∗ �
𝑉𝑉𝑁𝑁

𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀
� 

 

D = 492 ∗ �
0.87
45

� 
 
D = 492 ∗ (0.0193) 
 
D = 9.512 
 
Answer: The length of the echo tunnel is 9.5 feet. 
 

21.3.2.1. Calculate length of echo tunnel from upstream adaptive pre-
equalization graph 

Many cable operators use proactive network maintenance (PNM) tools to remotely identify and locate 
outside plant and subscriber drop problems. One of the earliest PNM features was the ability to derive an 
upstream adaptive pre-equalizer graph, along with a plot of in-channel frequency response (ICFR),45 from 
the adaptive pre-equalization coefficients. 
 
Figure 34 shows an example of an adaptive pre-equalizer graph for an upstream 6.4 MHz-wide single 
carrier quadrature amplitude modulation (SC-QAM) channel. The vertical axis is relative amplitude in 
decibels, and the horizontal axis shows the pre-equalizer tap numbers. The horizontal axis can be 
converted to units of time if the tap spacing is known. 
 

 
45 Unless indicated otherwise, the ICFR provided by many PNM tools is actually the frequency response of the 
adaptive pre-equalizer, which is the inverse of the upstream channel’s frequency response. 
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The tap spacing of a DOCSIS 2.0 and later cable modem’s 24 upstream pre-equalizer taps is symbol-
spaced, (also referred to as T-spaced), which means the time delay per tap is equal to the symbol period 
(T). The symbol period is the reciprocal of the symbol rate – that is, 1/T. See Table 19 for a list of 
upstream channel bandwidths and symbol rates (aka modulation rates) for commonly used DOCSIS 
upstream SC-QAM channels. 
 
Referring to Figure 34, the graph shows the 24 taps (represented by the vertical red bars) used in DOCSIS 
2.0 and 3.0 upstream pre-equalization. The main tap in this example is tap #8. The elevated post-main tap 
(tap #13) to the right of the main tap indicates the presence of a micro-reflection. Since the fifth tap to the 
right of the main tap is elevated relative to the other post-main taps, this example could also indicate what 
is called a 5T echo. 
 

 
Figure 34 - Adaptive pre-equalizer graph for a 6.4 MHz-wide upstream SC-QAM channel, 

derived from pre-equalization coefficients. This example shows what is commonly called 
a 5T echo. 

The following formula can be used to calculate the approximate length of the echo tunnel (or echo cavity) 
using the adaptive pre-equalizer graph.46 
 
 

𝑀𝑀𝑓𝑓𝑓𝑓 ≅ �
𝑇𝑇𝑖𝑖𝑚𝑚

2
∗ 𝑉𝑉𝑁𝑁� ∗ 𝑡𝑡𝑎𝑎𝑝𝑝# 

 
where 
𝑀𝑀𝑓𝑓𝑓𝑓 is the approximate length of the echo tunnel (or echo cavity) in feet 
𝑇𝑇𝑖𝑖𝑚𝑚 is the symbol period in nanoseconds 
𝑉𝑉𝑁𝑁 is the coaxial cable’s velocity factor 
𝑡𝑡𝑎𝑎𝑝𝑝# is number of the post-main tap that is elevated, relative to the main tap 
 

 
46 In the formula, the symbol period 𝑇𝑇𝑖𝑖𝑚𝑚 is divided by 2 to account for the echo’s round-trip within the echo tunnel. 
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Example: 
Referring to Figure 34, what is the approximate length of the echo tunnel, assuming a 6.4 MHz-wide 
upstream SC-QAM signal (5.12 Msym/s symbol rate), 0.87 for the cable’s velocity factor, and an elevated 
fifth post-main tap? 
 
Solution: 
Since the symbol rate is 5.12 Msym/s, the symbol period is 𝑇𝑇 = 1 5,120,000⁄ = 1.953125 ∗ 10−7 
second, or 195.3125 nanoseconds. 
 

𝑀𝑀𝑓𝑓𝑓𝑓 ≅ �
𝑇𝑇𝑖𝑖𝑚𝑚

2
∗ 𝑉𝑉𝑁𝑁� ∗ 𝑡𝑡𝑎𝑎𝑝𝑝# 

 

𝑀𝑀𝑓𝑓𝑓𝑓 ≅ �
195.3125

2
∗ 0.87� ∗ 5 

 
𝑀𝑀𝑓𝑓𝑓𝑓 ≅ (97.6563 ∗ 0.87) ∗ 5 

𝑀𝑀𝑓𝑓𝑓𝑓 ≅ (84.9609) ∗ 5 
 
𝑀𝑀𝑓𝑓𝑓𝑓 ≅ 424.8 
 
Answer: The approximate length of the echo tunnel is 425 feet. 
 
Figure 35 shows the ICFR derived from the same pre-equalization coefficients as the graph in Figure 34. 
The spacing, in megahertz, between adjacent peaks or adjacent valleys is about 1 MHz. 
 

 
Figure 35 - In-channel frequency response plot for a 6.4 MHz-wide upstream SC-QAM 

channel, derived from pre-equalization coefficients. This example shows what is 
commonly called a 5T echo, easily determined here by counting the number of ripples. 

 
Using the formula from Section 21.3.2, the approximate length of the echo tunnel can be calculated: 
 

D = 492 ∗ �
0.87

1
� 

 
D = 492 ∗ (0.87) 
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D = 428 
 
Answer: The calculated length of the echo tunnel is 428 feet, which is close to the 424.8 feet calculated in 
the earlier example. 
 
Note: It is important to understand that the method described in this section provides an approximation of 
the echo tunnel length, largely because of the limited horizontal axis resolution of the adaptive pre-
equalizer graph. Another factor is that the micro-reflection rarely has a time delay corresponding exactly 
with the adaptive pre-equalizer tap spacing in nanoseconds. This is illustrated in Figure 36, which shows a 
3T echo (each of the adaptive pre-equalizer graph’s taps, or vertical bars, corresponds to about 85 feet for 
a symbol rate of 5.12 Msym/s, and about 170 feet per post-main tap for a symbol rate of 2.56 Msym/s. 
The 3T echo is roughly equivalent to an echo tunnel length of 3 ∗ 85 ft = 255 ft). In this case, tap #11 (the 
third post-main tap) is elevated more than the other post-main taps, but tap #10 (the second post-main tap) 
is also elevated, although not as much as tap #11. A mathematical method called parabolic interpolation 
can be used to further refine the resolution in a scenario like this, and that capability is included in some 
PNM tools. 
 

 
Figure 36 - Adaptive pre-equalizer graph for a 6.4 MHz-wide upstream SC-QAM channel, 

derived from pre-equalization coefficients. This example shows a 3T echo. 
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21.4. Return loss 

Return loss (which is not the same thing as attenuation in the return or upstream spectrum of a cable 
network) is the ratio, in decibels, of the power incident upon an impedance discontinuity to the power 
reflected from the impedance discontinuity. Note: When Preflected < Pincident return loss is a positive number. 
Expressed mathematically: 
 
 

𝑅𝑅 = 10𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝑃𝑃𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑑𝑑𝑓𝑓𝑖𝑖𝑓𝑓

𝑃𝑃𝑚𝑚𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑑𝑑
� 

 
where 
𝑅𝑅 is return loss in decibels 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑃𝑃𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑑𝑑𝑓𝑓𝑖𝑖𝑓𝑓 is incident power in watts 
𝑃𝑃𝑚𝑚𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑑𝑑 is reflected power in watts 
 

Example: 
What is the return loss of a device under test when incident power is 0.01333 watt (13.33 mW) and 
reflected power is 0.00042 watt (0.42 mW)?  

Solution: 

𝑅𝑅 = 10𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝑃𝑃𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑑𝑑𝑓𝑓𝑖𝑖𝑓𝑓

𝑃𝑃𝑚𝑚𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑑𝑑
� 

 

𝑅𝑅 = 10𝑙𝑙𝐿𝐿𝑎𝑎10 �
0.01333 𝑤𝑤𝑎𝑎𝑡𝑡𝑡𝑡
0.00042 𝑤𝑤𝑎𝑎𝑡𝑡𝑡𝑡

� 
 

𝑅𝑅 = 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 �
0.01333
0.00042

� 
 
𝑅𝑅 = 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(31.7381) 
 
𝑅𝑅 = 10 ∗ (1.5016) 
 
𝑅𝑅 = 15.02 
 
Answer: The return loss is 15.02 dB. 
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Return loss can also be calculated with the following two formulas: 
 
 

𝑅𝑅 = 20𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝐸𝐸𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑑𝑑𝑓𝑓𝑖𝑖𝑓𝑓

𝐸𝐸𝑚𝑚𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑑𝑑
� 

where 
𝑅𝑅 is return loss in decibels 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝐸𝐸𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑑𝑑𝑓𝑓𝑖𝑖𝑓𝑓 is incident voltage in volts 
𝐸𝐸𝑚𝑚𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑑𝑑 is reflected voltage in volts 
 

𝑅𝑅 = 𝑃𝑃𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑑𝑑𝑓𝑓𝑖𝑖𝑓𝑓 − 𝑃𝑃𝑚𝑚𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑑𝑑  
where 
𝑅𝑅 is return loss in decibels 
𝑃𝑃𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑑𝑑𝑓𝑓𝑖𝑖𝑓𝑓 is incident power in dBmV 
𝑃𝑃𝑚𝑚𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑑𝑑 is reflected power in dBmV 
 
 
Example: 
What is the return loss of a device under test when the incident power is +30 dBmV and the reflected 
power is +12 dBmV? 
 
Solution: 
𝑅𝑅 = 𝑃𝑃𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑑𝑑𝑓𝑓𝑖𝑖𝑓𝑓 − 𝑃𝑃𝑚𝑚𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑑𝑑 
 
𝑅𝑅 = 30 𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 − 12 𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 

𝑅𝑅 = 30 − 12 
 
𝑅𝑅 = 18 
 
Answer: The return loss is 18 dB. 
 

21.4.1. Convert reflection coefficient to return loss 

Reflection coefficient can be converted to return loss in decibels using the following formula: 
 
 

𝑅𝑅 = 20𝑙𝑙𝐿𝐿𝑎𝑎10 �
1

|Γ|
� 

 
where 
𝑅𝑅 is return loss in decibels 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
|Γ| is the magnitude of the reflection coefficient 
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Example: 
What is the return loss when the reflection coefficient is 0.2?  

Solution: 

𝑅𝑅 = 20𝑙𝑙𝐿𝐿𝑎𝑎10 �
1

|Γ|
� 

 

𝑅𝑅 = 20𝑙𝑙𝐿𝐿𝑎𝑎10 �
1

|0.2|
� 

 

𝑅𝑅 = 20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 �
1

0.2
� 

 
𝑅𝑅 = 20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(5.0) 
 
𝑅𝑅 = 20 ∗ (0.6990) 
 
𝑅𝑅 = 13.98 
 
Answer: The return loss is 13.98 dB. 
  



SCTE 270 2021r1   

SCTE OPERATIONAL PRACTICE  © SCTE 200 

21.4.2. Convert standing wave ratio to return loss 

Standing wave ratio can be converted to return loss in decibels using the following formula: 
 
 

𝑅𝑅 = −20𝑙𝑙𝐿𝐿𝑎𝑎10 �
(𝑅𝑅𝑚𝑚𝑅𝑅 − 1)
(𝑅𝑅𝑚𝑚𝑅𝑅 + 1)� 

 
where 
𝑅𝑅 is return loss in decibels 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑅𝑅𝑚𝑚𝑅𝑅 is standing wave ratio 
 
Note the minus sign in front of the “20” in the above formula. If the minus sign is not included, the 
answer will be a negative number, which is incorrect for return loss when Preflected < Pincident. That said, 
some references wrongly state return loss in negative numbers. What’s going on? The confusion generally 
arises because the decibel representation of reflection coefficient is a negative number, but return loss is a 
positive number (as long as Preflected < Pincident). 
 
Another source of confusion comes from measurements made on network analyzers. Most vector network 
analyzers incorporate S-parameter test sets and display 20𝑙𝑙𝐿𝐿𝑎𝑎10(|𝑅𝑅11|) and 20𝑙𝑙𝐿𝐿𝑎𝑎10(|𝑅𝑅22|) rather than 
return loss (see Section 22 for an explanation of S parameters). Scalar network analyzers use RF bridges 
and display the magnitude of reflected power in dB with respect to incident power in dB rather than the 
other way around as in the definition of return loss in Section 21.4. 
 
 
Example: 
What is the return loss for a standing wave ratio of 3 (also written as 3:1)?  

Solution: 

𝑅𝑅 = −20𝑙𝑙𝐿𝐿𝑎𝑎10 �
(𝑅𝑅𝑚𝑚𝑅𝑅 − 1)
(𝑅𝑅𝑚𝑚𝑅𝑅 + 1)� 

 

𝑅𝑅 = −20𝑙𝑙𝐿𝐿𝑎𝑎10 �
(3 − 1)
(3 + 1)� 

 

𝑅𝑅 = −20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 �
(2)
(4)� 

 
𝑅𝑅 = −20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[0.50] 
 
𝑅𝑅 = −20 ∗ [−0.301] 
 
𝑅𝑅 = 6.02 
 
Answer: The return loss is 6.02 dB. 
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21.4.3. Calculate cascaded return loss 

The return loss in decibels of a cascade of two components or devices (“SYSTEM 1” and “SYSTEM 2”), can 
be calculated using the following formula (see Appendix D for the derivation of the formula): 
 
 

𝑅𝑅𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑑𝑑𝑓𝑓 = −10𝑙𝑙𝐿𝐿𝑎𝑎10�Γ1
2 + �Γ2

2 ∗ 𝐿𝐿1
2�� 

 
 
where 
𝑅𝑅𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑑𝑑𝑓𝑓 is the cascaded return loss in decibels of SYSTEM 1 and SYSTEM 2 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
Γ1 is the reflection coefficient 
Γ2 is the reflection coefficient 
𝐿𝐿1 is the insertion loss of SYSTEM 1 in decibels (L1 = 10−IL1/10) 
 
 
Example: 
Assume two taps (“SYSTEM 1” and “SYSTEM 2”) installed in the feeder back-to-back with a housing-to-
housing connector each have a return loss of 18 dB, and the insertion loss IL1 of the first tap (“SYSTEM 1”) 
is 0.5 dB. What is the cascaded return loss? 

Solution: 
First convert each tap’s 18 dB return loss to reflection coefficient: 
 
Γ = 10(−𝑅𝑅 20⁄ ) 
 
Γ = 10(−18 20⁄ ) 
 
Γ = 10(−0.90) 
 
Γ = 0.12589 
 
Then calculated the cascaded return loss (be sure to substitute 10−0.5/10 for 𝐿𝐿1): 
 
𝑅𝑅𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑑𝑑𝑓𝑓 = −10𝑙𝑙𝐿𝐿𝑎𝑎10�Γ1

2 + �Γ2
2 ∗ 𝐿𝐿1

2�� 
 
𝑅𝑅𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑑𝑑𝑓𝑓 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 �0.125892 + �0.125892 ∗ �10−0.5 10⁄ �

2
�� 

 
𝑅𝑅𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑑𝑑𝑓𝑓 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[0.125892 + (0.125892 ∗ (10−0.05)2)] 
 
𝑅𝑅𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑑𝑑𝑓𝑓 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[0.01585 + (0.01585 ∗ (0.89125)2)] 
 
𝑅𝑅𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑑𝑑𝑓𝑓 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[0.01585 + (0.01585 ∗ 0.79433)] 
 
𝑅𝑅𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑑𝑑𝑓𝑓 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[0.01585 + (0.01259)] 
 
𝑅𝑅𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑑𝑑𝑓𝑓 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[0.02844] 
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𝑅𝑅𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑑𝑑𝑓𝑓 = −10 ∗ [−1.54610] 
 
𝑅𝑅𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑑𝑑𝑓𝑓 = 15.46 
 
Answer: The cascaded return loss is 15.46 dB. 
 

21.5. Comparison of reflection coefficient, reflection loss, SWR, and return 
loss 

Values in the following table are derived using the formulas in this section. 

Table 14. Reflection coefficient, reflection loss, standing wave ratio, and return loss 
Magnitude 

of 
reflection 
coefficient 

|Γ| 

Reflection 
loss (dB) 

SWR Return 
loss (dB) 

1.0 ∞ ∞ 0 
0.9 7.21 19.00 0.92 
0.8 4.44 9.00 1.94 
0.7 2.92 5.67 3.10 
0.6 1.94 4.00 4.44 
0.5 1.25 3.00 6.02 
0.4 0.76 2.33 7.96 
0.3 0.41 1.86 10.46 
0.2 0.18 1.50 13.98 
0.1 0.04 2.20 20.00 
0 0 1.0 ∞ 
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22. Scattering Parameters 
Material in this section is excerpted and/or adapted from [16]. Used with the author’s permission. 
 
Consider a component or device being evaluated as a “network” with some number of ports N, and a 
characteristic impedance Z0. For instance, a terminator can be considered a one-port network and an in-
line attenuator or a line extender amplifier can be considered two-port network. Among the various 
metrics that can be used to characterize N-port networks are scattering parameters, also called S-
parameters. 
 
S-parameters “…describe the electrical behavior of linear electrical networks when undergoing various 
steady state stimuli by electrical signals.”47 S-parameters are a simplified representation of a black box 
network, and are complex numbers – that is, S-parameters have a magnitude and phase component. S-
parameters are expressed in the format Smn where “m” is the output port number during the measurement 
and “n” is the input port number during the measurement. For a two-port network, either port can be an 
input or output port, depending on the measurement; so, in most cases it’s better to refer to port numbers. 
The “n” subscript also represents the port to which the incident (test) signal is applied. Figure 37 provides 
a high-level graphical representation of S-parameters in a two-port network.  
 

Incident

IncidentTransmitted

Transmitted

Reflected
Reflected

S21

S12

S11

S22

Two-port 
networkPo

rt
 1

Port 2

 
Figure 37 - High-level representation of S-parameters in a two-port network. 

22.1. One- and two-port S-parameters 

The following table summarizes S-parameters for a one- or two-port network. For a one-port network, 
only S11 is applicable. For a two-port network, S11, S12, S21, and S22 are applicable. Note: S11 and S22 are 
sometimes confused with return loss, but they are not the same thing. Return loss can, however, be 
derived from S11 and S22, as discussed later in this section.  

Table 15 - Summary of S-parameters for one- and two-port networks. 
One- and Two-Port S-Parameters 

S11 Port 1 voltage reflection coefficient, EReflected/EIncident 
S12 Reverse voltage gain or reverse transmission coefficient, 

ETransmitted/EIncident 
S21 Forward voltage gain or forward transmission coefficient, 

ETransmitted/EIncident 
S22 Port 2 voltage reflection coefficient, EReflected/EIncident 

 
For S11 and S22, the voltage reflection coefficient is the ratio of reflected voltage EReflected to the incident 
voltage EIncident. For S12 and S21, the transmission coefficient is the ratio of transmitted voltage ETransmitted to 
incident voltage EIncident. 

 
47 From Wikipedia (https://en.wikipedia.org/wiki/Scattering_parameters) 

https://en.wikipedia.org/wiki/Scattering_parameters
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An important point: S-parameters are frequency dependent – that is, the ratio that describes, say, S21, is 
valid only for a given frequency. As well, S-parameters are referenced at the measurement or interface 
plane of a network; examples of that plane are Port 1 and Port 2 of a two-port network. 
 
Figure 38 shows the relationships of EIncident, EReflected, and ETransmitted when measuring from Port 1 to Port 2. 
Here, ETransmitted/EIncident = S21 and EReflected/EIncident = S11. Note: Port 2 would normally be terminated in the 
characteristic impedance of the network under test when measuring S11. 
 
 

 
Figure 38 - Relationships of EIncident, ETransmitted, and EReflected when measuring from Port 1 to 

Port 2. 

Going the other direction, from Port 2 to Port 1, ETransmitted/EIncident = S12 and EReflected/EIncident = S22. See 
Figure 39. Note: Port 1 would normally be terminated in the characteristic impedance of the network 
under test when measuring S22. 
 

 
Figure 39 - Relationships of EIncident, ETransmitted, and EReflected when measuring from Port 2 to 

Port 1. 
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Example 1: 
Assume a voltage Eincident of 0.8 volt at a specific test frequency is applied to Port 1 of a one-port network, 
and a voltage Ereflected of 0.1 volt is reflected by that port. Which S-parameter is applicable, and what is its 
value? 
 
Solution 1: 
Referring to Figure 38 or Table 15, the S-parameter in this example is the Port 1 voltage reflection 
coefficient Ereflected/Eincident = S11. 
 
S11 = 0.1 volt/0.8 volt 
 
S11 = 0.125 
 
Answer: The applicable S-parameter is S11 and the value is 0.125. 
 
Example 2: 
Assume a voltage Eincident of 0.2 volt at a specific test frequency is applied to Port 1 of a two-port network 
(an amplifier in this example) and a voltage Etransmitted of 1.2 volt is measured at Port 2. Which S-parameter 
is applicable, and what is its value? 
 
Solution 2: 
Referring to Figure 38 or Table 15, the S-parameter in this example is the forward transmission 
coefficient ETransmitted/EIncident = S21. 
 
S21 = 1.2 volt/0.2 volt 
 
S21 = 6.0 
 
Answer: The applicable S-parameter is S21 and the value is 6.0. 
 

22.1.1. Convert S-parameters to return loss, gain, and insertion loss 

Cable operators are usually more familiar with characteristics such as gain, insertion loss, and return loss, 
all expressed in decibels. The following formulas are used to derive those metrics from S-parameters 
(referenced to a two-port network, and assuming Port 1 is the input port and Port 2 is the output port). 

Table 16 - S-parameter conversions 
Measurement Metric Formula 

Input return loss in decibels Rin = –20log10|S11| 
Output return loss in decibels Rout = –20log10|S22| 
Gain in decibels GdB = 20log10|S21| 
Insertion loss in decibels LdB = –20log10|S21| 
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Example 3: 
What is the return loss, in decibels, for Example 1 above? 
 
Solution: 
Rin = –20 ∗ log10|0.125| 
 
Rin = –20 ∗ –0.903 
 
Rin = 18.06 
 
Answer: The return loss at the test frequency is 18.06 dB. 
 
 
Example 4: 
What is the gain, in decibels, of the two-port device in Example 2? 
 
Solution 4: 
GdB = 20 ∗ log10|6.0| 
 
GdB = 20 ∗ 0.778 
 
GdB = 15.56 
 
Answer: The gain at the test frequency is 15.56 dB. 
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23. Satellite Communications Formulas 
Cable operators have used earth station antennas at headends since the 1970s, in large part for the 
reception of many of the program services carried on their networks. This section includes some of the 
more commonly used formulas for satellite communications system link budget analysis. For more 
information about satellite-related calculations and additional formulas, see [17]. 

23.1. Calculate gain to noise temperature ratio (G/T) 

The gain to noise temperature ratio (G/T) of a satellite receive system is the ratio of the gain, at a 
specified reference point in the system, to the system's noise temperature at that same reference point. The 
main elements determining G/T are the gain of the receive antenna and combined noise temperature of the 
antenna and low noise amplifier (LNA) or low noise block converter (LNB). The antenna noise 
temperature is relatively constant with diameter, but increases as the elevation angle of the antenna 
decreases. LNA/LNB noise temperature is a function of device’s design and manufacture using available 
low noise components (see Section 12 for more information on noise temperature and noise figure). The 
G/T of the receive system can be considered as a figure of merit for its performance. 
The G/T of the receive system can be calculated using the following formula: 
 

𝐺𝐺/𝑇𝑇𝑚𝑚𝑠𝑠𝑚𝑚 = 𝐺𝐺𝑐𝑐𝑖𝑖𝑓𝑓 − 10 𝑙𝑙𝐿𝐿𝑎𝑎10(𝑇𝑇𝑝𝑝𝑚𝑚𝑝𝑝𝑐𝑐𝑖𝑖𝑓𝑓 + 𝑇𝑇𝑝𝑝𝑚𝑚𝑝𝑝𝐸𝐸𝑁𝑁𝑑𝑑) 
 
where  
𝐺𝐺/𝑇𝑇𝑚𝑚𝑠𝑠𝑚𝑚 is the gain to noise temperature ratio of the receive system in decibels 
𝐺𝐺𝑐𝑐𝑖𝑖𝑓𝑓  is the gain of the receive antenna in dBi 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑇𝑇𝑝𝑝𝑚𝑚𝑝𝑝𝑐𝑐𝑖𝑖𝑓𝑓  is the noise temperature of the receive antenna in kelvin (K) 
𝑇𝑇𝑝𝑝𝑚𝑚𝑝𝑝𝐸𝐸𝑁𝑁𝑑𝑑  is the noise temperature of the LNA/LNB in kelvin (K) 
 
 
Example: 
A C-band earth station antenna has a gain of 44 dBi and uses an LNB with a noise temperature of  25 K. 
The satellite viewed requires an elevation angle of 16.26 degrees. The noise temperature of the antenna, 
found in the manufacturer’s specifications, is approximately 31 K at an antenna elevation angle of 16.26 
degrees. Calculate the G/T of this system. 
 
Solution: 
𝐺𝐺/𝑇𝑇𝑚𝑚𝑠𝑠𝑚𝑚 = 𝐺𝐺𝑐𝑐𝑖𝑖𝑓𝑓 − 10 𝑙𝑙𝐿𝐿𝑎𝑎10(𝑇𝑇𝑝𝑝𝑚𝑚𝑝𝑝𝑐𝑐𝑖𝑖𝑓𝑓 + 𝑇𝑇𝑝𝑝𝑚𝑚𝑝𝑝𝐸𝐸𝑁𝑁𝑑𝑑) 
 
𝐺𝐺/𝑇𝑇𝑚𝑚𝑠𝑠𝑚𝑚 = 44 − [10 ∗  𝑙𝑙𝐿𝐿𝑎𝑎10(31 + 25)] 
 
𝐺𝐺/𝑇𝑇𝑚𝑚𝑠𝑠𝑚𝑚 = 44 − [10 ∗  𝑙𝑙𝐿𝐿𝑎𝑎10(56)] 
 
𝐺𝐺/𝑇𝑇𝑚𝑚𝑠𝑠𝑚𝑚 = 44 − [10 ∗ (1.748)] 
 
𝐺𝐺/𝑇𝑇𝑚𝑚𝑠𝑠𝑚𝑚 = 44 − 17.48 
 
𝐺𝐺/𝑇𝑇𝑚𝑚𝑠𝑠𝑚𝑚 = 26.52 
 
Answer: The G/T of the receive system is 26.52 dB. 
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23.2. Calculate free space path loss between the satellite and the antenna site 

Free space path loss describes the RF signal attenuation between a satellite in orbit and an earth station 
antenna on the surface of the Earth. Free space path loss is an important part of link budget analysis for 
satellite communications systems, and assumes an unobstructed path. Calculated free space path loss 
should be considered an approximation, since a variety of factors can affect the actual received signal 
power at an earth station antenna. Examples of some of those factors include the previously mentioned 
path obstruction; satellite transmit power uncertainty, especially transponder-to-transponder power 
variations; weather effects (e.g., precipitation); Faraday rotation; and so forth. 
 
The free space loss in decibels between the satellite of interest and the earth station antenna can be 
calculated using the following formula: 
 
 

𝑁𝑁𝑅𝑅𝑃𝑃𝐿𝐿 = 20 𝑙𝑙𝐿𝐿𝑎𝑎10(𝑓𝑓) + 20 𝑙𝑙𝐿𝐿𝑎𝑎10(𝑀𝑀) + 32.45 
 
where  
𝑁𝑁𝑅𝑅𝑃𝑃𝐿𝐿 is the free space loss from the satellite antenna to the earth station antenna in decibels 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑓𝑓 is the frequency in megahertz 
𝑀𝑀 is the slant range distance48 from the satellite antenna to the earth station antenna in kilometers 
 
 
Example: 
Calculate the free space path loss at 4,200 MHz for a slant range distance of 39,931 kilometers (about 
24,813 miles) between a C-band earth station antenna and a geostationary satellite of interest. 
 
Solution: 
𝑁𝑁𝑅𝑅𝑃𝑃𝐿𝐿 = 20 𝑙𝑙𝐿𝐿𝑎𝑎10(𝑓𝑓) + 20 𝑙𝑙𝐿𝐿𝑎𝑎10(𝑀𝑀) + 32.45 
 
𝑁𝑁𝑅𝑅𝑃𝑃𝐿𝐿 = [20 ∗  𝑙𝑙𝐿𝐿𝑎𝑎10(4,200)] + [20 ∗  𝑙𝑙𝐿𝐿𝑎𝑎10(39,931)] + 32.45 
 
𝑁𝑁𝑅𝑅𝑃𝑃𝐿𝐿 = [20 ∗ (3.623)] + [20 ∗ (4.601)] + 32.45 
 
𝑁𝑁𝑅𝑅𝑃𝑃𝐿𝐿 = 72.46 + 92.02 + 32.45 
 
𝑁𝑁𝑅𝑅𝑃𝑃𝐿𝐿 = 196.93 
 
Answer: The free space path loss between the satellite antenna and the earth station antenna is 196.93 dB. 
 

23.3. Calculate satellite downlink carrier-to-noise ratio  

The carrier-to-noise ratio (CNR) at the earth station receive system is the difference, in decibels, between 
the strength of the satellite downlink carrier signal received and the strength of the noise present in the 
receive system. The CNR is an important factor in determining the quality of the demodulated signal. 
The CNR can be calculated using the following formula: 

 
48 Slant range distance is the line-of-sight distance along a slant direction between two points which are not at the 
same level relative to each other. As used in this section, slant range distance is the distance between a satellite in 
geostationary orbit above the equator and an earth station (usually) north or south of the equator. 
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𝐶𝐶𝑁𝑁𝑅𝑅 = 𝐸𝐸𝐼𝐼𝑅𝑅𝑃𝑃 − 𝑁𝑁𝑅𝑅𝑃𝑃𝐿𝐿 +  𝐺𝐺/𝑇𝑇𝑚𝑚𝑠𝑠𝑚𝑚 −  10𝑙𝑙𝐿𝐿𝑎𝑎10(𝑑𝑑 ∗ 𝑘𝑘) 
 
where  
𝐶𝐶𝑁𝑁𝑅𝑅 is the downlink carrier-to-noise ratio in decibels 
𝐸𝐸𝐼𝐼𝑅𝑅𝑃𝑃 is the equivalent isotropic radiated power output of the satellite in decibel watts (dBW) 
𝑁𝑁𝑅𝑅𝑃𝑃𝐿𝐿 is the free space loss from the satellite antenna to the earth station antenna in decibels 
𝐺𝐺/𝑇𝑇𝑚𝑚𝑠𝑠𝑚𝑚 is the gain to noise temperature ratio of the receive system in decibels 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑑𝑑 is the carrier bandwidth in hertz (Hz) 
𝑘𝑘 is Boltzmann’s Constant (1.38 ∗ 10-23 joules/kelvin) 
 
 
Example: 
The C-band satellite of interest has an output of 41 dBW EIRP and a carrier bandwidth of 36 MHz. The 
earth station antenna has a G/T of 26.52 dB. The free space path loss between the satellite and the earth 
station antenna is 196.93 dB. Calculate the CNR of this receive system. 
 
Solution: 
𝐶𝐶𝑁𝑁𝑅𝑅 = 𝐸𝐸𝐼𝐼𝑅𝑅𝑃𝑃 − 𝑁𝑁𝑅𝑅𝑃𝑃𝐿𝐿 +  𝐺𝐺/𝑇𝑇𝑚𝑚𝑠𝑠𝑚𝑚 −  10𝑙𝑙𝐿𝐿𝑎𝑎10(𝑑𝑑 ∗ 𝑘𝑘) 
 
𝐶𝐶𝑁𝑁𝑅𝑅 = 41 − 196.93 +  26.52 − [10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10([36 ∗ 106]  ∗ [1.38 ∗ 10−23])] 
 
𝐶𝐶𝑁𝑁𝑅𝑅 = 41 − 196.93 +  26.52 − [10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(4.968 ∗ 10−16)] 
 
𝐶𝐶𝑁𝑁𝑅𝑅 = 41 − 196.93 +  26.52 − [10 ∗ (−15.304)] 
 
𝐶𝐶𝑁𝑁𝑅𝑅 = 41 − 196.93 +  26.52 − (−153.04) 
 
𝐶𝐶𝑁𝑁𝑅𝑅 = 41 − 196.93 +  26.52 + 153.04 
 
𝐶𝐶𝑁𝑁𝑅𝑅 = 23.63 
 
Answer: The CNR of this receive system is 23.63 dB. 
 

23.4. Calculate Eb/N0  

The energy per bit to noise power spectral density ratio (Eb/N0) is a normalized signal-to-noise ratio 
(SNR) measure, often referred to as the “SNR per bit.” The Eb/N0 is commonly used to evaluate digital 
communication systems, and is especially useful when comparing the bit error ratio (BER) performance 
of different digital modulation schemes. The Eb/N0 is closely related to the carrier-to-noise ratio (CNR) of 
the received signal.  
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The Eb/N0 can be calculated using the following formula: 
 
 

𝐸𝐸𝑐𝑐/𝑁𝑁0 = 𝐶𝐶𝑁𝑁𝑅𝑅 + 10𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝑏𝑏𝑎𝑎𝑠𝑠𝑑𝑑𝑤𝑤𝑠𝑠𝑑𝑑𝑡𝑡ℎ
𝑠𝑠𝑝𝑝𝑡𝑡 𝑏𝑏𝑠𝑠𝑡𝑡 𝑝𝑝𝑎𝑎𝑡𝑡𝑝𝑝

� 
 
where  
𝐸𝐸𝑐𝑐/𝑁𝑁0 is the energy per bit-to-noise power density ratio in decibels 
𝐶𝐶𝑁𝑁𝑅𝑅 is the carrier-to-noise ratio in decibels 
𝑙𝑙𝐿𝐿𝑎𝑎10 is the base 10 logarithm 
𝑠𝑠𝑝𝑝𝑡𝑡 𝑏𝑏𝑠𝑠𝑡𝑡 𝑝𝑝𝑎𝑎𝑡𝑡𝑝𝑝 is the net bit rate in megabits per second (Mbps, sometimes as Mbpsnet), excluding FEC and 
other overhead49 
𝑏𝑏𝑎𝑎𝑠𝑠𝑑𝑑𝑤𝑤𝑠𝑠𝑑𝑑𝑡𝑡ℎ is the transmission bandwidth in megahertz (MHz) 
 
 
Example: 
A C-band satellite transponder has a bandwidth of 36 MHz and is transmitting a net bit rate of 72 Mbps. 
The CNR of the earth station receive system is 14.6 dB. Calculate the Eb/N0 of the received signal. 
 
Solution: 

𝐸𝐸𝑐𝑐/𝑁𝑁0 = 𝐶𝐶𝑁𝑁𝑅𝑅 + 10𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝑏𝑏𝑎𝑎𝑠𝑠𝑑𝑑𝑤𝑤𝑠𝑠𝑑𝑑𝑡𝑡ℎ
𝑠𝑠𝑝𝑝𝑡𝑡 𝑏𝑏𝑠𝑠𝑡𝑡 𝑝𝑝𝑎𝑎𝑡𝑡𝑝𝑝

� 
 

𝐸𝐸𝑐𝑐/𝑁𝑁0 = 14.6 + 10𝑙𝑙𝐿𝐿𝑎𝑎10 �
36
72

� 
 
𝐸𝐸𝑐𝑐/𝑁𝑁0 = 14.6 + 10𝑙𝑙𝐿𝐿𝑎𝑎10[0.5] 
 
𝐸𝐸𝑐𝑐/𝑁𝑁0 = 14.6 + 10 ∗ (𝑙𝑙𝐿𝐿𝑎𝑎10[0.5]) 
 
𝐸𝐸𝑐𝑐/𝑁𝑁0 = 14.6 + 10 ∗ (−0.301) 
 
𝐸𝐸𝑐𝑐/𝑁𝑁0 = 14.6 + (−3.01) 
 
𝐸𝐸𝑐𝑐/𝑁𝑁0 = 14.6 − 3.01 
 
𝐸𝐸𝑐𝑐/𝑁𝑁0 = 11.59 
 
Answer: The 𝐸𝐸𝑐𝑐/𝑁𝑁0 of this receive system is 11.59 dB. 
  

 
49 When calculating Eb/N0, bit rate is the transmission net bit rate (excluding FEC coding and physical layer protocol 
overhead if present) in megabits per second. The transmitted symbols are a physical entity in the channel, and it is 
customary to define energy-per-symbol to noise-density ratio (ES/N0) without mention of PHY overhead. There is no 
notion or distinction of “net symbol.” However, Eb/N0 should state if net (information) or gross (channel) bit rate is 
used. In many cases in literature and text Eb/N0 may be discussed without mention of any FEC or PHY overhead, in 
which case the gross (channel) bit rate is the assumption. In cases in literature comparing modulation schemes where 
FEC and/or overhead of protocols are involved, such as different proposals in a standards body, the context will 
normally make it clear that the net (information) bit rate is intended. Unfortunately, it is common in literature to not 
be explicit, and the distinction between “net” and “gross” is often not provided, but rather has to be understood from 
context. 
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23.4.1. Convert Eb/N0 to carrier-to-noise ratio 

The following formula can be used to convert Eb/N0 to CNR: 
 
 

𝐶𝐶𝑁𝑁𝑅𝑅 = 𝐸𝐸𝑐𝑐/𝑁𝑁0 + 10𝑙𝑙𝐿𝐿𝑎𝑎10(𝑏𝑏𝑝𝑝𝐿𝐿) − 10𝑙𝑙𝐿𝐿𝑎𝑎10(𝑁𝑁𝑑𝑑𝐶𝐶) 
 
where  
𝐶𝐶𝑁𝑁𝑅𝑅 is carrier-to-noise ratio 
𝐸𝐸𝑐𝑐/𝑁𝑁0 is energy per bit-to-noise power density ratio in decibels 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑏𝑏𝑝𝑝𝐿𝐿 is the bit rate in bits per second 
𝑁𝑁𝑑𝑑𝐶𝐶 is the noise bandwidth in hertz (Hz) 
  
 
Example: 
What is the CNR when 𝐸𝐸𝑐𝑐/𝑁𝑁0 is 11.59 dB, the bit rate is 72 Mbps (72,000,000 bits per second), and the 
bandwidth is 36 MHz (36,000,000 Hz)? 
 
Solution: 
𝐶𝐶𝑁𝑁𝑅𝑅 = 𝐸𝐸𝑐𝑐/𝑁𝑁0 + 10𝑙𝑙𝐿𝐿𝑎𝑎10(𝑏𝑏𝑝𝑝𝐿𝐿) − 10𝑙𝑙𝐿𝐿𝑎𝑎10(𝑁𝑁𝑑𝑑𝐶𝐶) 
 
𝐶𝐶𝑁𝑁𝑅𝑅 = 11.59 + 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(72,000,000) − 10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(36,000,000) 
 
𝐶𝐶𝑁𝑁𝑅𝑅 = 11.59 + 10 ∗ (7.8573) − 10 ∗ (7.5563) 
 
𝐶𝐶𝑁𝑁𝑅𝑅 = 11.59 + 78.5733 − 75.5630 
 
𝐶𝐶𝑁𝑁𝑅𝑅 = 14.6 
 
Answer: The CNR is 14.6 dB. 
 

23.5. Earth station antenna pointing calculations 

The satellites used to deliver programming to cable systems are located in geostationary orbits, which 
means the satellites orbit the Earth at the same rate as the Earth rotates. As such, the satellites appear to be 
stationary in the sky. Cable operators need to know where to point the earth station antennas, in terms of 
azimuth relative to true north and elevation relative to a flat horizon. 

23.5.1. Calculate antenna azimuth 

The azimuth angle is one of two calculations (the other calculation is elevation angle) needed to 
accurately align the earth station antenna to the satellite of interest. 
 
Once the geographic coordinates of the earth station antenna (𝐿𝐿𝑎𝑎𝑡𝑡𝐿𝐿𝑠𝑠𝑡𝑡𝑝𝑝 and 𝐿𝐿𝐿𝐿𝑠𝑠𝑎𝑎𝐿𝐿𝑠𝑠𝑡𝑡𝑝𝑝) and the satellite 
longitude (𝐿𝐿𝐿𝐿𝑠𝑠𝑎𝑎𝐿𝐿𝑎𝑎𝑡𝑡) are known, the antenna azimuth can be calculated using the following formulas. 
 
Note: North latitude and east longitude are expressed as positive numbers, and south latitude and west 
longitude are expressed as negative numbers when calculating the antenna azimuth and elevation angles. 
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𝑌𝑌 = 𝑝𝑝𝐿𝐿𝐿𝐿−1[cos(𝐿𝐿𝐿𝐿𝑠𝑠𝑎𝑎𝑚𝑚𝑐𝑐𝑓𝑓 −  𝐿𝐿𝐿𝐿𝑠𝑠𝑎𝑎𝑚𝑚𝑖𝑖𝑓𝑓𝑓𝑓) ∗  𝑝𝑝𝐿𝐿𝐿𝐿(𝐿𝐿𝑎𝑎𝑡𝑡𝑚𝑚𝑖𝑖𝑓𝑓𝑓𝑓 )] 

 
 

𝐴𝐴𝑧𝑧𝑐𝑐𝑖𝑖𝑓𝑓 = 360 − 𝑝𝑝𝐿𝐿𝐿𝐿−1 �
−𝑡𝑡𝑎𝑎𝑠𝑠(𝐿𝐿𝑎𝑎𝑡𝑡𝑚𝑚𝑖𝑖𝑓𝑓𝑓𝑓)

𝑡𝑡𝑎𝑎𝑠𝑠(𝑌𝑌)
� 

 
where  
𝑌𝑌 is a calculated value used in antenna azimuth and elevation angle calculations 
𝐴𝐴𝑧𝑧𝑐𝑐𝑖𝑖𝑓𝑓  is the antenna azimuth in decimal degrees relative to true north 
𝐿𝐿𝑎𝑎𝑡𝑡𝑚𝑚𝑖𝑖𝑓𝑓𝑓𝑓  is antenna site latitude in decimal degrees 
𝐿𝐿𝐿𝐿𝑠𝑠𝑎𝑎𝑚𝑚𝑖𝑖𝑓𝑓𝑓𝑓 is the antenna site longitude in decimal degrees 
𝐿𝐿𝐿𝐿𝑠𝑠𝑎𝑎𝑚𝑚𝑐𝑐𝑓𝑓  is the satellite longitude in decimal degrees 
  
 
Example: 
A C-band earth station antenna is located at a north latitude (𝐿𝐿𝑎𝑎𝑡𝑡𝐿𝐿𝑠𝑠𝑡𝑡𝑝𝑝) of 37.635587 decimal degrees and a 
west longitude (𝐿𝐿𝐿𝐿𝑠𝑠𝑎𝑎𝐿𝐿𝑠𝑠𝑡𝑡𝑝𝑝) of –76.104050 decimal degrees. The satellite of interest is in an orbital position 
located at –135 decimal degrees west longitude (𝐿𝐿𝐿𝐿𝑠𝑠𝑎𝑎𝐿𝐿𝑎𝑎𝑡𝑡). Determine the azimuth angle of the earth 
station antenna relative to true north. 
 
Solution: 
First, calculate the value of 𝑌𝑌: 
 
𝑌𝑌 = 𝑝𝑝𝐿𝐿𝐿𝐿−1[cos(𝐿𝐿𝐿𝐿𝑠𝑠𝑎𝑎𝑚𝑚𝑐𝑐𝑓𝑓 −  𝐿𝐿𝐿𝐿𝑠𝑠𝑎𝑎𝑚𝑚𝑖𝑖𝑓𝑓𝑓𝑓) ∗ cos(𝐿𝐿𝑎𝑎𝑡𝑡𝑚𝑚𝑖𝑖𝑓𝑓𝑓𝑓 )] 
 
𝑌𝑌 = 𝑝𝑝𝐿𝐿𝐿𝐿−1[cos(−135 − (−76.104050)) ∗ cos(37.635587 )] 
 
𝑌𝑌 = 𝑝𝑝𝐿𝐿𝐿𝐿−1[cos(−135 + 76.104050) ∗ cos(37.635587)] 
 
𝑌𝑌 = 𝑝𝑝𝐿𝐿𝐿𝐿−1[cos(−58.89595) ∗ cos(37.635587)] 
 
𝑌𝑌 = 𝑝𝑝𝐿𝐿𝐿𝐿−1[(0.51659385)∗ (0.79191052)] 
 
𝑌𝑌 = 𝑝𝑝𝐿𝐿𝐿𝐿−1(0.40909610) 
 
𝑌𝑌 = 65.85193414 
 
Next, calculate the azimuth angle: 
 

𝐴𝐴𝑧𝑧𝑐𝑐𝑖𝑖𝑓𝑓 = 360 − 𝑝𝑝𝐿𝐿𝐿𝐿−1 �
−𝑡𝑡𝑎𝑎𝑠𝑠(𝐿𝐿𝑎𝑎𝑡𝑡𝑚𝑚𝑖𝑖𝑓𝑓𝑓𝑓)

𝑡𝑡𝑎𝑎𝑠𝑠(𝑌𝑌)
� 

 

𝐴𝐴𝑧𝑧𝑐𝑐𝑖𝑖𝑓𝑓 = 360 −  𝑝𝑝𝐿𝐿𝐿𝐿−1 �
−𝑡𝑡𝑎𝑎𝑠𝑠(37.635587)
𝑡𝑡𝑎𝑎𝑠𝑠(65.85193414)

� 

 

𝐴𝐴𝑧𝑧𝑐𝑐𝑖𝑖𝑓𝑓 = 360 −  𝑝𝑝𝐿𝐿𝐿𝐿−1 �
−0.77109361

2.230506
� 
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𝐴𝐴𝑧𝑧𝑐𝑐𝑖𝑖𝑓𝑓 = 360 −  𝑝𝑝𝐿𝐿𝐿𝐿−1(−0.34570345) 
 
𝐴𝐴𝑧𝑧𝑐𝑐𝑖𝑖𝑓𝑓 = 360 − 110.2247429 
 
𝐴𝐴𝑧𝑧𝑐𝑐𝑖𝑖𝑓𝑓 = 249.78 
 
Answer: The azimuth angle of the earth station antenna relative to true north is 249.78 decimal degrees. 
 

23.5.2. Calculate antenna elevation 

The elevation angle is one of two calculations (the other calculation is azimuth angle) needed to 
accurately align the earth station antenna to the satellite of interest. 
 
Once the geographic coordinates of the earth station antenna (𝐿𝐿𝑎𝑎𝑡𝑡𝐿𝐿𝑠𝑠𝑡𝑡𝑝𝑝 and 𝐿𝐿𝐿𝐿𝑠𝑠𝑎𝑎𝐿𝐿𝑠𝑠𝑡𝑡𝑝𝑝) and the satellite 
longitude (𝐿𝐿𝐿𝐿𝑠𝑠𝑎𝑎𝐿𝐿𝑎𝑎𝑡𝑡) are known, the antenna elevation can be calculated using the following formulas. 
 
Note: North latitude and east longitude are expressed as positive numbers, and south latitude and west 
longitude are expressed as negative numbers when calculating the antenna azimuth and elevation angles. 
 
 

𝑌𝑌 = 𝑝𝑝𝐿𝐿𝐿𝐿−1[cos(𝐿𝐿𝐿𝐿𝑠𝑠𝑎𝑎𝑚𝑚𝑐𝑐𝑓𝑓 −  𝐿𝐿𝐿𝐿𝑠𝑠𝑎𝑎𝑚𝑚𝑖𝑖𝑓𝑓𝑓𝑓) ∗ 𝑝𝑝𝐿𝐿𝐿𝐿(𝐿𝐿𝑎𝑎𝑡𝑡𝑚𝑚𝑖𝑖𝑓𝑓𝑓𝑓 )] 
 

𝐸𝐸𝑙𝑙𝑐𝑐𝑖𝑖𝑓𝑓 =  𝑡𝑡𝑎𝑎𝑠𝑠−1 �
cos(𝑌𝑌) −  0.15116

sin(𝑌𝑌)
� 

 
where  
𝑌𝑌 is a calculated value used in antenna azimuth and elevation angle calculations 
𝐸𝐸𝑙𝑙𝑐𝑐𝑖𝑖𝑓𝑓  is the antenna elevation angle in decimal degrees  
𝐿𝐿𝑎𝑎𝑡𝑡𝑚𝑚𝑖𝑖𝑓𝑓𝑓𝑓  is antenna site latitude in decimal degrees 
𝐿𝐿𝐿𝐿𝑠𝑠𝑎𝑎𝑚𝑚𝑖𝑖𝑓𝑓𝑓𝑓 is the antenna site longitude in decimal degrees 
𝐿𝐿𝐿𝐿𝑠𝑠𝑎𝑎𝑚𝑚𝑐𝑐𝑓𝑓  is the satellite longitude in decimal degrees 
  
 
Example: 
A C-band earth station antenna is located at a north latitude (𝐿𝐿𝑎𝑎𝑡𝑡𝐿𝐿𝑠𝑠𝑡𝑡𝑝𝑝) of 37.635587 decimal degrees and a 
west longitude (𝐿𝐿𝐿𝐿𝑠𝑠𝑎𝑎𝐿𝐿𝑠𝑠𝑡𝑡𝑝𝑝) of –76.104050 decimal degrees. The satellite of interest is in an orbital position 
located at –135 decimal degrees west longitude (𝐿𝐿𝐿𝐿𝑠𝑠𝑎𝑎𝐿𝐿𝑎𝑎𝑡𝑡). Determine the elevation angle of the earth 
station antenna. 
 
Solution: 
First, calculate the value of 𝑌𝑌: 
 
𝑌𝑌 = 𝑝𝑝𝐿𝐿𝐿𝐿−1[cos(𝐿𝐿𝐿𝐿𝑠𝑠𝑎𝑎𝑚𝑚𝑐𝑐𝑓𝑓 −  𝐿𝐿𝐿𝐿𝑠𝑠𝑎𝑎𝑚𝑚𝑖𝑖𝑓𝑓𝑓𝑓) ∗ cos(𝐿𝐿𝑎𝑎𝑡𝑡𝑚𝑚𝑖𝑖𝑓𝑓𝑓𝑓 )] 
 
𝑌𝑌 = 𝑝𝑝𝐿𝐿𝐿𝐿−1[cos(−135 − (−76.104050)) ∗ cos(37.635587 )] 
 
𝑌𝑌 = 𝑝𝑝𝐿𝐿𝐿𝐿−1[cos(−135 + 76.104050) ∗ cos(37.635587)] 
 
𝑌𝑌 = 𝑝𝑝𝐿𝐿𝐿𝐿−1[cos(−58.89595) ∗ cos(37.635587)] 
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𝑌𝑌 = 𝑝𝑝𝐿𝐿𝐿𝐿−1[(0.51659385)∗ (0.79191052)] 
 
𝑌𝑌 = 𝑝𝑝𝐿𝐿𝐿𝐿−1(0.40909610) 
 
𝑌𝑌 = 65.85193414 
 
Next, calculate the elevation angle: 
 

𝐸𝐸𝑙𝑙𝑐𝑐𝑖𝑖𝑓𝑓 =  𝑡𝑡𝑎𝑎𝑠𝑠−1 �
cos(𝑌𝑌) −  0.15116

sin(𝑌𝑌)
� 

 

𝐸𝐸𝑙𝑙𝑐𝑐𝑖𝑖𝑓𝑓 =  𝑡𝑡𝑎𝑎𝑠𝑠−1 �
cos(65.85193414) −  0.15116)

sin(65.85193414)
� 

 

𝐸𝐸𝑙𝑙𝑐𝑐𝑖𝑖𝑓𝑓 =  𝑡𝑡𝑎𝑎𝑠𝑠−1 �
0.40909611 − 0.15116

0.91249130
� 

 

𝐸𝐸𝑙𝑙𝑐𝑐𝑖𝑖𝑓𝑓 =  𝑡𝑡𝑎𝑎𝑠𝑠−1 �
0.25793611
0.91249130

� 
 
𝐸𝐸𝑙𝑙𝑐𝑐𝑖𝑖𝑓𝑓 =  𝑡𝑡𝑎𝑎𝑠𝑠−1(0.28267240) 
 
𝐸𝐸𝑙𝑙𝑐𝑐𝑖𝑖𝑓𝑓 =  15.78 
 
Answer: The elevation angle of the earth station antenna is 15.78 decimal degrees. 
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24. Terrestrial Microwave Communications Formulas 
The cable industry has for many decades used terrestrial analog microwave communications for point-to-
point and point-to-multipoint signal transport. Depending on implementation, analog microwave 
communications technology used by cable operators has been based on either frequency modulation or 
amplitude modulation techniques, commonly in the 12.7 GHz to 13.2 GHz CARS band.50 One example of 
an application using amplitude modulation was the Hughes AML low-power and high-power 
multichannel microwave technology. While optical fiber transport and distribution have to a large extent 
replaced cable-specific terrestrial microwave links, some terrestrial microwave technology remains in use 
by the cable industry. 
 
Microwave path engineering is a complex subject, and an in-depth treatment of all of the involved 
mathematics is beyond the scope of this Operational Practice. Some of the more common mathematical 
formulas used in terrestrial microwave applications are included in this section, but others, such as path 
reliability, are not. For more information on terrestrial microwave communications and path engineering, 
see, for example, [19], [20], and [23]. 
 
Refer to Figure 40 for some of the formulas and examples included in this section. 
 

 
50 In the United States, Part 78 of the FCC Rules governs Cable Television Relay Service (CARS) stations, which 
operate in the 12.7 GHz to 13.2 GHz band and 17.7 GHz to 19.7 GHz band. A CARS station is defined in Part 78 as 
“A fixed or mobile station used for the transmission of television and related audio signals, signals of standard and 
FM broadcast stations, signals of instructional television fixed stations, and cablecasting from the point of reception 
to a terminal point from the point of reception to a terminal point from which the signals are distributed to the 
public.” 
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Figure 40 - Sample point-to-point terrestrial microwave path profile. 

In Figure 40, the diagonal black line sloping downward from left to right represents the microwave 
communications path, which in this example is 14.4 miles long. The profile of the terrain under the path 
has been plotted with elevation in feet above mean sea level (AMSL) in the vertical axis and distance in 
statute miles in the horizontal axis. This particular example uses a flat earth surface with a flat microwave 
path.51 
 
The small black dots above various points in the terrain profile represent effective earth curvature, 0.6 
Fresnel zone radius, tree height and tree growth allowance (where applicable), and survey error (typ. 10 
feet) – all in feet – added to the original terrain elevation. The goal is to ensure that the terrain profile and 
dots remain below the microwave path. Otherwise, antenna heights at one or both ends of the path must 
be revised. 
 

24.1. Calculate path attenuation 

Path attenuation is the amount of signal lost between a terrestrial microwave transmit antenna and a 
receive antenna (see Figure 40). The path attenuation can be approximated using free space path loss, 
assuming that there are no obstructions between the antennas (including within the first Fresnel zone), and 
both antennas are operating in the far field region. Note that the actual signal loss seldom equals the 
calculated free space path loss, because of the constructive and/or destructive effects of signal 
reflection(s) and diffraction, weather effects, and so forth. 
 

 
51 Some path profiles use a curved earth representation with flat path, and some use a flat earth representation with 
the microwave path curved downward to represent the equivalent of a curved earth. 
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The path attenuation in decibels, assuming free space path loss, between a terrestrial microwave transmit 
antenna and receive antenna can be calculated using the following formula: 
 
 

𝑁𝑁𝑅𝑅𝑃𝑃𝐿𝐿 = 20 𝑙𝑙𝐿𝐿𝑎𝑎10(𝑓𝑓) + 20 𝑙𝑙𝐿𝐿𝑎𝑎10(𝑀𝑀) + 96.58 
 
where  
𝑁𝑁𝑅𝑅𝑃𝑃𝐿𝐿 is the free space loss from the transmit antenna to the receive antenna in decibels 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑓𝑓 is the frequency in gigahertz 
𝑀𝑀 is the distance from transmit antenna to the receive antenna in statute miles 
 
 
Example: 
The distance between a Cable Television Relay Service (CARS) transmit antenna and receive antenna is 
14.4 miles (about 23.17 kilometers). Calculate the free space path loss at an operating frequency of 
12.7035 GHz. 
 
Solution: 
𝑁𝑁𝑅𝑅𝑃𝑃𝐿𝐿 = 20 𝑙𝑙𝐿𝐿𝑎𝑎10(𝑓𝑓) + 20 𝑙𝑙𝐿𝐿𝑎𝑎10(𝑀𝑀) + 96.58 
 
𝑁𝑁𝑅𝑅𝑃𝑃𝐿𝐿 = [20 ∗  𝑙𝑙𝐿𝐿𝑎𝑎10(12.7035)] + [20 ∗  𝑙𝑙𝐿𝐿𝑎𝑎10(14.4)] + 96.58 
 
𝑁𝑁𝑅𝑅𝑃𝑃𝐿𝐿 = [20 ∗ (1.103923)] + [20 ∗ (1.158362)] + 96.58 
 
𝑁𝑁𝑅𝑅𝑃𝑃𝐿𝐿 = 22.07846 + 23.16724 + 96.58 
 
𝑁𝑁𝑅𝑅𝑃𝑃𝐿𝐿 = 141.83 
 
Answer: The path attenuation, assuming free space path loss, between the CARS transmit antenna and the 
receive antenna is 141.83 dB. 
 

24.2. Calculate Fresnel zone radius 

Kizer [19] describes Fresnel zones as follows: 
Microwave radio transmit antennas do not just send a thin beam to the receive antenna. They 
actually illuminate a wide area along the microwave radio path. The effect of terrain in reflecting 
the transmitted energy toward the receive antenna can significantly influence the received signal.  
Analysis of terrain reflections is done on the basis of Fresnel zones. A Fresnel zone is described 
as the locus of points above or below the direct path from the transmitter to the receiver where the 
distance from one end of the path to the point and then to the other end of the path is an integer 
number of ½ wavelengths longer than the direct path. The first Fresnel zone, F1, has a total 
additional path length of ½ wavelength. The second Fresnel zone, F2, has 2 x ½ wavelengths, the 
third Fresnel zone, F3, has 3 x ½, and so on. 
 
A Fresnel zone radius, Fn, is the distance perpendicular to the path from a location of interest to a 
point on the Fresnel zone. 
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Figure 41 illustrates the Fresnel zone concept. The vertical scale is exaggerated to help clarify the 
concept. 
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Figure 41 - Concept of Fresnel zones in terrestrial microwave paths; not to scale. 

Adapted from [19]. 

For Figure 41:  
F1 = 72.1 [(d1 ∗ d2) / (𝑓𝑓 ∗ 𝑀𝑀)]1/2 

𝑎𝑎𝑠𝑠 + 𝑏𝑏𝑠𝑠 = 𝑀𝑀 + 𝑠𝑠(λ/2) 
Fn = F1 [𝑠𝑠]1/2 

d1 and d2 are the distances from Tx and Rx in miles 
F1 is the first Fresnel zone radius in feet at point P 
𝑀𝑀 is the path length in miles 
𝑓𝑓 is the operating frequency in gigahertz 
𝑠𝑠 is the 𝑠𝑠th Fresnel zone  
Fn is the radius of the 𝑠𝑠th Fresnel zone in feet 
λ is the operating frequency wavelength 
 
The Fresnel zone radius can be calculated using the following formula: 
 
 

𝑁𝑁𝑖𝑖 = 72.1 ∗ ��
𝑠𝑠 ∗ 𝑑𝑑1 ∗ 𝑑𝑑2  

𝑓𝑓 ∗ 𝑀𝑀
� 

where  
𝑁𝑁𝑖𝑖 is the nth Fresnel zone radius in feet 
𝑠𝑠 is the Fresnel zone number (a positive integer)  
𝑑𝑑1 is the distance from the transmit antenna to a point on the Fresnel zone in statute miles 
𝑑𝑑2  is the distance from the receive antenna to a point on the Fresnel zone in statute miles 
𝑓𝑓 is the frequency in gigahertz 
𝑀𝑀 is the total path distance in statute miles = 𝑑𝑑1 + 𝑑𝑑2 
 
 
Example 1: 
Refer to Figure 40. A CARS system is operating at a frequency of 12.7035 GHz. The path distance 
between the transmit antenna and receive antenna is 14.4 miles (about 23.17 kilometers). Calculate the 
radius of the first Fresnel zone at the path’s midpoint. 
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Solution 1: 

𝑁𝑁𝑖𝑖 = 72.1 ∗ ��
𝑠𝑠 ∗ 𝑑𝑑1 ∗ 𝑑𝑑2  

𝑓𝑓 ∗ 𝑀𝑀
� 

 

𝑁𝑁𝑖𝑖 = 72.1 ∗ ��
1 ∗ 7.2 ∗ 7.2 

12.7035 ∗ 14.4
� 

 

𝑁𝑁𝑖𝑖 = 72.1 ∗ ��
1 ∗ 51.84 

12.7035 ∗ 14.4
� 

 

𝑁𝑁𝑖𝑖 = 72.1 ∗ ��
1 ∗ 51.84 

12.7035 ∗ 14.4
� 

 

𝑁𝑁𝑖𝑖 = 72.1 ∗ ��
51.84 

182.9304
� 

 
𝑁𝑁𝑖𝑖 = 72.1 ∗ √0.283386 
 
𝑁𝑁𝑖𝑖 = 72.1 ∗ 0.532340 
 
𝑁𝑁𝑖𝑖 = 38.38 
 
Answer: The radius of the first Fresnel zone at the path’s midpoint is 38.38 feet. 
 
Example 2: 
Referring to the system described in Example 1, a potential obstruction located 4.5 miles (about 7.24 
kilometers) from the transmitter has been observed. Calculate the radius of the first Fresnel zone at this 
point in the path.  
 
Solution 2: 

𝑁𝑁𝑖𝑖 = 72.1 ∗ ��
𝑠𝑠 ∗ 𝑑𝑑1 ∗ 𝑑𝑑2  

𝑓𝑓 ∗ 𝑀𝑀
� 

 

𝑁𝑁𝑖𝑖 = 72.1 ∗ ��
1 ∗ 4.5 ∗ 9.9 

12.7035 ∗ 14.4
� 

 

𝑁𝑁𝑖𝑖 = 72.1 ∗ ��
1 ∗ 44.55 

12.7035 ∗ 14.4
� 

 

𝑁𝑁𝑖𝑖 = 72.1 ∗ ��
44.55 

182.9304
� 
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𝑁𝑁𝑖𝑖 = 72.1 ∗ √0.243535 
 
𝑁𝑁𝑖𝑖 = 72.1 ∗ 0.493493 
 
𝑁𝑁𝑖𝑖 = 35.58 
 
Answer: The radius of the first Fresnel at a point located 4.5 miles from the transmitter is 35.58 feet. 
 
Example 3: 
In most path profiles, a minimum of 60% (0.6) of the first Fresnel zone radius must be clear of 
obstructions or reflections. Referring to Figure 40, what is the 0.6 Fresnel zone radius at the path 
midpoint? 
 
Solution 3: 
𝑁𝑁0.6 = 0.6 ∗ 𝑁𝑁1 
 
𝑁𝑁0.6 = 0.6 ∗ 38.38 
 
𝑁𝑁0.6 = 23.03 
 
Answer: The 0.6 Fresnel zone radius at the path midpoint is 23.03 feet. 
 
Example 4: 
In most path profiles, a minimum of 0.6 of the first Fresnel zone radius must be clear of obstructions or 
reflections. Referring to Figure 40, what is the 0.6 Fresnel zone radius at the potential obstruction 4.5 
miles from the transmit antenna? 
 
Solution 4: 
𝑁𝑁0.6 = 0.6 ∗ 𝑁𝑁1 
 
𝑁𝑁0.6 = 0.6 ∗ 35.58 
 
𝑁𝑁0.6 = 21.35 
 
Answer: The 0.6 Fresnel zone radius at the point 4.5 miles from the transmit antenna is 21.35 feet. 
 

24.3. Earth curvature 

When preparing microwave path profiles, effective earth curvature must be taken into account. From [23]: 
“Although the surface of the earth is curved, a beam of microwave energy tends to travel in a straight line. 
However, the beam is normally bent downward a slight amount by atmospheric refraction. The amount of 
bending varies with atmospheric conditions. The degree and direction of bending can be conveniently 
defined by an equivalent earth radius factor, K. This factor, K, multiplied by the actual earth radius, R, is 
the radius of a fictitious earth curve.” 
 
K factor can be determined from a sea level refractivity profile chart for the area of interest. If that 
information is not available, one can plot a path profile using various K factors, the most common being 
K = 4/3, K = 1, and K = 2/3. The following formulas can be used to calculate effective earth curvature 
height in feet for different K factors: 
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ℎ =
𝑑𝑑1 ∗ 𝑑𝑑2

1.5 ∗ 𝐾𝐾
 

 

ℎ(𝐾𝐾=4/3) =
𝑑𝑑1 ∗ 𝑑𝑑2

2
 

 
ℎ(𝐾𝐾=1) = 0.67 ∗ (𝑑𝑑1 ∗ 𝑑𝑑2) 

 
ℎ(𝐾𝐾=2/3) = 𝑑𝑑1 ∗ 𝑑𝑑2 

 
where  
ℎ is height in feet 
𝐾𝐾 is equivalent earth radius factor 
ℎ(𝑘𝑘=4/3) is height in feet at a K factor of 4/3 
ℎ(𝑘𝑘=1) is height in feet at a K factor of 1 
ℎ(𝑘𝑘=2/3)is height in feet at a K factor of 2/3 
𝑑𝑑1 is the distance from one end of the microwave path to an obstruction point in statute miles 
𝑑𝑑2 is the distance from the same obstruction point to the other end of the microwave path in statute miles 
 
 
Example 1: 
Referring to Figure 40, what is the effective earth curvature in feet at the path midpoint for K = 4/3? 
 
Solution 1: 

ℎ(𝐾𝐾=4/3) =
𝑑𝑑1 ∗ 𝑑𝑑2

2
 

 

ℎ(𝐾𝐾=4/3) =
7.2 ∗ 7.2

2
 

 

ℎ(𝐾𝐾=4/3) =
51.84

2
 

 
ℎ(𝐾𝐾=4/3) = 25.92 
 
Answer: The effective earth curvature height is 25.92 feet. 
 
Example 2: 
Referring to Figure 40, what is the effective earth curvature in feet at the obstruction point 4.5 miles from 
the transmit antenna for K = 4/3? 
 
Solution 2: 

ℎ(𝐾𝐾=4/3) =
𝑑𝑑1 ∗ 𝑑𝑑2

2
 

 

ℎ(𝐾𝐾=4/3) =
4.5 ∗ 9.9

2
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ℎ(𝐾𝐾=4/3) =
44.55

2
 

 
ℎ(𝐾𝐾=4/3) = 22.28 
 
Answer: The effective earth curvature height is 22.28 feet. 
 

24.4. Calculate path distance and bearing 

The following formulas can be used to determine the path distance and bearing (azimuth) between the 
microwave transmit antenna and the receive antenna. 
 
Note: North latitude and east longitude are expressed as positive numbers, and south latitude and west 
longitude are expressed as negative numbers when calculating distance and bearing. The formula to 
convert latitude or longitude in degrees, minutes, seconds to decimal degrees can be found in Section 
31.4. 
 
 
𝑀𝑀 =  69.047 ∗  𝑝𝑝𝐿𝐿𝐿𝐿−1[𝐿𝐿𝑠𝑠𝑠𝑠(𝐿𝐿𝑎𝑎𝑡𝑡𝐶𝐶𝑐𝑐) ∗ 𝐿𝐿𝑠𝑠𝑠𝑠(𝐿𝐿𝑎𝑎𝑡𝑡𝑅𝑅𝑐𝑐) +  𝑝𝑝𝐿𝐿𝐿𝐿(𝐿𝐿𝑎𝑎𝑡𝑡𝐶𝐶𝑐𝑐) ∗ cos(𝐿𝐿𝑎𝑎𝑡𝑡𝑅𝑅𝑐𝑐) ∗ 𝑝𝑝𝐿𝐿𝐿𝐿(𝐿𝐿𝐿𝐿𝑠𝑠𝑎𝑎𝐶𝐶𝑐𝑐 − 𝐿𝐿𝐿𝐿𝑠𝑠𝑎𝑎𝑅𝑅𝑐𝑐)] 
 
 

𝑠𝑠 = 𝑝𝑝𝐿𝐿𝐿𝐿−1 �
𝐿𝐿𝑠𝑠𝑠𝑠(𝐿𝐿𝑎𝑎𝑡𝑡𝑅𝑅𝑐𝑐) −  𝐿𝐿𝑠𝑠𝑠𝑠(𝐿𝐿𝑎𝑎𝑡𝑡𝐶𝐶𝑐𝑐) ∗ 𝑝𝑝𝐿𝐿𝐿𝐿 � 𝑀𝑀

69.047�

𝐿𝐿𝑠𝑠𝑠𝑠 � 𝑀𝑀
69.047� ∗ 𝑝𝑝𝐿𝐿𝐿𝐿(𝐿𝐿𝑎𝑎𝑡𝑡𝐶𝐶𝑐𝑐)

� 

 
If 𝐿𝐿𝐿𝐿𝑠𝑠𝑎𝑎𝑅𝑅𝑐𝑐 is less than 𝐿𝐿𝐿𝐿𝑠𝑠𝑎𝑎𝐶𝐶𝑐𝑐, then the transmit antenna bearing = 360 – φ. If 𝐿𝐿𝐿𝐿𝑠𝑠𝑎𝑎𝑅𝑅𝑐𝑐  is greater than 
𝐿𝐿𝐿𝐿𝑠𝑠𝑎𝑎𝐶𝐶𝑐𝑐, then the transmit antenna bearing = 𝑠𝑠 
 
where  
𝑀𝑀 is the total path distance in statute miles 
𝑠𝑠 is the bearing (azimuth) from the transmit antenna to the receive antenna relative to true north in 
decimal degrees 
𝑝𝑝𝐿𝐿𝐿𝐿 is cosine 
𝑝𝑝𝐿𝐿𝐿𝐿−1 is arccosine or inverse cosine 
𝐿𝐿𝑠𝑠𝑠𝑠 is sine 
𝐿𝐿𝑎𝑎𝑡𝑡𝐶𝐶𝑐𝑐  is the transmit antenna site latitude in decimal degrees 
𝐿𝐿𝑎𝑎𝑡𝑡𝑅𝑅𝑐𝑐  is the receive antenna site latitude in decimal degrees 
𝐿𝐿𝐿𝐿𝑠𝑠𝑎𝑎𝐶𝐶𝑐𝑐 is the transmit antenna site longitude in decimal degrees 
𝐿𝐿𝐿𝐿𝑠𝑠𝑎𝑎𝑅𝑅𝑐𝑐  is the receive antenna site longitude in decimal degrees 
 
  
Example: 
A CARS transmit antenna has a north latitude (𝐿𝐿𝑎𝑎𝑡𝑡𝐶𝐶𝑐𝑐) of 37.738841 decimal degrees and a west longitude 
(𝐿𝐿𝐿𝐿𝑠𝑠𝑎𝑎𝐶𝐶𝑐𝑐) of –76.199829 decimal degrees. The receive antenna has a north latitude (𝐿𝐿𝑎𝑎𝑡𝑡𝑅𝑅𝑐𝑐) of 37.582465 
decimal degrees and a west longitude (𝐿𝐿𝐿𝐿𝑠𝑠𝑎𝑎𝑅𝑅𝑐𝑐) of –76.025857 decimal degrees. Calculate the path 
distance and bearing between the transmit antenna and the receive antenna.  
 
Solution: 
First, calculate the path distance: 
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𝑀𝑀 =  69.047 ∗  𝑝𝑝𝐿𝐿𝐿𝐿−1[𝐿𝐿𝑠𝑠𝑠𝑠(𝐿𝐿𝑎𝑎𝑡𝑡𝐶𝐶𝑐𝑐) ∗ 𝐿𝐿𝑠𝑠𝑠𝑠(𝐿𝐿𝑎𝑎𝑡𝑡𝑅𝑅𝑐𝑐) +  𝑝𝑝𝐿𝐿𝐿𝐿(𝐿𝐿𝑎𝑎𝑡𝑡𝐶𝐶𝑐𝑐) ∗ cos(𝐿𝐿𝑎𝑎𝑡𝑡𝑅𝑅𝑐𝑐) ∗ 𝑝𝑝𝐿𝐿𝐿𝐿(𝐿𝐿𝐿𝐿𝑠𝑠𝑎𝑎𝐶𝐶𝑐𝑐 − 𝐿𝐿𝐿𝐿𝑠𝑠𝑎𝑎𝑅𝑅𝑐𝑐)] 
 
𝑀𝑀 =  69.047 ∗  𝑝𝑝𝐿𝐿𝐿𝐿−1[𝐿𝐿𝑠𝑠𝑠𝑠(37.738841) ∗ 𝐿𝐿𝑠𝑠𝑠𝑠(37.582465) +  𝑝𝑝𝐿𝐿𝐿𝐿(37.738841) ∗ cos(37.582465)

∗ 𝑝𝑝𝐿𝐿𝐿𝐿(−76.199829 − (−76.025857))] 
 
𝑀𝑀 =  69.047 ∗  𝑝𝑝𝐿𝐿𝐿𝐿−1[(0.61206327 ∗ 0.60990266) + (0.79080879 ∗ 0.79247634

∗ 𝑝𝑝𝐿𝐿𝐿𝐿(−0.173972))] 
 
𝑀𝑀 =  69.047 ∗  𝑝𝑝𝐿𝐿𝐿𝐿−1[(0.61206327 ∗ 0.60990266) + (0.79080879 ∗ 0.79247634 ∗ 0.99999539)] 
 
𝑀𝑀 =  69.047 ∗  𝑝𝑝𝐿𝐿𝐿𝐿−1[(0.61206327 ∗ 0.60990266) + (0.79080879 ∗ 0.79247634 ∗ 0.99999539)] 
 
𝑀𝑀 =  69.047 ∗  𝑝𝑝𝐿𝐿𝐿𝐿−1[0.99999338] 
 
𝑀𝑀 =  69.047 ∗  0.20848118 
 
𝑀𝑀 =  14.39500004 
 
Answer: The path distance between the transmit antenna and the receive antenna is about 14.4 statute 
miles (about 23.17 kilometers). 
 
Next, calculate the bearing: 
 

𝑠𝑠 = 𝑝𝑝𝐿𝐿𝐿𝐿−1 �
𝐿𝐿𝑠𝑠𝑠𝑠(𝐿𝐿𝑎𝑎𝑡𝑡𝑅𝑅𝑐𝑐) −  𝐿𝐿𝑠𝑠𝑠𝑠(𝐿𝐿𝑎𝑎𝑡𝑡𝐶𝐶𝑐𝑐) ∗ 𝑝𝑝𝐿𝐿𝐿𝐿 � 𝑀𝑀

69.047�

𝐿𝐿𝑠𝑠𝑠𝑠 � 𝑀𝑀
69.047� ∗ 𝑝𝑝𝐿𝐿𝐿𝐿(𝐿𝐿𝑎𝑎𝑡𝑡𝐶𝐶𝑐𝑐)

� 

 

𝑠𝑠 = 𝑝𝑝𝐿𝐿𝐿𝐿−1 �
𝐿𝐿𝑠𝑠𝑠𝑠(37.582465) −  𝐿𝐿𝑠𝑠𝑠𝑠(37.738841) ∗ 𝑝𝑝𝐿𝐿𝐿𝐿 �14.39500004

69.047 �

𝐿𝐿𝑠𝑠𝑠𝑠 �14.39500004
69.047 � ∗ 𝑝𝑝𝐿𝐿𝐿𝐿(37.738841)

� 

 

𝑠𝑠 = 𝑝𝑝𝐿𝐿𝐿𝐿−1 �
0.60990266 −  0.61206327 ∗ 𝑝𝑝𝐿𝐿𝐿𝐿(0.20848118)

𝐿𝐿𝑠𝑠𝑠𝑠(0.20848118) ∗ 𝑝𝑝𝐿𝐿𝐿𝐿(37.738841)
� 

 

𝑠𝑠 = 𝑝𝑝𝐿𝐿𝐿𝐿−1 �
0.60990266 −  0.61206327 ∗ 0.99999338

0.00363868 ∗ 0.79080879
� 

 

𝑠𝑠 = 𝑝𝑝𝐿𝐿𝐿𝐿−1 �
−0.00215656

0.0028775
� 

 
𝑠𝑠 = 𝑝𝑝𝐿𝐿𝐿𝐿−1[−0.74945613] 
 
𝑠𝑠 = 138.54 
 
If 𝐿𝐿𝐿𝐿𝑠𝑠𝑎𝑎𝑅𝑅𝑐𝑐 is less than 𝐿𝐿𝐿𝐿𝑠𝑠𝑎𝑎𝐶𝐶𝑐𝑐, then the transmit antenna bearing = 360 – 𝑠𝑠. If 𝐿𝐿𝐿𝐿𝑠𝑠𝑎𝑎𝑅𝑅𝑐𝑐  is greater than 
𝐿𝐿𝐿𝐿𝑠𝑠𝑎𝑎𝐶𝐶𝑐𝑐, then the transmit antenna bearing = 𝑠𝑠.  
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Since –76.025857 – (–76.199829) = 0.173972, 𝐿𝐿𝐿𝐿𝑠𝑠𝑎𝑎𝑅𝑅𝑐𝑐  is greater than 𝐿𝐿𝐿𝐿𝑠𝑠𝑎𝑎𝐶𝐶𝑐𝑐  , the transmit antenna 
bearing = 𝑠𝑠 
 
Answer: The bearing (azimuth) between the transmit antenna and the receive antenna relative to true 
north is 138.54 decimal degrees. 
 
Note that the bearing for the receive antenna is the opposite of that at the transmit antenna; that is, for 𝑠𝑠𝐶𝐶𝑐𝑐 
between 0 and 180 degrees, 𝑠𝑠𝑅𝑅𝑐𝑐   = 𝑠𝑠𝐶𝐶𝑐𝑐  + 180. For 𝑠𝑠𝐶𝐶𝑐𝑐 between 180 and 360 degrees, 𝑠𝑠𝑅𝑅𝑐𝑐  = 𝑠𝑠𝐶𝐶𝑐𝑐– 180. 
 

24.5. Sample path analysis 

An important part of terrestrial microwave path analysis is calculation of input power at the microwave 
receiver. The process is relatively straightforward, involving little more than starting with transmitter 
output power, then subtracting various transmit site passive device, waveguide, and other losses; adding 
transmit and receive antenna gains; subtracting free space path loss; and subtracting various receive site 
waveguide and passive device losses. The following formula can be used to calculate microwave receiver 
input power:  
 
 

𝑃𝑃𝑅𝑅𝑋𝑋 = 𝑃𝑃𝐶𝐶𝑋𝑋 − 𝐿𝐿𝐶𝐶𝑋𝑋 𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑖𝑖𝑟𝑟𝑓𝑓 − 𝐿𝐿𝐶𝐶𝑋𝑋 𝑛𝑛𝑤𝑤 + 𝐺𝐺𝐶𝐶𝑋𝑋 − 𝐿𝐿𝑐𝑐𝑐𝑐𝑓𝑓ℎ + 𝐺𝐺𝑅𝑅𝑋𝑋 − 𝐿𝐿𝑅𝑅𝑋𝑋 𝑛𝑛𝑤𝑤 − 𝐿𝐿𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑖𝑖𝑟𝑟𝑓𝑓 − 𝑁𝑁 
 
where  
𝑃𝑃𝑅𝑅𝑋𝑋 is transmitter output power in decibel milliwatt (typ. power per channel) 
𝑃𝑃𝐶𝐶𝑋𝑋 is transmitter output power in decibel milliwatt (typ. power per channel) 
𝐿𝐿𝐶𝐶𝑋𝑋 𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑖𝑖𝑟𝑟𝑓𝑓  is the total insertion of loss of transmit site passive components (directional couplers, magic 
tees, circulators, attenuators, etc.) in decibels 
𝐿𝐿𝐶𝐶𝑋𝑋 𝑛𝑛𝑤𝑤 is the total attenuation of transmit site waveguide (rectangular, elliptical, circular) in decibels 
𝐺𝐺𝐶𝐶𝑋𝑋 is the transmit antenna gain in decibel isotropic 
𝐿𝐿𝑐𝑐𝑐𝑐𝑓𝑓ℎ is the free space path loss between the transmit and receive antennas in decibels (see Section 24.1) 
𝐺𝐺𝑅𝑅𝑋𝑋 is the receive antenna gain in decibel isotropic 
𝐿𝐿𝑅𝑅𝑋𝑋 𝑛𝑛𝑤𝑤is the total attenuation of receive site waveguide (rectangular, elliptical, circular) in decibels 
𝐿𝐿𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑖𝑖𝑟𝑟𝑓𝑓 is the total insertion loss of receive site passive components (filters, circulators, etc.) in decibels 
𝑁𝑁 is field factor in decibels (typ. 3 dB) to account for antenna misalignment, polarization misalignment, 
etc. 
 
 
Example: 
The following example is for a hypothetical 12.7 GHz to 13.2 GHz CARS band multi-channel amplitude 
modulated link path analysis to highlight the basic concepts of calculating predicted path performance. 
The assumption is 55 analog NTSC channels. Transmitter output power and receiver noise and distortion 
performance parameters are from original Hughes AML equipment specifications and are used here for 
illustrative purposes only. Not included are statistical estimates for path reliability. 
 

PATH FROM MT. VISTA TO ASH STREET HUB 
 

TRANSMITTER OUTPUT POWER 55 (DBM/CH) 17.0 
6 DB DIRECTIONAL COUPLER   –6.0 
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LEVEL SET ATTENUATOR   –0.9 
TRANSMIT ELLIPTICAL WAVEGUIDE 75 FEET –2.8 
TRANSMIT ANTENNA 8 FEET 47.6 
FREE SPACE PATH LOSS 14.4 STATUTE MILES –141.8 
RECEIVE ANTENNA 8 FEET 47.6 
RECEIVE ELLIPTICAL WAVEGUIDE 5 FEET  –0.2 
FIELD FACTOR   –3.0 
RECEIVE CARRIER LEVEL   –42.5 

 
NOISE PER MHZ –114.0 
4 MHZ CORRECTION 6.0 
RECEIVER NOISE FIGURE 8.0 
RECEIVER THERMAL NOISE –100.0 

 
RECEIVER CARRIER-TO-NOISE RATIO WITHOUT AGC 57.5 
RECEIVER INPUT AGC ATTENUATION –4.5 
RECEIVER CARRIER-TO-NOISE RATIO IN AGC 53.0 
RECEIVER COMPOSITE TRIPLE BEAT IN AGC 83.4 
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25. Fiber Optics 
Cable operators have been using optical fiber technology in hybrid fiber/coax (HFC) architectures since 
the late 1980s. This section includes several formulas and examples applicable to optical fiber and optical 
links, with a focus on analog links. 
 

25.1. Calculate index of refraction 

The speed of an electromagnetic signal is slightly slower when traveling through a physical medium such 
as air, water or glass than it is in a vacuum. As a general rule the speed of light decreases as the density of 
the medium increases. The index of refraction is a measure of that reduction in speed, defined as the ratio 
of the speed of light in a vacuum to the speed of light in the material through which the electromagnetic 
signal is traveling. 
 
The following formula can be used to calculate index of refraction: 
 
 

𝑠𝑠 =
𝑝𝑝0

𝑝𝑝
 

 
where 
𝑠𝑠 is index of refraction 
𝑝𝑝0 is the speed of light in a vacuum (299,792,458 meters per second or 983,571,056.43 feet per second) 
𝑝𝑝 is the speed of light in some other medium (same units as 𝑝𝑝0) 
 
 
Example: 
What is the index of refraction of an optical fiber when the speed of light through that fiber is 
670,190,144.75 feet per second? 
 
Solution: 
𝑠𝑠 =

𝑝𝑝0

𝑝𝑝
 

 

𝑠𝑠 =
983,571,056.43 
670,190,144.75

 

 
𝑠𝑠 = 1.4676 
 
Answer: The index of refraction is 1.4676. 
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25.2. Calculate speed of light in optical fiber 

The following formula can be used to calculate the speed of light in optical fiber when the index of 
refraction is known: 
 
 

𝑝𝑝 =
𝑝𝑝0

𝑠𝑠
 

 
where 
𝑝𝑝 is the speed of light in some other medium (same units as 𝑝𝑝0) 
𝑝𝑝0 is the speed of light in a vacuum (299,792,458 meters per second or 983,571,056.43 feet per second) 
𝑠𝑠 is index of refraction 
 
 
Example: 
What is the speed of light in meters per second in an optical fiber with an index of refraction of 1.4676? 
 
Solution: 

𝑝𝑝 =
𝑝𝑝0

𝑠𝑠
 

 

𝑝𝑝 =
299,792,458 

1.4676
 

 
𝑝𝑝 = 204,273,956.12 
 
Answer: The speed of light in the example optical fiber is 204,273,956.12 meters per second. 
 

25.3. Optical fiber velocity factor and velocity of propagation 

If one knows the index of refraction for a given optical fiber, the fiber’s velocity factor and velocity of 
propagation can be calculated using the formulas in this section. 
 

25.3.1. Calculate optical fiber velocity factor 

The following formula can be used to calculate velocity factor for optical fiber when the fiber’s index of 
refraction is known: 
 
 

𝑉𝑉𝑁𝑁 =
1
𝑠𝑠

 
 
where 
𝑉𝑉𝑁𝑁 is velocity factor 
𝑠𝑠 is index of refraction 
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Example: 
The published effective group index of refraction for a popular single mode optical fiber is 1.4676 at 
1,310 nanometers. What is the fiber’s velocity factor at that wavelength? 
 
Solution: 

𝑉𝑉𝑁𝑁 =
1
𝑠𝑠

 

 

𝑉𝑉𝑁𝑁 =
1

1.4676
 

 
𝑉𝑉𝑁𝑁 = 0.6814 
 
Answer: The fiber’s VF at 1,310 nm is approximately 0.68. 
 

25.3.2. Calculate optical fiber velocity of propagation 

From Section 20.4, velocity of propagation is velocity factor expressed as a percentage: 
 
 

𝑉𝑉𝐿𝐿𝑃𝑃 = 𝑉𝑉𝑁𝑁 ∗ 100 
 
where 
𝑉𝑉𝐿𝐿𝑃𝑃 is velocity of propagation 
𝑉𝑉𝑁𝑁 is the velocity factor 
 
 
Example: 
What is the VoP for the single mode optical fiber in the previous example? 

Solution: 
𝑉𝑉𝐿𝐿𝑃𝑃 = 𝑉𝑉𝑁𝑁 ∗ 100 
 
𝑉𝑉𝐿𝐿𝑃𝑃 = 0.6814 ∗ 100 
 
𝑉𝑉𝐿𝐿𝑃𝑃 = 68.14 
 
Answer: The single mode optical fiber’s VoP at 1,310 nm is 68.14%.  
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The “speed” of coax 
Some are surprised to learn that light travels through optical fiber slightly slower than RF travels through 
coaxial cable. From the previous example, the speed of light (at 1,310 nm) through the fiber is 68.14% of 
the speed of light in a vacuum, or 983,571,056.43 ∗ 0.6814 = 670,190,144.75 feet per second. The 
velocity of propagation for some hardline coaxial cables is 87%, which gives a speed for RF traveling 
through the coax of 983,571,056.43 ∗ 0.87 = 855,706,819.09 feet per second. Looked at another way, 
light or RF in a vacuum travels 1 ft. in 1/983,571,056.43 = 1.02E–9 second (1.02 ns); light (at 1,310 nm) 
travels through 1 ft. of single mode optical fiber in 1/670,190,144.75 = 1.49E–9 second (1.49 ns); and RF 
travels through 1 ft. of coaxial cable in 1/855,706,819.09 = 1.17E–9 second (1.17 ns). 
 

25.4. Calculate optical wavelength 

The following formula can be used to calculate optical wavelength in nanometers (nm) when the 
frequency in terahertz (THz) is known: 
 
 

𝜆𝜆𝑖𝑖𝑘𝑘 =
299,792.458

𝑓𝑓𝐶𝐶𝑀𝑀𝑀𝑀
 

 
where 
𝜆𝜆𝑖𝑖𝑘𝑘 is wavelength in nanometers 
𝑓𝑓𝐶𝐶𝑀𝑀𝑀𝑀 is frequency in terahertz (THz) 
 
 
Example: 
What is the wavelength of an optical signal whose frequency is 193.414 THz? 
 
Solution: 

𝜆𝜆𝑖𝑖𝑘𝑘 =
299,792.458

𝑓𝑓𝐶𝐶𝑀𝑀𝑀𝑀
 

 

𝜆𝜆𝑖𝑖𝑘𝑘 =
299,792.458

193.414
 

 
𝜆𝜆𝑖𝑖𝑘𝑘 = 1,550.004 
 
Answer: The wavelength of a 193.414 THz optical signal is 1,550 nm. 
 
It is common to describe optical sources, optical fiber links, and optical signals by wavelength instead of 
frequency – for instance, 1,550 nm instead of 193.414 THz or 1,310 nm instead of 228.849 THz. An 
important point: By convention, the optical wavelength is its value in a vacuum (free space), and the 
formula in this section calculates that free-space value. 
 
Note that the velocity of propagation of an optical signal is slower in optical fiber than it is in a vacuum. 
If one were to measure the wavelength of a 1,310 nm optical signal inside of single mode optical fiber, 
the measured wavelength value would be less than 1,310 nm because of the fiber’s velocity of 
propagation compared to that of a vacuum. Even so, the signal would still be called a 1,310 nm signal. 
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25.5. Calculate frequency 

The following formula can be used to calculate frequency in terahertz (THz) when the optical wavelength 
in nanometers (nm) is known: 
 
 

𝑓𝑓𝐶𝐶𝑀𝑀𝑀𝑀 =
299,792.458

𝜆𝜆𝑖𝑖𝑘𝑘
 

 
where 
𝑓𝑓𝐶𝐶𝑀𝑀𝑀𝑀 is frequency in terahertz (THz) 
𝜆𝜆𝑖𝑖𝑘𝑘 is wavelength in nanometers 
 
 
Example: 
What is the frequency in terahertz of an optical signal whose wavelength is 1,310 nanometers? 
 
Solution: 

𝑓𝑓𝐶𝐶𝑀𝑀𝑀𝑀 =
299,792.458

𝜆𝜆𝑖𝑖𝑘𝑘
 

 

𝑓𝑓𝐶𝐶𝑀𝑀𝑀𝑀 =
299,792.458

1,310
 

 
𝑓𝑓𝐶𝐶𝑀𝑀𝑀𝑀 = 228.849 
 
Answer: The frequency of a 1310 nm optical signal is 228.85 THz. 
 

25.6. Optical return loss 

Like RF return loss (see Section 21.4) one can think of optical return loss in units of decibels. Optical 
return loss at the interface between two media with different indices of refraction can be calculated with 
the following formula: 
 
 

𝑅𝑅 = −10𝑙𝑙𝐿𝐿𝑎𝑎10 ��
𝑠𝑠1 − 𝑠𝑠2

𝑠𝑠1 + 𝑠𝑠2
�

2
� 

 
where 
𝑅𝑅 is return loss in decibels 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑠𝑠1 is the index of refraction for one medium 
𝑠𝑠2 is the index of refraction for the other medium 
 
 
Example: 
What is the optical return loss at the interface of a single mode optical fiber with an index of refraction of 
1.4676 and a splice with an index of refraction of 1.473? 
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Solution: 

𝑅𝑅 = −10𝑙𝑙𝐿𝐿𝑎𝑎10 ��
𝑠𝑠1 − 𝑠𝑠2

𝑠𝑠1 + 𝑠𝑠2
�

2
� 

 

𝑅𝑅 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 ��
1.4676 − 1.473
1.4676 + 1.473

�
2

� 

 

𝑅𝑅 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 ��
−0.0054
2.9406

�
2

� 

 
𝑅𝑅 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[0.00000337] 
 
𝑅𝑅 = −10 ∗ [−5.47208439] 
 
𝑅𝑅 = 54.72 
 
Answer: The optical return loss is 54.72 dB. 
 

25.7. Noise in analog optical links 

This section includes formulas to calculate CNR in analog optical links; the information here is adapted 
from [4] and [5]. The contribution of erbium doped fiber amplifiers (EDFAs) is provided to support 
analysis of systems that use optical amplifiers (note that 1,310 nm links do not use optical amplifiers). 
Refer to Appendix F for more information on analog intensity modulation, which is used in the majority 
of optical links in HFC networks. 
 

25.7.1. Laser Noise 

One of the contributors to the carrier-to-noise ratio in an analog optical link is laser noise, specifically 
what is called relative intensity noise (RIN). The RIN produced by a laser is caused by the spontaneous 
emission of photons, and results in the production of non-coherent light. 
 
The following formula can be used to calculate laser noise CNR contribution as 𝐶𝐶𝑁𝑁𝑅𝑅𝑅𝑅𝐼𝐼𝑁𝑁 in decibels: 
 
 

𝐶𝐶𝑁𝑁𝑅𝑅𝑅𝑅𝐼𝐼𝑁𝑁 = 20𝑙𝑙𝐿𝐿𝑎𝑎10(𝑚𝑚) − 10𝑙𝑙𝐿𝐿𝑎𝑎10(2𝑑𝑑) − 𝑅𝑅𝐼𝐼𝑁𝑁 
 
where 
𝐶𝐶𝑁𝑁𝑅𝑅𝑅𝑅𝐼𝐼𝑁𝑁  is the carrier-to-noise ratio in decibels as a result of RIN 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑚𝑚 is the per-channel optical modulation index (OMI) 
𝑑𝑑 is the noise measurement bandwidth in hertz 
𝑅𝑅𝐼𝐼𝑁𝑁 is relative intensity noise 
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Example: 
Assume a loading of 78 analog NTSC channels and 33 SC-QAM signals, resulting in a per-channel OMI 
of 3.58%. What is the laser noise contribution (𝐶𝐶𝑁𝑁𝑅𝑅𝑅𝑅𝐼𝐼𝑁𝑁) in which the noise measurement bandwidth is 4 
MHz (4,000,000 Hz), and the RIN is –160 dB/Hz? 
 
Solution: 
𝐶𝐶𝑁𝑁𝑅𝑅𝑅𝑅𝐼𝐼𝑁𝑁 = 20𝑙𝑙𝐿𝐿𝑎𝑎10(𝑚𝑚) − 10𝑙𝑙𝐿𝐿𝑎𝑎10(2𝑑𝑑) − 𝑅𝑅𝐼𝐼𝑁𝑁 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝑅𝑅𝐼𝐼𝑁𝑁 = 20𝑙𝑙𝐿𝐿𝑎𝑎10(0.0358) − 10𝑙𝑙𝐿𝐿𝑎𝑎10(2 ∗ 4,000,000) − (−160) 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝑅𝑅𝐼𝐼𝑁𝑁 = [20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(0.0358)] − [10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(8,000,000)] − (−160) 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝑅𝑅𝐼𝐼𝑁𝑁 = [20 ∗ (−1.4461)] − [10 ∗ (6.9031)] − (−160) 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝑅𝑅𝐼𝐼𝑁𝑁 = [−28.9223] − [69.0309] − (−160) 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝑅𝑅𝐼𝐼𝑁𝑁 = 62.0468 
 
Answer: The 𝐶𝐶𝑁𝑁𝑅𝑅𝑅𝑅𝐼𝐼𝑁𝑁 is 62.05 dB. 
 

25.7.2. EDFA Noise 

If a 1,550 nm optical link includes an erbium doped fiber amplifier, that optical amplifier will contribute 
to the overall CNR of the optical link. Noise in an optical amplifier is produced by the spontaneous 
emission of photons, and is known as amplified spontaneous emission (ASE). 
 
The following formula can be used to calculate optical amplifier CNR contribution as 𝐶𝐶𝑁𝑁𝑅𝑅𝐸𝐸𝑋𝑋𝑁𝑁𝐴𝐴 in 
decibels: 
 
 

𝐶𝐶𝑁𝑁𝑅𝑅𝐸𝐸𝑋𝑋𝑁𝑁𝐴𝐴 = 86.2 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑐𝑐𝑜𝑜𝑓𝑓 + 20𝑙𝑙𝐿𝐿𝑎𝑎10(𝑚𝑚) − 𝑁𝑁𝑁𝑁𝐸𝐸𝑋𝑋𝑁𝑁𝐴𝐴 
 
where 
𝐶𝐶𝑁𝑁𝑅𝑅𝐸𝐸𝑋𝑋𝑁𝑁𝐴𝐴 is the EDFA carrier-to-noise ratio per channel in decibels (measured in a 4 MHz bandwidth) 
𝑃𝑃𝑖𝑖𝑖𝑖𝑐𝑐𝑜𝑜𝑓𝑓 is the optical input power to the EDFA, in dBm 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑚𝑚 is the per-channel optical modulation index (OMI) 
𝑁𝑁𝑁𝑁𝐸𝐸𝑋𝑋𝑁𝑁𝐴𝐴 is the noise figure of the optical amplifier, in decibels 
 
 
Example: 
What is the CNR of an EDFA that has a noise figure of 5.5 dB, an optical input power of +5 dBm, and a 
per-channel OMI of 3.58% (m = 0.0358)? 
 
Solution: 
𝐶𝐶𝑁𝑁𝑅𝑅𝐸𝐸𝑋𝑋𝑁𝑁𝐴𝐴 = 86.2 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑐𝑐𝑜𝑜𝑓𝑓 + 20𝑙𝑙𝐿𝐿𝑎𝑎10(𝑚𝑚) − 𝑁𝑁𝑁𝑁𝐸𝐸𝑋𝑋𝑁𝑁𝐴𝐴 
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𝐶𝐶𝑁𝑁𝑅𝑅𝐸𝐸𝑋𝑋𝑁𝑁𝐴𝐴 = 86.2 + 5 + [20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(0.0358)] − 5.5 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝐸𝐸𝑋𝑋𝑁𝑁𝐴𝐴 = 86.2 + 5 + [20 ∗ (−1.4461)] − 5.5 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝐸𝐸𝑋𝑋𝑁𝑁𝐴𝐴 = 86.2 + 5 + [−28.9223] − 5.5 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝐸𝐸𝑋𝑋𝑁𝑁𝐴𝐴 = 56.78 
 
Answer: The 𝐶𝐶𝑁𝑁𝑅𝑅𝐸𝐸𝑋𝑋𝑁𝑁𝐴𝐴 is 56.78 dB. 
 

25.7.3. Receiver shot noise 

From [4], “The noise performance of an optical receiver is limited by the noise current of the diode (shot 
noise due to the statistical variation in arriving photon distribution) …” The following formula can be 
used to calculate the carrier-to-noise ratio contribution of receiver shot noise: 
 
 

𝐶𝐶𝑁𝑁𝑅𝑅𝑅𝑅𝑀𝑀𝐸𝐸𝐶𝐶 = 𝑃𝑃𝑅𝑅 + 20𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝑚𝑚
√2

� + 10𝑙𝑙𝐿𝐿𝑎𝑎10(𝑅𝑅) − 10𝑙𝑙𝐿𝐿𝑎𝑎10(𝑑𝑑𝑚𝑚) + 154.94 

 
where 
𝐶𝐶𝑁𝑁𝑅𝑅𝑅𝑅𝑀𝑀𝐸𝐸𝐶𝐶  is the carrier-to-noise ratio per channel in decibels due to shot noise in the receiver 
𝑃𝑃𝑅𝑅 is the optical input power to the receiver, in dBm 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑚𝑚 is the per-channel optical modulation index (OMI) 
𝑅𝑅 is the responsivity of the photodiode detector in amperes per watt (or milliamperes per milliwatt) 
𝑑𝑑𝑚𝑚 is the noise susceptibility bandwidth of the channel in hertz (e.g., 4,000,000 Hz) 
 
 
Example: 
What is the CNR contribution of an optical receiver because of shot noise, when the received optical 
power is 0 dBm, the per-channel OMI is 3.58% (m = 0.0358), the photodiode responsivity is 1.0 A/W, 
and the noise susceptibility bandwidth is 4 MHz? 
 
Solution: 
𝐶𝐶𝑁𝑁𝑅𝑅𝑅𝑅𝑀𝑀𝐸𝐸𝐶𝐶 = 𝑃𝑃𝑅𝑅 + 20𝑙𝑙𝐿𝐿𝑎𝑎10 �

𝑚𝑚
√2

� + 10𝑙𝑙𝐿𝐿𝑎𝑎10(𝑅𝑅) − 10𝑙𝑙𝐿𝐿𝑎𝑎10(𝑑𝑑𝑚𝑚) + 154.94 

 

𝐶𝐶𝑁𝑁𝑅𝑅𝑅𝑅𝑀𝑀𝐸𝐸𝐶𝐶 = 0 + 20𝑙𝑙𝐿𝐿𝑎𝑎10 �
0.0358

√2
� + 10𝑙𝑙𝐿𝐿𝑎𝑎10(1.0) − 10𝑙𝑙𝐿𝐿𝑎𝑎10(4,000,000) + 154.94 

 

𝐶𝐶𝑁𝑁𝑅𝑅𝑅𝑅𝑀𝑀𝐸𝐸𝐶𝐶 = 0 + �20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 �
0.0358

√2
�� + [10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(1.0)] − [10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(4,000,000)] + 154.94 

 

𝐶𝐶𝑁𝑁𝑅𝑅𝑅𝑅𝑀𝑀𝐸𝐸𝐶𝐶 = 0 + �20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 �
0.0358
1.4142

�� + [10 ∗ (0)] − [10 ∗ (6.6021)] + 154.94 
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𝐶𝐶𝑁𝑁𝑅𝑅𝑅𝑅𝑀𝑀𝐸𝐸𝐶𝐶 = 0 + [20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(0.0253)] + [0] − [66.0206] + 154.94 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝑅𝑅𝑀𝑀𝐸𝐸𝐶𝐶 = 0 + [20 ∗ (−1.5966)] + [0] − [66.0206] + 154.94 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝑅𝑅𝑀𝑀𝐸𝐸𝐶𝐶 = 0 + [−31.9326] + [0] − [66.0206] + 154.94 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝑅𝑅𝑀𝑀𝐸𝐸𝐶𝐶 = 56.9868 
 
Answer: The 𝐶𝐶𝑁𝑁𝑅𝑅𝑅𝑅𝑀𝑀𝐸𝐸𝐶𝐶 is 56.99 dB. 
 

25.7.4. Receiver thermal noise 

The noise performance of an optical receiver is further limited by thermal noise generated within the post-
detection amplifier stage, typically a transimpedance amplifier. 
 
The following formula can be used to calculate the carrier-to-noise ratio contribution of the 
transimpedance amplifier’s thermal noise: 
 
 

𝐶𝐶𝑁𝑁𝑅𝑅𝐶𝐶𝑀𝑀𝐸𝐸𝑅𝑅𝑀𝑀𝐴𝐴𝐸𝐸 = 2𝑃𝑃𝑅𝑅 + 20𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝑚𝑚
√2

� + 20𝑙𝑙𝐿𝐿𝑎𝑎10(𝑅𝑅) − 10𝑙𝑙𝐿𝐿𝑎𝑎10(𝑑𝑑𝑚𝑚) − 20𝑙𝑙𝐿𝐿𝑎𝑎10(𝐼𝐼𝑚𝑚) + 180 

where 
𝐶𝐶𝑁𝑁𝑅𝑅𝐶𝐶𝑀𝑀𝐸𝐸𝑅𝑅𝑀𝑀𝐴𝐴𝐸𝐸  is the carrier-to-noise ratio per channel in decibels due to thermal noise in the receiver 
𝑃𝑃𝑅𝑅 is the optical input power to the receiver, in dBm 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑚𝑚 is the per-channel optical modulation index (OMI) 
𝑅𝑅 is the responsivity of the photodiode detector in amperes per watt (or milliamperes per milliwatt) 
𝑑𝑑𝑚𝑚 is the noise susceptibility bandwidth of the channel in hertz (e.g., 4,000,000 Hz) 
𝐼𝐼𝑚𝑚 is the post-amplifier equivalent noise current density in 𝑝𝑝𝐴𝐴 √𝐻𝐻𝑧𝑧⁄  (typ. values are 6 to 8) 
180 is a factor that results from converting the input power to milliwatts from watts and the amplifier 
noise from amperes to picoamperes 
 
 
Example: 
What is the CNR contribution of an optical receiver because of thermal noise, when the received optical 
power is 0 dBm, the per-channel OMI is 3.58% (m = 0.0358), the photodiode responsivity is 1.0 A/W, 
and noise susceptibility bandwidth is 4 MHz, and the amplifier input noise current density is 7 𝑝𝑝𝐴𝐴 √𝐻𝐻𝑧𝑧⁄ ? 
 
Solution: 
𝐶𝐶𝑁𝑁𝑅𝑅𝐶𝐶𝑀𝑀𝐸𝐸𝑅𝑅𝑀𝑀𝐴𝐴𝐸𝐸 = 2𝑃𝑃𝑅𝑅 + 20𝑙𝑙𝐿𝐿𝑎𝑎10 �

𝑚𝑚
√2

� + 20𝑙𝑙𝐿𝐿𝑎𝑎10(𝑅𝑅) − 10𝑙𝑙𝐿𝐿𝑎𝑎10(𝑑𝑑𝑚𝑚) − 20𝑙𝑙𝐿𝐿𝑎𝑎10(𝐼𝐼𝑚𝑚) + 180 

 

𝐶𝐶𝑁𝑁𝑅𝑅𝐶𝐶𝑀𝑀𝐸𝐸𝑅𝑅𝑀𝑀𝐴𝐴𝐸𝐸 = 2(0) + �20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 �
0.0358

√2
�� + [20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(1.0)] − [10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(4,000,000)] − [20

∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(7)] + 180 
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𝐶𝐶𝑁𝑁𝑅𝑅𝐶𝐶𝑀𝑀𝐸𝐸𝑅𝑅𝑀𝑀𝐴𝐴𝐸𝐸 = 0 + �20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 �
0.0358
1.4142

�� + [20 ∗ (0)] − [10 ∗ (6.6021)] − [20 ∗ (0.8451)] + 180 

 
𝐶𝐶𝑁𝑁𝑅𝑅𝐶𝐶𝑀𝑀𝐸𝐸𝑅𝑅𝑀𝑀𝐴𝐴𝐸𝐸 = 0 + [20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(0.0253)] + [0] − [66.0206] − [16.9020] + 180 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝐶𝐶𝑀𝑀𝐸𝐸𝑅𝑅𝑀𝑀𝐴𝐴𝐸𝐸 = 0 + [20 ∗ (−1.5966)] + [0] − [66.0206] − [16.9020] + 180 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝐶𝐶𝑀𝑀𝐸𝐸𝑅𝑅𝑀𝑀𝐴𝐴𝐸𝐸 = 0 + [−31.9326] + [0] − [66.0206] − [16.9020] + 180 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝐶𝐶𝑀𝑀𝐸𝐸𝑅𝑅𝑀𝑀𝐴𝐴𝐸𝐸 = 65.1448 
 
Answer: The 𝐶𝐶𝑁𝑁𝑅𝑅𝐶𝐶𝑀𝑀𝐸𝐸𝑅𝑅𝑀𝑀𝐴𝐴𝐸𝐸 is 65.14 dB. 
 

25.7.5. Combined optical link CNR 

The total CNR for an optical link can be calculated using the following formula: 
 
 

𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = −10 𝑙𝑙𝐿𝐿𝑎𝑎10 �10
−𝐶𝐶𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

10 + 10
−𝐶𝐶𝑁𝑁𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

10 + 10
−𝐶𝐶𝑁𝑁𝑅𝑅𝑆𝑆𝑆𝑆𝐸𝐸𝑆𝑆

10 + 10
−𝐶𝐶𝑁𝑁𝑅𝑅𝑆𝑆𝑆𝑆𝐸𝐸𝑅𝑅𝑇𝑇𝐸𝐸𝐸𝐸

10 � 
 
where 
𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 is the combined carrier-to-noise ratio in decibels 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝐶𝐶𝑁𝑁𝑅𝑅𝑅𝑅𝐼𝐼𝑁𝑁 is the laser’s carrier-to-noise ratio due to RIN 
𝐶𝐶𝑁𝑁𝑅𝑅𝐸𝐸𝑋𝑋𝑁𝑁𝐴𝐴 is the carrier-to-noise ratio in the optical amplifier (not applicable in 1,310 nm links) 
𝐶𝐶𝑁𝑁𝑅𝑅𝑅𝑅𝑀𝑀𝐸𝐸𝐶𝐶 is the carrier-to-noise ratio in the receiver due to shot noise 
𝐶𝐶𝑁𝑁𝑅𝑅𝐶𝐶𝑀𝑀𝐸𝐸𝑅𝑅𝑀𝑀𝐴𝐴𝐸𝐸 is the carrier-to-noise ratio in the receiver due to thermal noise 
 
 
Example: 
What is the total CNR in an optical link using the calculated CNR values from the examples in the 
previous sections? 
𝐶𝐶𝑁𝑁𝑅𝑅𝑅𝑅𝐼𝐼𝑁𝑁 = 62.05 dB 
𝐶𝐶𝑁𝑁𝑅𝑅𝐸𝐸𝑋𝑋𝑁𝑁𝐴𝐴 = 56.78 dB 
𝐶𝐶𝑁𝑁𝑅𝑅𝑚𝑚ℎ𝑜𝑜𝑓𝑓 = 56.99 dB 
𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓ℎ𝑓𝑓𝑚𝑚𝑘𝑘𝑐𝑐𝑡𝑡 = 65.14 dB 
 
Solution: 

𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = −10 𝑙𝑙𝐿𝐿𝑎𝑎10 �10
−𝐶𝐶𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

10 + 10
−𝐶𝐶𝑁𝑁𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

10 + 10
−𝐶𝐶𝑁𝑁𝑅𝑅𝑆𝑆𝑆𝑆𝐸𝐸𝑆𝑆

10 + 10
−𝐶𝐶𝑁𝑁𝑅𝑅𝑆𝑆𝑆𝑆𝐸𝐸𝑅𝑅𝑇𝑇𝐸𝐸𝐸𝐸

10 � 

 

𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 �10
−62.05

10 + 10
−56.78

10 + 10
−56.99

10 + 10
−65.14

10 � 

 
𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[10−6.205 + 10−5.678 + 10−5.699 + 10−6.514] 
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𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[0.00000062 + 0.00000210 + 0.00000200 + 0.00000031] 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[0.00000503] 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = −10 ∗[−5.2985] 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = 52.9854 
 
Answer: The total CNR in the example fiber link is 52.99 dB. 
 
Note: When calculating CNR in a multiple-wavelength optical link, the CNR is calculated separately for 
each wavelength. The optical power referred to in the previous formulas and examples refers to the power 
of a single wavelength, not the aggregate power. 
 

25.7.6. Calculate combined CNR of headend, optical link, and 
amplifier cascade 

The following formula, adapted from Section 14.3, can be used to calculate the combined CNR of the 
headend or hub, the optical fiber link, and an amplifier cascade after the node: 
 
 

𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = −10 𝑙𝑙𝐿𝐿𝑎𝑎10 �10
−𝐶𝐶𝑁𝑁𝑅𝑅ℎ𝑓𝑓𝑐𝑐𝑑𝑑𝑓𝑓𝑛𝑛𝑑𝑑

10 + 10
−𝐶𝐶𝑁𝑁𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐

10 + 10
−𝐶𝐶𝑁𝑁𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑓𝑓

10 � 

 
where 
𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 is the total carrier-to-noise ratio 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝐶𝐶𝑁𝑁𝑅𝑅ℎ𝑓𝑓𝑐𝑐𝑑𝑑𝑓𝑓𝑖𝑖𝑑𝑑 is the combined carrier-to-noise ratio of all of the headend (or hub) processors, modulators, 
and other devices 
𝐶𝐶𝑁𝑁𝑅𝑅𝑜𝑜𝑐𝑐𝑓𝑓𝑖𝑖𝑐𝑐𝑐𝑐𝑡𝑡 is the carrier-to-noise ratio of the optical fiber link 
𝐶𝐶𝑁𝑁𝑅𝑅𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑑𝑑𝑓𝑓 is the carrier-to-noise ratio of the amplifier cascade after the node 
 
 
Example: 
Assume a headend’s combined CNR at the input to the downstream laser transmitter is 55 dB. Using the 
optical fiber link combined CNR from Section 25.7.5 (52.99 dB) and amplifier cascade CNR from 
Section 14.2 (49.86 dB), what is the total (end-of-line) CNR? 
 
Solution: 

𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = −10 𝑙𝑙𝐿𝐿𝑎𝑎10 �10
−𝐶𝐶𝑁𝑁𝑅𝑅ℎ𝑓𝑓𝑐𝑐𝑑𝑑𝑓𝑓𝑛𝑛𝑑𝑑

10 + 10
−𝐶𝐶𝑁𝑁𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐

10 + 10
−𝐶𝐶𝑁𝑁𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑓𝑓

10 � 

 

𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = −10 𝑙𝑙𝐿𝐿𝑎𝑎10 �10
−55
10 + 10

−52.99
10 + 10

−49.86
10 � 

 
𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[10−5.500 + 10−5.299 + 10−4.986] 
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𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[0.00000316 + 0.00000502 + 0.00001033] 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10[0.00001851] 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = −10 ∗ [−4.73251575] 
 
𝐶𝐶𝑁𝑁𝑅𝑅𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = 47.33 
 
Answer: The total (end-of-line) CNR is 47.33 dB. 
 

25.8. Calculate optical link budget 

Calculation of an optical link budget is relatively straightforward, involving little more than addition 
and/or subtraction of gains and losses (in decibels) in the path between the output of an optical transmitter 
and the input to an optical receiver. One can use either the manufacturer’s published loss specifications or 
actual measured values. 
 

25.8.1. Calculate total optical fiber loss 

Optical fiber loss is generally specified in decibels per kilometer (dB/km) at the desired operating 
wavelength. The following table summarizes some typical values. 

Table 17 - Typical optical fiber attenuation values. 
Wavelength Maximum loss 

(dB/km) 
1,310 nm 0.33 to 0.35 
1,550 nm 0.19 to 0.20 
1,625 nm 0.20 to 0.23 

 
The following formula can be used to calculate the total attenuation in a span or length of fiber when the 
loss per kilometer is known: 
 
 

𝐿𝐿𝑓𝑓𝑖𝑖𝑐𝑐𝑓𝑓𝑚𝑚 = 𝐿𝐿𝑑𝑑𝑑𝑑/𝑘𝑘𝑘𝑘 ∗ 𝑀𝑀𝑘𝑘𝑘𝑘 
 
where 
𝐿𝐿𝑓𝑓𝑖𝑖𝑐𝑐𝑓𝑓𝑚𝑚 is the total insertion loss of the optical fiber at the wavelength in use, in decibels 
𝐿𝐿𝑑𝑑𝑑𝑑/𝑘𝑘𝑘𝑘 is the optical fiber attenuation in decibels per kilometer at the wavelength of interest 
𝑀𝑀𝑘𝑘𝑘𝑘 is the total length of the fiber span in kilometers 
 
 
Example: 
What is the total attenuation of a 9.25 km span of fiber at 1,310 nm? Use the maximum value in Table 17. 
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Solution: 
𝐿𝐿𝑓𝑓𝑖𝑖𝑐𝑐𝑓𝑓𝑚𝑚 = 𝐿𝐿𝑑𝑑𝑑𝑑/𝑘𝑘𝑘𝑘 ∗ 𝑀𝑀𝑘𝑘𝑘𝑘 
 
𝐿𝐿𝑓𝑓𝑖𝑖𝑐𝑐𝑓𝑓𝑚𝑚 = 0.35 ∗ 9.25 
 
𝐿𝐿𝑓𝑓𝑖𝑖𝑐𝑐𝑓𝑓𝑚𝑚 = 3.24 
 
Answer: The total attenuation of a 9.25 km span of fiber at 1,310 nm is 3.24 dB. 
 

25.8.2. Calculate optical coupler ideal insertion loss 

Optical couplers are typically specified by the output power as a function of input power measured in 
percent (%). For example, a 1 x 2 optical coupler that divides the input optical power equally between the 
two outputs is called a 50/50 coupler (50% of the input power is present at each of the two outputs). 
Actual insertion loss is somewhat higher than the calculated ideal value. 
 
The following formula can be used to convert coupled power in percent to decibels: 
 
 

𝐿𝐿𝑖𝑖𝑑𝑑𝑓𝑓𝑐𝑐𝑡𝑡 = −10𝑙𝑙𝐿𝐿𝑎𝑎10�𝑃𝑃𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑡𝑡𝑓𝑓𝑑𝑑� 
 
where 
𝐿𝐿𝑖𝑖𝑑𝑑𝑓𝑓𝑐𝑐𝑡𝑡  is coupler ideal insertion loss in decibels 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑃𝑃𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑡𝑡𝑓𝑓𝑑𝑑 is the coupled power percentage in decimal form 
 
 
Example 1: 
What is the ideal insertion loss of a 50/50 optical coupler? 
 
Solution 1: 
𝐿𝐿𝑖𝑖𝑑𝑑𝑓𝑓𝑐𝑐𝑡𝑡 = −10𝑙𝑙𝐿𝐿𝑎𝑎10�𝑃𝑃𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑡𝑡𝑓𝑓𝑑𝑑� 
 
𝐿𝐿𝑖𝑖𝑑𝑑𝑓𝑓𝑐𝑐𝑡𝑡 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(0.50) 
 
𝐿𝐿𝑖𝑖𝑑𝑑𝑓𝑓𝑐𝑐𝑡𝑡 = −10 ∗ (−0.3010) 
 
𝐿𝐿𝑖𝑖𝑑𝑑𝑓𝑓𝑐𝑐𝑡𝑡 = 3.0103 
 
Answer: The ideal insertion loss of a 50/50 optical coupler is 3.01 dB (per output port). 
 
Example 2: 
What is the ideal insertion loss of a 90/10 coupler? 
 
Solution 2: 
First calculate the ideal insertion loss of the 90% coupled output port. 
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𝐿𝐿𝑖𝑖𝑑𝑑𝑓𝑓𝑐𝑐𝑡𝑡 = −10𝑙𝑙𝐿𝐿𝑎𝑎10�𝑃𝑃𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑡𝑡𝑓𝑓𝑑𝑑� 
 
𝐿𝐿𝑖𝑖𝑑𝑑𝑓𝑓𝑐𝑐𝑡𝑡 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(0.90) 
 
𝐿𝐿𝑖𝑖𝑑𝑑𝑓𝑓𝑐𝑐𝑡𝑡 = −10 ∗ (−0.0458) 
 
𝐿𝐿𝑖𝑖𝑑𝑑𝑓𝑓𝑐𝑐𝑡𝑡 = 0.4576 
 
Answer: The ideal insertion loss of the 90% coupled port is 0.46 dB. 
 
Next, calculate the insertion loss of the 10% coupled port. 
𝐿𝐿𝑖𝑖𝑑𝑑𝑓𝑓𝑐𝑐𝑡𝑡 = −10𝑙𝑙𝐿𝐿𝑎𝑎10�𝑃𝑃𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑡𝑡𝑓𝑓𝑑𝑑� 
 
𝐿𝐿𝑖𝑖𝑑𝑑𝑓𝑓𝑐𝑐𝑡𝑡 = −10 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(0.10) 
 
𝐿𝐿𝑖𝑖𝑑𝑑𝑓𝑓𝑐𝑐𝑡𝑡 = −10 ∗ (−1.0000) 
 
𝐿𝐿𝑖𝑖𝑑𝑑𝑓𝑓𝑐𝑐𝑡𝑡 = 10.00 
 
Answer: The ideal insertion loss of the 10% coupled port is 10 dB. 
 
Note: Typical insertion loss values for the examples in this section would be 3.40 dB/3.40 dB for the 
50/50 coupler, and 0.60 dB/10.80 dB for the 90/10 coupler. Refer to the coupler manufacturer’s 
specifications for actual insertion loss values in decibels. 
 

25.8.3. Calculate total loss between optical transmitter and receiver 

The following formula can be used to calculate the total loss in decibels between an optical transmitter 
and optical receiver: 
 
 

𝐿𝐿𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = 𝐿𝐿𝑐𝑐𝑜𝑜𝑖𝑖𝑖𝑖𝑓𝑓𝑐𝑐𝑓𝑓𝑜𝑜𝑚𝑚 + 𝐿𝐿𝑚𝑚𝑐𝑐𝑡𝑡𝑖𝑖𝑐𝑐𝑓𝑓 + 𝐿𝐿𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑡𝑡𝑓𝑓𝑚𝑚 + 𝐿𝐿𝑓𝑓𝑖𝑖𝑐𝑐𝑓𝑓𝑚𝑚 + 𝐿𝐿𝑘𝑘𝑖𝑖𝑚𝑚𝑐𝑐 
 
where 
𝐿𝐿𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 is the total combined insertion loss of all components, devices, and optical fiber between an optical 
transmitter and receiver, in decibels 
𝐿𝐿𝑐𝑐𝑜𝑜𝑖𝑖𝑖𝑖𝑓𝑓𝑐𝑐𝑓𝑓𝑜𝑜𝑚𝑚 is the total loss of all mechanical connectors, in decibels 
𝐿𝐿𝑚𝑚𝑐𝑐𝑡𝑡𝑖𝑖𝑐𝑐𝑓𝑓 is the total loss of all splices, in decibels 
𝐿𝐿𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑡𝑡𝑓𝑓𝑚𝑚 is the total insertion loss of optical couplers, in decibels 
𝐿𝐿𝑓𝑓𝑖𝑖𝑐𝑐𝑓𝑓𝑚𝑚 is the total insertion loss of the optical fiber at the wavelength in use, in decibels 
𝐿𝐿𝑘𝑘𝑖𝑖𝑚𝑚𝑐𝑐  is the total loss of other devices or components (attenuators, multiplexers, etc.), in decibels 
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Optical transmitter
Connector
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Fusion splice50/50 
coupler Optical f iber Optical f iber

 
Figure 42 - Sample optical link. 

 
Example: 
What is the total insertion loss between the optical transmitter and optical receiver for the sample optical 
link in Figure 42? Assume the following loss values. 
Connector: 0.2 dB 
50/50 coupler: 3.4 dB 
Fusion splice: 0.05 dB 
Optical fiber: 9.25 km, 0.35 dB/km at 1,310 nm = 3.24 dB 
 
Solution: 
𝐿𝐿𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = 𝐿𝐿𝑐𝑐𝑜𝑜𝑖𝑖𝑖𝑖𝑓𝑓𝑐𝑐𝑓𝑓𝑜𝑜𝑚𝑚 + 𝐿𝐿𝑚𝑚𝑐𝑐𝑡𝑡𝑖𝑖𝑐𝑐𝑓𝑓 + 𝐿𝐿𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑡𝑡𝑓𝑓𝑚𝑚 + 𝐿𝐿𝑓𝑓𝑖𝑖𝑐𝑐𝑓𝑓𝑚𝑚 + 𝐿𝐿𝑘𝑘𝑖𝑖𝑚𝑚𝑐𝑐 
 
𝐿𝐿𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = (3 ∗ 0.2) + 0.05 + 3.4 + 3.24 + 0 
 
𝐿𝐿𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = 0.6 + 0.05 + 3.4 + 3.24 + 0 
 
𝐿𝐿𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = 7.29 
 
Answer: The total insertion loss between the optical transmitter and receiver is 7.29 dB. 
 

25.8.4. Calculate optical receiver input power 

The following formula can be used to calculate optical receiver input power: 
 
 

𝑃𝑃𝑅𝑅 = 𝑃𝑃𝐶𝐶 − 𝐿𝐿𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 
 
where 
𝑃𝑃𝑅𝑅 is optical receiver input power, in decibel milliwatt (dBm) 
𝑃𝑃𝐶𝐶 is the optical transmitter output power, in dBm 
𝐿𝐿𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 is the total combined insertion loss of all components, devices, and optical fiber between an optical 
transmitter and receiver, in decibels 
 
 
Example: 
What is the input power (in dBm) to the optical receiver in Figure 42 if the optical transmitter output is +6 
dBm and the total insertion loss between the transmitter and receiver is 7.29 dB? 
 
Solution: 
𝑃𝑃𝑅𝑅 = 𝑃𝑃𝐶𝐶 − 𝐿𝐿𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 
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𝑃𝑃𝑅𝑅 = 6 − 7.29 
 
𝑃𝑃𝑅𝑅 = −1.29 
 
Answer: The input power to the optical receiver is –1.29 dBm. 
  



SCTE 270 2021r1   

SCTE OPERATIONAL PRACTICE  © SCTE 242 

26. Ohm’s Law 
Ohm’s Law states that electric current is proportional to voltage, and inversely proportional to resistance. 
 
Current can be thought of as the flow of charged particles per unit of time. An analogy is the volume of 
water flowing through a garden hose, for instance, 1 gallon of water per second. Ampere is a measure of 
electric current, where 1 ampere equals 1 coulomb of charge flowing past a given point in 1 second.  
Coulomb is a unit of measure of electrically charged particles, where 1 coulomb = 6.242 ∗ 1018 electrons.  
Electromotive force (EMF) is the force of electrical attraction between two points of different charge 
potential. EMF is more commonly known as voltage (technically speaking, the volt is a measure of 
electromotive force), and is analogous to water pressure in a garden hose. 1 volt is the potential difference 
between two points on a wire carrying 1 ampere of current when the power dissipated between the points 
is 1 watt. 
 
Resistance (R) is an opposition to the flow of current. Ohm is a unit of resistance, where 1 ohm is defined 
as the resistance that allows 1 ampere of current to flow between two points that have a potential 
difference of 1 volt. 
 

E
I R

 
 

Figure 43 - This graphic can help one remember the three mathematical expressions of 
Ohm's Law. 

The following three formulas are expressions of Ohm’s Law, which can be remembered using the graphic 
in Figure 43: 
 
 

𝐼𝐼 =  
𝐸𝐸
𝑅𝑅

 
 

𝑅𝑅 =
𝐸𝐸
𝐼𝐼

 
 

𝐸𝐸 = 𝐼𝐼 ∗ 𝑅𝑅 
 
where 
𝐼𝐼 is current in amperes 
𝐸𝐸 is voltage in volts 
𝑅𝑅 is resistance in ohms 
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Example 1: 
Referring to Figure 44, what is the current in the circuit when the voltage is 12 volts and the resistance is 
75 ohms? 
 

Current = ?

Voltage = 12 V Resistance = 75 ohms

 
 

Figure 44 - What is the current with the voltage and resistance values shown? 

 
Solution 1: 

𝐼𝐼 =  
12
75

 
 
𝐼𝐼 =  0.16 
 
Answer: The current is 0.16 ampere. 
 
Example 2: 
Referring to Figure 45, what is the voltage in the circuit when the current in 0.16 ampere and the 
resistance is 75 ohms? 
 

Current = 0.16 A

Voltage = ? Resistance = 75 ohms

 
 

Figure 45 - What is the voltage with the current and resistance values shown? 

 
Solution 2: 
𝐸𝐸 = 0.16 ∗ 75 
 
𝐸𝐸 = 12 
 
Answer: The voltage is 12 volts. 
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Example 3: 
Referring to Figure 46, what is the resistance when the current is 0.16 ampere and the voltage is 12 volts? 
 

Current = 0.16 A

Voltage = 12 V Resistance = ?

 
 

Figure 46 - What is the resistance with the current and voltage values shown? 

 
Solution 3: 

𝑅𝑅 =
12

0.16
 

 
𝑅𝑅 = 75 
 
Answer: The resistance is 75 ohms. 
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27. Power in Direct Current Circuits 
Power is the rate at which work is done, or energy per unit of time – that is, power can be described as the 
rate at which energy is consumed in a circuit. 1 watt of power is equal to 1 volt causing a current of 1 
ampere. Watt (W) is the power required to do work at a rate of 1 joule per second (J/s). That is, a joule of 
work per second is 1 watt. One joule is the work done by a force of 1 newton acting over a distance of 1 
meter. The joule is a measure of a quantity of energy and equals 1 watt-second. 
 
If you think about it for a moment, 1 watt is simply the use or generation of 1 joule of energy per second. 
Other electrical units are in fact derived from the watt. For instance, 1 volt is 1 watt per ampere. 
 

27.1. Basic expressions of power in direct current circuits 

Another definition of 1 watt is 1 volt of potential (EMF) “pushing” 1 ampere of current through a 
resistance, or 𝑃𝑃 = 𝐸𝐸 ∗ 𝐼𝐼. 
 

P
E I

 
Figure 47 - This graphic can help one remember the basic relationships among power, 

voltage, and current. 

The following three formulas show the basic relationship among power, voltage, and current, and can be 
remembered using the graphic in Figure 47. 
 
 

𝑃𝑃 =  𝐸𝐸 ∗ 𝐼𝐼 
 

𝐸𝐸 =
𝑃𝑃
𝐼𝐼

 
 

𝐼𝐼 =
𝑃𝑃
𝐸𝐸

 
 
where 
𝑃𝑃 is power in watts 
𝐸𝐸 is voltage in volts 
𝐼𝐼 is current in amperes 
 
 
Example 1: 
Refer to Figure 48. What is the power dissipated in the resistor when the voltage is 12 volts and the 
current is 0.16 ampere (160 mA)? 
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Current = 0.16 A

Voltage = 12 V Power dissipated = ?

 
Figure 48 - What is the power dissipated in the resistor with the current and voltage 

values shown? 

Solution 1: 
𝑃𝑃 =  𝐸𝐸 ∗ 𝐼𝐼 
 
𝑃𝑃 =  12 ∗ 0.16 
 
𝑃𝑃 =  1.92 
 
Answer: The power dissipated in the resistor is 1.92 watts. 

Example 2: 
Refer to Figure 49. What is the voltage when the current is 1.16 ampere and the power dissipated in the 
resistor is 1.92 watts? 
 

Current = 0.16 A

Voltage = ? Power dissipated = 
1.92 watts

 
Figure 49 - What is the voltage with the current and power values shown? 

Solution 2: 

𝐸𝐸 =
𝑃𝑃
𝐼𝐼

 
 

𝐸𝐸 =
1.92
0.16

 
 
𝐸𝐸 = 12 
 
Answer: The voltage is 12 volts. 
 
  



SCTE 270 2021r1   

SCTE OPERATIONAL PRACTICE  © SCTE 247 

Example 3: 
Refer to Figure 50. What is the current if the voltage is 12 volts and the power dissipated in the resistor is 
1.92 watts? 
 

Current = ?

Voltage = 12 Power dissipated = 
1.92 watts

 
Figure 50 - What is the current with the voltage and power values shown? 

Solution 3: 

𝐼𝐼 =
𝑃𝑃
𝐸𝐸

 
 

𝐼𝐼 =
1.92
12

 
 
𝐼𝐼 = 0.16 
 
Answer: The current is 0.16 ampere. 
 

27.2. Additional formulas for power in direct current circuits 

Using a scientific calculator and some basic algebra, substitute the Ohm’s Law equivalents for E and I 
into the formula 𝑃𝑃 = 𝐸𝐸 ∗ 𝐼𝐼, and you’ll get the following two expressions of power:52 
 
 

𝑃𝑃 =  
𝐸𝐸2

𝑅𝑅
 

 
𝑃𝑃 = 𝐼𝐼2 ∗ 𝑅𝑅 

 
where 
𝑃𝑃 is power in watts 
𝐸𝐸 is voltage in volts 
𝑅𝑅 is resistance in ohms 
𝐼𝐼 is current in amperes 
 
 
  

 
52 𝑃𝑃 = 𝐼𝐼2𝑅𝑅 (and the alternate form 𝑃𝑃 = 𝑉𝑉2 𝑅𝑅⁄ ) is sometimes called Joule’s Law, which describes the rate at which 
resistance in a conductor or circuit converts electric energy into heat energy. More precisely, Joule’s Law states that 
𝑄𝑄 = 𝐼𝐼2𝑅𝑅𝑇𝑇, where Q is the amount of heat, I is current, R is resistance, and T is time. 
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Example 1: 
Refer to Figure 51. What is the power dissipated by the resistor, assuming its resistance is 75 ohms and 
the applied voltage is 12 volts? 
 

Voltage = 12 V
Power dissipated = ?

Resistance = 75 Ω 

 
Figure 51 - What is the power dissipated by the resistor for the voltage and resistance 

values shown? 

Solution 1: 

𝑃𝑃 =  
𝐸𝐸2

𝑅𝑅
 

 

𝑃𝑃 =  
122

75
 

 

𝑃𝑃 =  
144
75

 
 
𝑃𝑃 =  1.92 
 
Answer: The power dissipated by the 75 ohms resistor is 1.92 watts. 
 
Example 2: 
Refer to Figure 52. What is the power dissipated by the resistor assuming its resistance is 75 ohms and the 
current in the circuit is 0.160 ampere? 
 

Current = 0.16 A

Power dissipated = ?

Resistance = 75 Ω 

 
Figure 52 - What is the power dissipated by the resistor for the current and resistance 

values shown? 

Solution 2: 
𝑃𝑃 = 𝐼𝐼2 ∗ 𝑅𝑅 
 
𝑃𝑃 = 0.162 ∗ 75 
 
𝑃𝑃 = 0.0256 ∗ 75 
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𝑃𝑃 = 1.92 
 
Answer: The power dissipated by the 75 ohms resistor is 1.92 watts. 
 

27.2.1. Other power-related formulas 

The following formulas also can be used in power-related calculations: 
 
 

𝐸𝐸 =  √𝑃𝑃 ∗ 𝑅𝑅 
 

𝐼𝐼 = �𝑃𝑃
𝑅𝑅

 

 

𝑅𝑅 =  
𝐸𝐸2

𝑃𝑃
 

 

𝑅𝑅 =  
𝑃𝑃
𝐼𝐼2 

 
where 
𝑃𝑃 is power in watts 
𝐸𝐸 is voltage in volts 
𝐼𝐼 is current in amperes 
𝑅𝑅 is resistance in ohms 
 
 
Example 1: 
What is the voltage in the circuit in Figure 53 when the power dissipated by the 75 ohms resistor is 15 
mW (0.015 watt)? 
 

Current = ?

Voltage = ?
Resistance = 75 ohms

Power dissipated = 15 
mW  

Figure 53 - What are the voltage and current in this circuit? 

Solution 1: 
𝐸𝐸 =  √𝑃𝑃 ∗ 𝑅𝑅 
 
𝐸𝐸 =  √0.015 ∗ 75 
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𝐸𝐸 =  √1.1250 
 
𝐸𝐸 =  1.06 
 
Answer: The voltage is 1.06 volts. 
 
Example 2: 
What is the current in the circuit in Figure 53 when the power dissipated by the 75 ohms resistor is 15 
mW? 
 
Solution 2: 

𝐼𝐼 = �𝑃𝑃
𝑅𝑅

 

 

𝐼𝐼 = �0.015
75

 

 
𝐼𝐼 = √0.0002 
 
𝐼𝐼 = 0.0141 
 
Answer: The current is 0.0141 ampere or 14.1 mA. 
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28. Power in Alternating Current Circuits 
Power calculations and measurements in direct current circuits and applications are relatively 
straightforward, as seen in the previous section. For example, as shown in the DC circuit in Figure 54, the 
power dissipated by a 75 ohms resistor with an applied voltage of 12 volts is 1.92 watts. That is, P = E2/R 
= 122/75 = 1.92 W. 

Current = 0.16 A

Voltage = 12 V
Power dissipated = 

1.92 W

Resistance = 75 Ω 

 
Figure 54 - Simple DC circuit showing the power dissipated by a 75 ohms resistor with an 

applied voltage of 12 volts. 

 
Because the previous example is a DC circuit, the voltage is a constant 12 V, the current is a constant 0.16 
A, and the dissipated power is 1.92 W. As long as the values in that circuit remain constant, it’s easy to 
calculate dissipated power. 
  
Alternating current (AC) circuits and applications are much more complicated because the instantaneous 
voltage and current are not constant. In order to equate the varying AC waveform to a DC equivalent 
component, one must work in the world of root mean square (RMS)53 voltage and current. 
 
In an AC circuit, the instantaneous values of voltage and current are varying continuously over time. How 
can we define useful values for these varying quantities? RMS gives us effective quantities equivalent to 
DC values. 
 
For instance, 12 volts RMS AC voltage causes the same average power dissipation in a resistor as does 12 
volts DC voltage. Likewise, 0.160 ampere RMS alternating current has the same heating effect as 0.160 
ampere direct current. See Figure 55. 

 
53 RMS, or root mean square, in the context as used here is based upon equating the values of AC and DC power to 
heat a resistive element to exactly the same degree. An RMS value is found by squaring the individual values of all 
the instantaneous values of voltage or current in a single AC cycle. Take the average of those squares and find the 
square root of the average. 
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Current = 0.16 ARMS

Voltage = 12 VRMS Power dissipated = 
1.92 WAVG

Resistance = 75 Ω 
AC

 
Figure 55 - Simple AC circuit showing the average power dissipated by a 75 ohms 

resistor with the RMS values of current and voltage indicated. 

28.1. Calculate average power in a simple AC circuit with only resistance 

RMS values simplify AC calculations by making the product of RMS voltage and RMS current equal to 
average power: 
 
 

𝑃𝑃𝐴𝐴𝑑𝑑𝐺𝐺 =  𝐸𝐸𝑅𝑅𝑀𝑀𝑅𝑅 ∗ 𝐼𝐼𝑅𝑅𝑀𝑀𝑅𝑅 
 
 
where 
𝑃𝑃𝐴𝐴𝑑𝑑𝐺𝐺  is average power in watts 
𝐸𝐸𝑅𝑅𝑀𝑀𝑅𝑅 is root mean square voltage in volts 
𝐼𝐼𝑅𝑅𝑀𝑀𝑅𝑅 is root mean square current in amperes 
 
 
Example: 
Refer to Figure 55. What is the average power dissipated by the resistor if the current is 0.160 ampere 
RMS and the voltage is 12 volts RMS? 
 
Solution: 
𝑃𝑃𝐴𝐴𝑑𝑑𝐺𝐺 =  𝐸𝐸𝑅𝑅𝑀𝑀𝑅𝑅 ∗ 𝐼𝐼𝑅𝑅𝑀𝑀𝑅𝑅 
 
𝑃𝑃𝐴𝐴𝑑𝑑𝐺𝐺 =  12 ∗ 0.160 
 
𝑃𝑃𝐴𝐴𝑑𝑑𝐺𝐺 =  1.92 
 
Answer: The average power dissipated by the resistor is 1.92 watts. 
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Why Average Power? 
Consider an unmodulated RF carrier, which really is nothing more than a sinusoidal AC waveform. AC 
power measurement can be a bit tricky, though, because the product of voltage and current varies during 
the AC cycle by twice the frequency of the sine wave. In other words, the output of a signal source such 
as an RF signal generator might be a sinusoidal current at the desired frequency, but the product of the 
carrier’s voltage and current has what amounts to an equivalent average DC component along with a 
component at twice the original frequency. In most cases of RF power measurement, “power” refers to 
the equivalent average DC component of the voltage and current product. 
 
If you connect a thermocouple power meter to the output of an RF signal source, the power meter’s power 
sensor will respond to the RF carrier’s DC component by averaging. Of course, this averaging usually is 
done over many cycles, which, at RF, still can be a relatively short period of time. 
 
Otherwise, if the power meter simply measured an instantaneous point of the sine wave, then measured 
that sine wave at another instantaneous point, the result would vary according to the instantaneous 
product of the voltage and current at each measurement point. 
 
This is the primary reason why most RF carrier power measurements are expressed in terms of average 
power. 
 

28.2. Calculate power in an AC circuit with reactance 

For a simple AC circuit as shown in Figure 55 with just an applied voltage and resistance, the voltage and 
current are in phase and the power calculation is straightforward. But if the circuit also includes reactance, 
there will be a phase difference between the current and voltage that must be taken into account. 
 
Consider the AC circuit shown in Figure 56. The applied voltage is still 12 volts RMS and the resistance 
is 75 ohms, but now there is an inductor with an inductive reactance of 100 ohms in series with the 
resistor.54 Since the circuit includes an inductor, the phase of the voltage will lead the phase of the current 
by 90 degrees.55 
 
As mentioned in the introduction to Section 27, power is the rate at which energy is consumed in a circuit.  
However, energy is not consumed in a purely reactive circuit. That means in a circuit with resistance and 
reactance such as that shown in Figure 56, the resistor will dissipate power but the reactance will not. 
When calculating power in an AC circuit, the power actually dissipated is known as real power. The 
product of voltage and current in a circuit such as this gives apparent power, which is not the same thing 
as the real power. The ratio of real power to apparent power is called power factor. 

 
54 For this example, assume the alternating current has a frequency of 100 MHz and the inductor has a value of 
0.1592 microhenry (µH). Using the formula for inductive reactance, 𝑋𝑋𝐸𝐸 = 2𝜋𝜋𝑓𝑓𝐿𝐿, (where 𝑋𝑋𝐸𝐸 is inductive reactance in 
ohms, 𝑓𝑓 is frequency in hertz, and 𝐿𝐿 is inductance in henrys), the calculated inductive reactance is about 100 ohms. 
55 An easy way to remember the phase relationship between voltage and current in the AC circuit in Figure 56 is the 
saying “ELI the ICE man.” Here, “ELI” applies to an inductor, since “L” is an abbreviation used for inductance, “E” 
is voltage, and “I” is current. In “ELI” the E occurs before the I, which reminds us that voltage (E) leads current (I). 
“ICE” applies to a capacitor, since “C” is an abbreviation for capacitance, and as before “E” is voltage and “I” is 
current. In “ICE” the “I” occurs before “E,” which reminds us that current (I) leads voltage (E). 
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Current = 0.0960 ARMS

Voltage = 12 VRMS

f = 100 MHz

R = 75 Ω 

AC

L = 0.1592 µH
XL = 100 Ω 

|Z| = 125 Ω 

 
Figure 56 - AC circuit with resistance and reactance. 

Several steps must be taken to calculate parameters such as real power, apparent power, and power factor. 
First, calculate the magnitude of the impedance of the series reactance and resistance, |Z|. Note that in 
general impedance, Z, is a complex value and includes both resistance (the real part of complex 
impedance) and reactance (the imaginary part of complex impedance) – that is, both magnitude and 
phase. This is discussed in detail in Section 30.8. However, many useful calculations can be done using 
only the magnitude of the impedance, |Z|: 
 
 

|𝑍𝑍| =  �𝑅𝑅2 + 𝑋𝑋𝐸𝐸
2 

 
 
where 
|𝑍𝑍| is the magnitude of the impedance in ohms 
𝑅𝑅 is resistance in ohms 
𝑋𝑋𝐸𝐸 is inductive reactance in ohms 
 
 
Example: 
What is the magnitude of the impedance of the series resistance (75 ohms) and inductive reactance (100 
ohms) in Figure 56? 
 
Solution: 

|𝑍𝑍| =  �𝑅𝑅2 + 𝑋𝑋𝐸𝐸
2 

 
|𝑍𝑍| =  �752 + 1002 
 
|𝑍𝑍| =  �5625 + 10,000 
 
|𝑍𝑍| =  �15,625 
 
|𝑍𝑍| =  125 
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Answer: The magnitude of the impedance of the series circuit in Figure 56 is 125 ohms. 
 
Next, calculate the current in the circuit using the following formula (a variation of Ohm’s Law, where 
“|𝑍𝑍|” replaces “R”): 
 
 

𝐼𝐼 =  
𝐸𝐸

|𝑍𝑍| 

 
 
where 
𝐼𝐼 is current in amperes 
𝐸𝐸 is voltage in volts 
|𝑍𝑍| is the magnitude of the impedance in ohms 
 
 
Example: 
What is the current in the circuit shown in Figure 56 assuming an applied voltage of 12 volts RMS and 
the magnitude of the impedance is 125 ohms? 
 
Solution: 

𝐼𝐼 =  
𝐸𝐸

|𝑍𝑍| 

 

𝐼𝐼 =  
12

125
 

 
𝐼𝐼 =  0.096 
 
Answer: The current in the circuit in Figure 56 is 0.096 ampere RMS. 
 

28.2.1. Calculate apparent power 

Apparent power can be calculated using the following formula: 
 
 

𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑓𝑓𝑖𝑖𝑓𝑓 =  𝐸𝐸 ∗ 𝐼𝐼 
 
 
where 
𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑓𝑓𝑖𝑖𝑓𝑓 is apparent power in volt-ampere (VA) 
𝐸𝐸 is RMS voltage in volts 
𝐼𝐼 is RMS current in amperes 
 
 
Example: 
What is the apparent power for the circuit in Figure 56 assuming an applied voltage of 12 volts RMS and 
a current of 0.096 amperes RMS? 
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Solution: 
𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑓𝑓𝑖𝑖𝑓𝑓 =  𝐸𝐸 ∗ 𝐼𝐼 
 
𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑓𝑓𝑖𝑖𝑓𝑓 =  12 ∗ 0.096 
 
𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑓𝑓𝑖𝑖𝑓𝑓 =  1.152 
 
Answer: The apparent power is 1.152 VA. 
 

28.2.2. Calculate real power 

Real power can be calculated using the following formula: 
 
 

𝑃𝑃𝑚𝑚𝑓𝑓𝑐𝑐𝑡𝑡 =  𝐼𝐼2 ∗ 𝑅𝑅 
 
 
where 
𝑃𝑃𝑚𝑚𝑓𝑓𝑐𝑐𝑡𝑡 is real power in watts 
𝐼𝐼 is RMS current in amperes 
𝑅𝑅 is resistance in ohms 
 
 
Example: 
What is the real power dissipated in the circuit in Figure 56 assuming a current of 0.096 ampere RMS and 
a resistance of 75 ohms? 
 
Solution: 
𝑃𝑃𝑚𝑚𝑓𝑓𝑐𝑐𝑡𝑡 =  𝐼𝐼2 ∗ 𝑅𝑅 
 
𝑃𝑃𝑚𝑚𝑓𝑓𝑐𝑐𝑡𝑡 =  0.0962 ∗ 75 
 
𝑃𝑃𝑚𝑚𝑓𝑓𝑐𝑐𝑡𝑡 =  0.009216 ∗ 75 
 
𝑃𝑃𝑚𝑚𝑓𝑓𝑐𝑐𝑡𝑡 =  0.6912 
 
Answer: The real power dissipated in the circuit in Figure 56 is 0.6912 watt. 
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28.2.3. Calculate power factor 

Power factor, the ratio of real power to apparent power, can be calculated using the following formula: 
 
 

𝑃𝑃𝑁𝑁 =  
𝑃𝑃𝑚𝑚𝑓𝑓𝑐𝑐𝑡𝑡

𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑓𝑓𝑖𝑖𝑓𝑓
 

 
 
where 
𝑃𝑃𝑁𝑁 is power factor 
𝑃𝑃𝑚𝑚𝑓𝑓𝑐𝑐𝑡𝑡 is real power in watts 
𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑓𝑓𝑖𝑖𝑓𝑓 is apparent power in volt-ampere (VA) 
 
 
Example: 
What is the power factor for the circuit in Figure 56 assuming the real power is 0.6912 watt and the 
apparent power is 1.152 watts? 
 
Solution: 

𝑃𝑃𝑁𝑁 =  
𝑃𝑃𝑚𝑚𝑓𝑓𝑐𝑐𝑡𝑡

𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑓𝑓𝑖𝑖𝑓𝑓
 

 

𝑃𝑃𝑁𝑁 =  
0.6912
1.152

 
 
𝑃𝑃𝑁𝑁 =  0.6 
 
Answer: The power factor for the circuit in Figure 56 is 0.6 or 60%. 
 

28.3. Cable network powering 

Cable operators for decades have powered network active devices using the distribution plant’s hardline 
coaxial cables. Line power supplies are connected to the electric utility’s 120 VAC/240 VAC service. The 
line power supplies use ferroresonant transformers to convert the electric utility’s sinusoidal AC to a 
quasi-squarewave AC, typically 60 volts or 90 volts (early line power supplies provided 30 volts). The 
output of each line power supply is connected to the hardline coaxial cable using a line power inserter, 
which multiplexes the 60 volts or 90 volts into the coax along with the RF signals. Power supply modules 
or circuits (sometimes referred to as “power packs”) inside of each active device convert the 60 volts or 
90 volts to suitable DC voltages to power the various electronic circuits inside of each active device 
housing. 
 
Given that most active devices used in modern cable networks are constant power loads, calculation of 
cable network powering has become more complicated and somewhat of an iterative process. A helpful 
overview of cable network plant powering, written by H. Mark Bowers, can be found in the Summer 2018 
and Fall 2018 issues of Broadband Library: 
 
“Basic HFC AC Design (Part One)” 
https://broadbandlibrary.com/basic-hfc-ac-design-part-one/ 

https://broadbandlibrary.com/basic-hfc-ac-design-part-one/
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“Basic HFC AC Design (Part Two)” 
https://broadbandlibrary.com/basic-hfc-ac-design-part-one-2/ 
 

28.4. Peak envelope power 

Peak envelope power (PEP) is the average power in watts during one cycle at the crest of the modulation 
envelope. Many of the RF signal level measurements made in cable are PEP. For example, when one 
measures the signal level of an analog NTSC visual carrier, that measurement is of the carrier’s PEP. 
 
Peak envelope power can be calculated using the following formula: 
 
 

𝑃𝑃𝐸𝐸𝑃𝑃 =
(𝑃𝑃𝐸𝐸𝑉𝑉 ∗ 0.707)2

𝑅𝑅
 

 
where 
𝑃𝑃𝐸𝐸𝑃𝑃 is peak envelope power in watts 
𝑃𝑃𝐸𝐸𝑉𝑉 is peak envelope voltage in volts 
𝑅𝑅 is resistance (or impedance) 
 
 

 
Figure 57 - Example used for PEP calculation. 

Example: 
Refer to Figure 57: If the peak envelope voltage is 14.14 millivolts (0.01414 volt) in a 75 ohms 
impedance, what is the peak envelope power? 
 
Solution: 

𝑃𝑃𝐸𝐸𝑃𝑃 =
(𝑃𝑃𝐸𝐸𝑉𝑉 ∗ 0.707)2

𝑅𝑅
 

 

𝑃𝑃𝐸𝐸𝑃𝑃 =
(0.01414 ∗ 0.707)2

75
 

 

https://broadbandlibrary.com/basic-hfc-ac-design-part-one-2/
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𝑃𝑃𝐸𝐸𝑃𝑃 =
(0.009997)2

75
 

 

𝑃𝑃𝐸𝐸𝑃𝑃 =
0.000100

75
 

 
𝑃𝑃𝐸𝐸𝑃𝑃 = 0.00000133 
 
Answer: The peak envelope power is 0.00000133 watt or 1.33 µW. 
 

28.5. Energy: watt-hour and kilowatt-hour 

Contrary to some misconceptions, electric utility customers pay for electrical energy, not power. A 
common unit for the measurement of electrical energy is the watt-hour (Wh), which is one watt of power 
sustained for one hour. Note: 1 wH equals 3.6 ∗ 103 joules. 
 

28.5.1. Energy in units of watt-hour 

The following formula can be used to calculate energy in units of watt-hour. 
 
 

𝑚𝑚ℎ = 𝑃𝑃 ∗ 𝑇𝑇 
 
where 
𝑚𝑚ℎ is energy in units of watt-hour 
𝑃𝑃 is power in watts 
𝑇𝑇 is time in hours 
 
 
Example: 
What is the energy in watt-hours when the power is 300 watts for two hours? 
 
Solution: 
𝑚𝑚ℎ = 𝑃𝑃 ∗ 𝑇𝑇 
 
𝑚𝑚ℎ = 300 ∗ 2 
 
𝑚𝑚ℎ = 600 
 
Answer: The energy is 600 watt-hours. 
 

28.5.2. Energy in units of kilowatt-hour 

Because the watt-hour is a fairly small energy unit, it is more common to use larger units such as 
kilowatt-hour (kWh). Note: 1 kWh equals 3.6 ∗ 106 joules. The following formula can be used to 
calculate energy in units of kilowatt-hour. 
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𝑘𝑘𝑚𝑚ℎ = 𝑃𝑃𝑘𝑘𝐶𝐶 ∗ 𝑇𝑇 
 
where 
𝑘𝑘𝑚𝑚ℎ is energy in units of kilowatt-hour 
𝑃𝑃𝑘𝑘𝐶𝐶 is power in kilowatts 
𝑇𝑇 is time in hours 
 
 
Example: 
What is the energy in kilowatt-hours when the power is 30,000 watts (30 kW) for 48 hours? 
 
Solution: 
𝑘𝑘𝑚𝑚ℎ = 𝑃𝑃𝑘𝑘𝐶𝐶 ∗ 𝑇𝑇 
 
𝑘𝑘𝑚𝑚ℎ = 30 ∗ 48 
 
𝑘𝑘𝑚𝑚ℎ = 1,440 
 
Answer: The energy is 1,440 kilowatt-hours. 
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29. Data Communications 
This section includes some of the more common data communications-related formulas used by cable 
operators. 

29.1. Calculate SC-QAM channel bandwidth 

The following formula can be used to calculate single carrier quadrature amplitude modulation (SC-
QAM) channel bandwidth: 
 
 

𝑑𝑑𝑚𝑚 = 𝑝𝑝𝑘𝑘𝑜𝑜𝑑𝑑 ∗ (1 + 𝛼𝛼) 
 
where 
𝑑𝑑𝑚𝑚 is the bandwidth of the channel in kilohertz 
𝑝𝑝𝑘𝑘𝑜𝑜𝑑𝑑 is the modulation rate in kilohertz (or symbol rate in kilosymbols per second) 
𝛼𝛼 is the alpha (roll-off factor) 
 
 
Example 1: 
What is the bandwidth of an upstream SC-QAM channel that has a modulation rate of 5,120 kHz and an 
alpha of 0.25? 
 
Solution 1: 
𝑑𝑑𝑚𝑚 = 𝑝𝑝𝑘𝑘𝑜𝑜𝑑𝑑 ∗ (1 + 𝛼𝛼) 
 
𝑑𝑑𝑚𝑚 = 5,120 ∗ (1 + 0.25) 
 
𝑑𝑑𝑚𝑚 = 5,120 ∗ (1.25) 
 
𝑑𝑑𝑚𝑚 = 6,400 
 
Answer: The calculated channel width is 6,400 kHz or 6.4 MHz. 
 
Example 2: 
What is the bandwidth of a downstream SC-QAM channel that has a symbol rate of 5.360537 
megasymbols per second (5,360.537 ksym/s) and an alpha of 0.12? 
 
Solution 2: 
𝑑𝑑𝑚𝑚 = 𝑝𝑝𝑘𝑘𝑜𝑜𝑑𝑑 ∗ (1 + 𝛼𝛼) 
 
𝑑𝑑𝑚𝑚 = 5,360.537 ∗ (1 + 0.12) 
 
𝑑𝑑𝑚𝑚 = 5,360.537 ∗ (1.12) 
 
𝑑𝑑𝑚𝑚 = 5,360.537 ∗ (1.12) 
 
𝑑𝑑𝑚𝑚 = 6,003.80 
 
Answer: The calculated channel width is 6,003.80 kHz or about 6 MHz. 
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29.2. What is a symbol? 

There are two concepts of symbol in data communications.56 The first is defined in [7] as “A collection of 
some number of bits of data that are transmitted together.” For example, in Reed Solomon forward error 
correction (FEC) coding used in ITU-T Rec. J.83 Annex B (see [33]) SC-QAM signals, Reed Solomon 
symbols comprise groups of seven bits, and 128 of the seven-bit Reed Solomon symbols comprise a Reed 
Solomon codeword. 
 
In the second concept, a symbol is assigned and carries (from transmitter to a receiver) a single complex 
value in digital communications. The complex value is actually two values, and referred to as the real and 
imaginary components, or sometimes in-phase and quadrature components (I and Q). Also note that the 
complex value has an amplitude and phase; a complex value is described by a pair of real numbers. An 
illustrative example of a symbol having a single complex value is a sinusoid of a given frequency, which 
has an amplitude and a phase. Further, the sinusoid has “quadrature components”: a sinusoid and its 90-
degree-shifted partner. Multiple similar descriptions and explanations exist for the complex-valued 
symbols in communications. A symbol can be described as “complex-valued” or as carrying a pair of real 
values, equivalently. 
 
Another way to look at the second concept of a symbol is to think of the condition of a carrier wave, in 
which that condition – defined by the carrier’s amplitude (magnitude) and phase – represents a group of 
bits being transmitted. Consider a DOCSIS 2.0 or later upstream 16-QAM signal. Looking at the data 
constellation for a 16-QAM signal (see Figure 58), each “point” on the constellation represents a four-bit 
symbol. Each constellation point also represents a specific amplitude (distance from the center of the 
constellation to the point) and phase (angle relative to the constellation’s horizontal, or real axis). To help 
simplify the concept, imagine that the four outer corner points of a 16-QAM constellation are each 
normalized to a magnitude of 1. Next, consider the constellation’s upper right corner symbol point (the 
red dot in Figure 58). The length of the blue dashed arrow illustrates the magnitude of the red dot, and the 
angle of the dashed line shows a phase of 45° relative to the I axis. The position of the red dot on the 
constellation can be described as having a complex value in terms of a real value (I or in-phase) of 0.707 
and an imaginary value (Q or quadrature) of 0.707. Some simple math using Pythagorean’s Theorem lets 
us calculate its magnitude: √0.7072 + 0.7072 = 1. That upper right constellation point or symbol 
represents the four bits 1111 for both Gray-coded mapping and differential encoding in DOCSIS 2.0 and 
later. 
 

 
56 For baseband communications a symbol is real-valued (not complex), such as non-return to zero (NRZ) or pulse 
amplitude modulation (PAM).  
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I

Q

45° 

 
Figure 58 - Example 16-QAM constellation. 

Two related terms are complex dimensions and real dimensions. Similar to symbols, in a channel 
bandwidth of B Hz and a time duration of T seconds, there are B * T “complex dimensions” or 2 * B * T 
real dimensions. 
 

29.3. Calculate the number of bits per symbol 

One can calculate the number of bits per symbol if the number of points per constellation57 is known (e.g., 
the “64” in 64-QAM), using the following formula: 
 
 

𝑁𝑁 = 𝑙𝑙𝐿𝐿𝑎𝑎2𝑠𝑠 
 
where 
𝑁𝑁 is the number of bits per symbol 
𝑙𝑙𝐿𝐿𝑎𝑎2 is base 2 logarithm (see Appendix A for a discussion about how to calculate base 2 logarithms) 
𝑠𝑠 is the number of points per constellation (i.e., n-point signal constellation) 
 
 
Example 1: 
What is the number of bits per symbol for 64-QAM? 
 
Solution 1: 
𝑁𝑁 = 𝑙𝑙𝐿𝐿𝑎𝑎2𝑠𝑠 
 

 
57 In what is commonly called M-ary encoding (where “M-ary” is derived from “binary”), M refers to the number of 
conditions such as amplitudes, phases, frequencies, etc. For example, a 256-QAM digital signal has 256 
combinations of amplitudes and phases that represent 256 different symbols, and can be described as a 256-point 
signal constellation. Each of a 256-QAM signal’s symbols is a unique group of 1s and 0s. In the case of 256-QAM, 
each symbol comprises eight bits. 
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𝑁𝑁 = 𝑙𝑙𝐿𝐿𝑎𝑎264 
 
𝑁𝑁 = 6 
 
Answer: The number of bits per symbol for 64-QAM is 6. 
 
Example 2: 
What is the number of bits per symbol for 1024-QAM? 
 
Solution 2: 
𝑁𝑁 = 𝑙𝑙𝐿𝐿𝑎𝑎2𝑠𝑠 
 
𝑁𝑁 = 𝑙𝑙𝐿𝐿𝑎𝑎21024 
 
𝑁𝑁 = 10 
 
Answer: The number of bits per symbol for 1024-QAM is 10. 
 

29.4. Calculate the number of points per constellation for SC-QAM 

One can calculate the number of points per constellation for an SC-QAM signal if the number of bits per 
symbol is known, using the following formula: 
 
 

𝑠𝑠 = 2𝑁𝑁 
 
where 
𝑠𝑠 is the number of points per constellation (i.e., n-point signal constellation) 
𝑁𝑁 is the number of bits per symbol 
 
 
Example: 
If the number of bits per symbol is 6 for an SC-QAM signal, what is the number of points per 
constellation? 
 
Solution: 
𝑠𝑠 = 2𝑁𝑁 
 
𝑠𝑠 = 26 
 
𝑠𝑠 = 2 ∗ 2 ∗ 2 ∗ 2 ∗ 2 ∗ 2 
 
𝑠𝑠 = 64 
 
Answer: The number of points per constellation is 64, or in this case 64-QAM. 
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29.5. Calculate SC-QAM gross (channel) bit rate 

One can calculate the gross (channel) bit rate (i.e., the bit rate including payload and overhead, sometimes 
called the PHY rate) of SC-QAM signals when the symbol rate58 and number of bits per symbol are 
known, using the following formula: 
 
 

𝑏𝑏𝑝𝑝𝐿𝐿𝑤𝑤𝑚𝑚𝑜𝑜𝑚𝑚𝑚𝑚 = 𝑝𝑝𝑚𝑚𝑠𝑠𝑘𝑘 ∗ 𝐿𝐿𝑐𝑐 
 
where 
𝑏𝑏𝑝𝑝𝐿𝐿𝑤𝑤𝑚𝑚𝑜𝑜𝑚𝑚𝑚𝑚 is gross (channel) bit rate in bits per second 
𝑝𝑝𝑚𝑚𝑠𝑠𝑘𝑘 is symbol rate in symbols per second 
𝐿𝐿𝑐𝑐 is the number of bits per symbol 
 
 
For the following examples, refer to Table 18 and Table 19 for SC-QAM symbol rates and bits per 
symbol information. 
Example 1: 
What is the gross (channel) bit rate for a downstream 6 MHz-wide 256-QAM signal (ITU-T J.83 Annex 
B)? 
 
Solution 1: 
From Table 18, the number of bits per symbol for downstream ITU-T J.83 Annex B 256-QAM is 8, and 
the symbol rate is 5.360537 Msym/s (5,360,537 symbols per second). 
 
𝑏𝑏𝑝𝑝𝐿𝐿𝑤𝑤𝑚𝑚𝑜𝑜𝑚𝑚𝑚𝑚 = 𝑝𝑝𝑚𝑚𝑠𝑠𝑘𝑘 ∗ 𝐿𝐿𝑐𝑐 
 
𝑏𝑏𝑝𝑝𝐿𝐿𝑤𝑤𝑚𝑚𝑜𝑜𝑚𝑚𝑚𝑚 = 5,360,537 ∗ 8 
 
𝑏𝑏𝑝𝑝𝐿𝐿𝑤𝑤𝑚𝑚𝑜𝑜𝑚𝑚𝑚𝑚 = 42,884,296 
 
Answer: The gross (channel) bit rate is 42.88 Mbps. 
 
Example 2: 
What is the gross (channel) bit rate for an upstream 6.4 MHz-wide 64-QAM signal? 
 
Solution 2: 
From Table 19, the number of bits per symbol for upstream 64-QAM is 6, and the symbol rate is 5,120 
ksym/s (5,120,000 symbols per second). 
 
𝑏𝑏𝑝𝑝𝐿𝐿𝑤𝑤𝑚𝑚𝑜𝑜𝑚𝑚𝑚𝑚 = 𝑝𝑝𝑚𝑚𝑠𝑠𝑘𝑘 ∗ 𝐿𝐿𝑐𝑐 
 
𝑏𝑏𝑝𝑝𝐿𝐿𝑤𝑤𝑚𝑚𝑜𝑜𝑚𝑚𝑚𝑚 = 5,120,000 ∗ 6 
 
𝑏𝑏𝑝𝑝𝐿𝐿𝑤𝑤𝑚𝑚𝑜𝑜𝑚𝑚𝑚𝑚 = 30,720,000 
 
Answer: The gross (channel) bit rate is 30,720,000 bits per second (30.72 Mbps). 

 
58 In DOCSIS 2.0 the term “modulation rate” was introduced, defined as “The signaling rate of the upstream 
modulator (1280 to 5120 kHz). In S-CDMA, the chip rate. In TDMA, the channel symbol rate.” 
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Table 18 - Downstream SC-QAM signal symbol rates and bits per symbol. 
Modulation order Bits per 

symbol 
Channel 

bandwidth 
Symbol 

rate 
(Msym/s) 

Alpha 
(roll-off 
factor) 

64-QAM (ITU-T J.83 Annex B) 6 6 MHz 5.056941 0.18 
256-QAM (ITU-T J.83 Annex B) 8 6 MHz 5.360537 0.12 
64-QAM (ITU-T J.83 Annex A) 6 8 MHz 6.952 0.15 
256-QAM (ITU-T J.83 Annex A) 8 8 MHz 6.952 0.15 

 

Table 19 - Upstream SC-QAM modulation rates and bits per symbol. 
Modulation 

order 
Bits per 
symbol 

Channel 
bandwidth 

Modulation 
rate (kHz), or 
symbol rate 

(ksym/s) 

Alpha 
(roll-off 
factor) 

QPSK 2 1.6 MHz 1,280 0.25 
QPSK 2 3.2 MHz 2,560 0.25 
QPSK 2 6.4 MHz 5,120 0.25 
8-QAM 3 1.6 MHz 1,280 0.25 
8-QAM 3 3.2 MHz 2,560 0.25 
8-QAM 3 6.4 MHz 5,120 0.25 
16-QAM 4 1.6 MHz 1,280 0.25 
16-QAM 4 3.2 MHz 2,560 0.25 
16-QAM 4 6.4 MHz 5,120 0.25 
32-QAM 5 1.6 MHz 1,280 0.25 
32-QAM 5 3.2 MHz 2,560 0.25 
32-QAM 5 6.4 MHz 5,120 0.25 
64-QAM 6 1.6 MHz 1,280 0.25 
64-QAM 6 3.2 MHz 2,560 0.25 
64-QAM 6 6.4 MHz 5,120 0.25 

 

29.6. Calculate SC-QAM symbol rate or modulation rate 

The symbol rate or modulation rate can be calculated using the following formula when the gross 
(channel) bit rate and number of bits per symbol are known: 
 
 

𝑝𝑝𝑚𝑚𝑠𝑠𝑘𝑘 =
𝑏𝑏𝑝𝑝𝐿𝐿𝑤𝑤𝑚𝑚𝑜𝑜𝑚𝑚𝑚𝑚

𝐿𝐿𝑐𝑐
 

 
where 
𝑝𝑝𝑚𝑚𝑠𝑠𝑘𝑘 is symbol rate in symbols per second (or modulation rate in kilohertz) 
𝑏𝑏𝑝𝑝𝐿𝐿𝑤𝑤𝑚𝑚𝑜𝑜𝑚𝑚𝑚𝑚 is the gross (channel) bit rate in bits per second 
𝐿𝐿𝑐𝑐 is the number of bits per symbol 
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Example: 
What is the symbol rate of an upstream SC-QAM signal with 6 bits per symbol and whose gross 
(channel) bit rate is 30.72 Mbps (30,720,000 bits per second)? 
 
Solution: 

𝑝𝑝𝑚𝑚𝑠𝑠𝑘𝑘 =
𝑏𝑏𝑝𝑝𝐿𝐿𝑤𝑤𝑚𝑚𝑜𝑜𝑚𝑚𝑚𝑚

𝐿𝐿𝑐𝑐
 

 

𝑝𝑝𝑚𝑚𝑠𝑠𝑘𝑘 =
30,720,000

6
 

 
𝑝𝑝𝑚𝑚𝑠𝑠𝑘𝑘 = 5,120,000 
 
Answer: The symbol rate is 5,120,000 symbols per second (5.12 Msym/s or 5,120 kHz modulation rate). 
 

29.7. Bit error ratio 

The abbreviation BER has long been spelled out as “bit error rate” or “bit error ratio,” with both terms 
used more or less interchangeably. For example, [26] defines bit error rate as 
 

A measurement of error rate stated as a ratio of the number of bits with an error to the 
total number of bits passing a given point on the ring. A BER of 10−6 indicates that an 
average of one bit per million bits is in error. 

 
[26] defines bit error ratio as  
 

The ratio of the number of bits received in error to the total number of bits received. 
 
According to [12]: 
 

“The BER of a digital communication system can be defined as the estimated probability 
that any bit transmitted through the system will be received in error, e.g., a transmitted 
‘one’ will be received as a zero and vice versa. In practical tests, the BER is measured by 
transmitting a finite number of bits through the system and counting the number of bit 
errors received. The ratio of the number of bits received erroneously to the total number 
of bits transmitted is the BER.” 

 
Expressed mathematically, BER is equal to the ratio of the number of errored bits 𝑏𝑏𝑓𝑓 to the total number 
of bits 𝑏𝑏𝑓𝑓 transmitted, received, or processed: 
 
 

𝑑𝑑𝐸𝐸𝑅𝑅 =
𝑏𝑏𝑓𝑓

𝑏𝑏𝑓𝑓
 

 
where 
𝑑𝑑𝐸𝐸𝑅𝑅 is the bit error ratio 
𝑏𝑏𝑓𝑓 is the number of errored bits 
𝑏𝑏𝑓𝑓 is the total number of bits transmitted, received, or processed 
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Example: 
Let’s say that 1,000,000 bits are transmitted, and 3 bits out of the 1,000,000 bits received are errored 
because of some kind of interference between the transmitter and receiver. What is the BER? 
 
Solution: 

𝑑𝑑𝐸𝐸𝑅𝑅 =
3

1,000,000
 

𝑑𝑑𝐸𝐸𝑅𝑅 = 0.000003 
 
Answer: The BER is 0.000003, but most BER measurements are expressed in scientific notation format, 
so 0.000003 = 3 ∗ 10–6. The latter also can be written as 3 ∗ 10^–6 or 3.0E–06. 
 
Note: Most cable test instruments that report BER actually report a BER estimate derived from the 
instrument’s forward error correction, as discussed in the next section. 
 

29.7.1. How is BER measured? 

Bit error ratio is commonly measured using a BER test set. A data source transmits a bit pattern – usually 
a pseudo-random binary sequence – through the device, system, or network being tested (see Figure 59). 
The error detector has to either reproduce the original bit pattern or directly receive it from the bit pattern 
generator. The error detector compares bit-by-bit the original bit pattern with the one received from the 
device, system, or network being tested. The method just described is usually an out-of-service test, 
making it impractical to perform where service disruptions are not acceptable. How, then, are BER 
measurements performed in operating cable networks? 
 

Bit pattern
generator

Device, system, or 
network under test

Error
detector

BER test set

DATA

DA
TA

 
Figure 59 - Simplified block diagram of BER measurement. 

Field meters used by the cable industry don’t perform BER measurements the same way that a BER test 
set does. Instead, field meters perform an in-service measurement using an internal algorithm to derive a 
BER estimate based upon what the forward error correction is doing. The terms pre-FEC BER and post-
FEC BER are widely used by cable test equipment companies and cable operators, with some variations 
in the terminology (e.g., “pre-FEC,” “pre BER,” or just “pre”). Many understand the terminology to 
generally mean the BER before and after FEC decoding fixes errors. However, some clarification is in 
order, since this assumption isn’t quite correct. 
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In a typical field meter being used to measure an ITU-T J.83 Annex B SC-QAM signal (e.g., DOCSIS 3.0 
or earlier), what is called pre-FEC BER is estimated at the input to the Reed Solomon (RS) decoder but 
after the Trellis decoder, descrambler (de-randomizer), and de-interleaver. Post-FEC BER is estimated 
after Reed Solomon decoding. The estimates of BER made by the in-service decoders for ITU-T J.83 
Annex B downstream SC-QAM signals are imperfect approximations (but are adequate for routine 
maintenance and troubleshooting in cable networks). In the BER test sets used for out-of-service testing, 
received bit errors are actually counted. 
 
Several factors can affect BER measurements. The type of data sent during a BER measurement is 
important; for instance, a long string of the same bits – say, all 0s – will generally yield different BER 
numbers than when doing the same measurement with a pseudo random binary sequence (PRBS). A long 
string of identical bits can result in something called deterministic jitter (and other distortions) which 
could affect the integrity of the BER measurement, so a PRBS bit pattern is usually preferred. Other 
factors include the number of bits transmitted during the measurement, the duration of the measurement, 
and whether the bit errors are independent and identically distributed (IID). Appendix E discusses these 
latter factors and how they affect the confidence level of the BER test results. 
 

29.8. Spectral efficiency 

Spectral efficiency describes the information bit rate that is supported in a given RF bandwidth. The 
following examples have been excerpted and adapted from [29], with permission of the authors (some of 
the assumptions and values have been changed). The reader is urged to review the referenced paper and 
Appendix L of this Operational Practice for more information on spectral efficiency in DOCSIS 3.1 
systems, including downstream and upstream SC-QAM, OFDM, and OFDMA signals. 
 

29.8.1. Calculate spectral efficiency 

Spectral efficiency is the net bit rate (that is, the bit rate excluding overhead) in bits per second divided by 
the channel bandwidth in hertz, and is stated in units of bits per second per hertz (b/s/Hz or bps/Hz).59 The 
following formula can be used to calculate spectral efficiency: 
 
 

𝑅𝑅𝐸𝐸 =
𝑏𝑏𝑝𝑝𝐿𝐿𝑖𝑖𝑓𝑓𝑓𝑓

𝑑𝑑𝑚𝑚𝑀𝑀𝑀𝑀
 

 
where 
𝑅𝑅𝐸𝐸 is the spectral efficiency in bits per second per hertz (b/s/Hz) 
𝑏𝑏𝑝𝑝𝐿𝐿𝑖𝑖𝑓𝑓𝑓𝑓 is the net bit rate in bits per second 
𝑑𝑑𝑚𝑚𝑀𝑀𝑀𝑀 is the communications channel bandwidth in hertz 
 
 
  

 
59 The spectral efficiency in bits per second per hertz (b/s/Hz) is also the same as spectral efficiency in bits per 
symbol (b/sym). Since the channel BW = 1/T for a symbol duration of T seconds per symbol (the Nyquist rate), BW 
= 1/T symbols per second and spectral efficiency = b/s/BW = b/s/(1/T symbols/s) = b/s/(BW symbols/s) = b/symbol. 
Note that the Nyquist rate may occupy slightly more bandwidth due to the use of a roll-off factor which lowers the 
spectral efficiency in the occupied channel bandwidth. 
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Example: 
What is the spectral efficiency of a 6 MHz-wide ITU-T J.83 Annex B SC-QAM signal that has a gross 
(channel) bit rate of 42.88 Mbps and net bit rate (after excluding overhead60) of 38.8107 Mbps? 
 
Solution: 

𝑅𝑅𝐸𝐸 =
𝑏𝑏𝑝𝑝𝐿𝐿𝑖𝑖𝑓𝑓𝑓𝑓

𝑑𝑑𝑚𝑚𝑀𝑀𝑀𝑀
 

 

𝑅𝑅𝐸𝐸 =
38,810,700
6,000,000

 

 
𝑅𝑅𝐸𝐸 = 6.4685 
 
Answer: The spectral efficiency is 6.4685 b/s/Hz. 
 

29.8.2. Calculate QAM-independent system efficiency for SC-QAM 

QAM-independent system efficiency is spectral efficiency in b/s/Hz divided by the number of bits per 
symbol, and is stated in units of symbols per second per hertz (sym/s/Hz). The following formula can be 
used to calculate QAM-independent system efficiency:   
 
 

𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓 =
𝑅𝑅𝐸𝐸
𝐿𝐿𝑐𝑐

 

 
where 
𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓 is the QAM-independent system efficiency in symbols per second per hertz (sym/s/Hz) 
𝑅𝑅𝐸𝐸 is the spectral efficiency in bits per second per hertz (b/s/Hz) 
𝐿𝐿𝑐𝑐 is the number of bits per symbol for the modulation order in use 
 
 
Example: 
What is the QAM-independent system efficiency for the previous example, in which the spectral 
efficiency is 6.4685 b/s/Hz and the number of bits per symbol for 256-QAM is 8? 
 
Solution: 

𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓 =
𝑅𝑅𝐸𝐸
𝐿𝐿𝑐𝑐

 

 

𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓 =
6.4685

8
 

 
 

 
60 See Annex A of [30] for a discussion about calculation of the concatenated code rate for SC-QAM signals in cable 
networks. 
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𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓 = 0.8086 
 
Answer: The QAM-independent system efficiency is 0.8086 sym/s/Hz. 
 

29.8.3. Calculate QAM-independent system efficiency for OFDM 

The following formula can be used to calculate the estimated QAM-independent system efficiency for an 
asynchronous OFDM signal: 
 
 
 

𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓 =
𝑅𝑅𝐶𝐶𝐶𝐶𝑀𝑀 − 𝑅𝑅𝐶𝐶𝐺𝐺𝑑𝑑 − 𝑃𝑃𝑐𝑐𝑜𝑜𝑖𝑖𝑓𝑓 − 𝑃𝑃𝑚𝑚𝑐𝑐𝑐𝑐𝑓𝑓 − 𝑅𝑅𝐶𝐶𝑃𝑃𝐸𝐸𝐶𝐶 − 𝑅𝑅𝐶𝐶𝑁𝑁𝐶𝐶𝑃𝑃

𝑅𝑅𝐶𝐶𝐶𝐶𝑀𝑀
∗

𝑁𝑁𝑁𝑁𝑇𝑇
(𝑁𝑁𝑁𝑁𝑇𝑇 + 𝐶𝐶𝑃𝑃) ∗ 𝑁𝑁𝐸𝐸𝐶𝐶 

 
where 
𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓 is the QAM-independent system efficiency in symbols per second per hertz (sym/s/Hz) 
𝑅𝑅𝐶𝐶𝐶𝐶𝑀𝑀 is the number of subcarriers in the OFDM channel bandwidth 
𝑅𝑅𝐶𝐶𝐺𝐺𝑑𝑑 is the total number of subcarriers in the guard bands (taper regions) 
𝑃𝑃𝑐𝑐𝑜𝑜𝑖𝑖𝑓𝑓 is the number of continuous pilots 
𝑃𝑃𝑚𝑚𝑐𝑐𝑐𝑐𝑓𝑓 is the number of scattered pilots 
𝑅𝑅𝐶𝐶𝑃𝑃𝐸𝐸𝐶𝐶  is the number of subcarriers in the PHY link channel (PLC) 
𝑅𝑅𝐶𝐶𝑁𝑁𝐶𝐶𝑃𝑃 is the number of subcarriers used for next codeword pointers (NCPs) 
𝑁𝑁𝑁𝑁𝑇𝑇 is the FFT duration in microseconds 
𝐶𝐶𝑃𝑃 is the cyclic prefix duration in microseconds 
𝑁𝑁𝐸𝐸𝐶𝐶 is the effective forward error correction code rate 
 
 
Example 1: 
What is the estimated QAM-independent system efficiency for a 192 MHz-wide asynchronous OFDM 
signal with the configuration parameters listed in Table 20? 
 
Solution 1: 

𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓 =
𝑅𝑅𝐶𝐶𝐶𝐶𝑀𝑀 − 𝑅𝑅𝐶𝐶𝐺𝐺𝑑𝑑 − 𝑃𝑃𝑐𝑐𝑜𝑜𝑖𝑖𝑓𝑓 − 𝑃𝑃𝑚𝑚𝑐𝑐𝑐𝑐𝑓𝑓 − 𝑅𝑅𝐶𝐶𝑃𝑃𝐸𝐸𝐶𝐶 − 𝑅𝑅𝐶𝐶𝑁𝑁𝐶𝐶𝑃𝑃

𝑅𝑅𝐶𝐶𝐶𝐶𝑀𝑀
∗

𝑁𝑁𝑁𝑁𝑇𝑇
(𝑁𝑁𝑁𝑁𝑇𝑇 + 𝐶𝐶𝑃𝑃) ∗ 𝑁𝑁𝐸𝐸𝐶𝐶 

 

𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓 =
7,680 − 80 − 88 − 60 − 16 − 48

7,680
∗

40
(40 + 2.5) ∗ 0.8775 

 

𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓 =
7,388
7,680

∗
40

42.5
∗ 0.8775 

 
𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓 = 0.9620 ∗ 0.9412 ∗ 0.8775 
 
𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓 = 0.7945 
 
Answer: The estimated QAM-independent system efficiency for an asynchronous OFDM signal is 0.7945 
sym/s/Hz. 
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Example 2: 
When the OFDM signals are synchronous, the QAM-independent system efficiency can be estimated by 
leaving the “subcarriers in guard bands” term (𝑅𝑅𝐶𝐶𝐺𝐺𝑑𝑑) out of the formula. Using the same assumptions 
from Example 1 (less 𝑅𝑅𝐶𝐶𝐺𝐺𝑑𝑑), what is the QAM-independent system efficiency? 
 
Solution 2: 

𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓 =
𝑅𝑅𝐶𝐶𝐶𝐶𝑀𝑀 − 𝑃𝑃𝑐𝑐𝑜𝑜𝑖𝑖𝑓𝑓 − 𝑃𝑃𝑚𝑚𝑐𝑐𝑐𝑐𝑓𝑓 − 𝑅𝑅𝐶𝐶𝑃𝑃𝐸𝐸𝐶𝐶 − 𝑅𝑅𝐶𝐶𝑁𝑁𝐶𝐶𝑃𝑃

𝑅𝑅𝐶𝐶𝐶𝐶𝑀𝑀
∗

𝑁𝑁𝑁𝑁𝑇𝑇
(𝑁𝑁𝑁𝑁𝑇𝑇 + 𝐶𝐶𝑃𝑃) ∗ 𝑁𝑁𝐸𝐸𝐶𝐶 

 

𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓 =
7,680 − 88 − 60 − 16 − 48

7,680
∗

40
(40 + 2.5) ∗ 0.8775 

 

𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓 =
7,468
7,680

∗
40

42.5
∗ 0.8775 

 
𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓 = 0.9724 ∗ 0.9412 ∗ 0.8775 
 
𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓 = 0.8031 
 
Answer: The estimated QAM-independent system efficiency for a synchronous OFDM signal is 0.8031 
sym/s/Hz. 

Table 20 - OFDM configuration parameters 
Parameter Assumed value 

Channel bandwidth 192 MHz (190 MHz encompassed 
spectrum with no exclusion bands) 

Subcarrier spacing 25 kHz 
FFT size 8K (8,192) 
FFT duration 40 µs 
Subcarriers in channel bandwidth 7,680 
Active subcarriers in encompassed 
spectrum 

7,600 

Subcarriers in guard bands (2 MHz total) 80 
Continuous pilots 88 
Scattered pilots 60 
PLC subcarriers 16 
Cyclic prefix duration 2.5 µs 
Subcarriers used for next codeword 
pointers 

48 

Effective FEC code rate61 0.8775 

 

29.8.4. Calculate OFDM spectral efficiency 

Calculation of OFDM spectral efficiency can be somewhat more complicated than for an individual 
legacy SC-QAM signal. This is especially true given DOCSIS 3.1’s support for multiple modulation 

 
61 Effective FEC code rate = (16,200 codeword size – 16 codeword pointer – 168 BCH parity – 1,800 LDPC 
parity)/16,200 codeword size = 0.8775 
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profiles, where a weighted average spectral efficiency is a useful metric for characterizing overall 
performance. 
 
When the QAM-independent system efficiency for an OFDM signal is known, the spectral efficiency can 
be calculated with the following formula: 
 
 

𝑅𝑅𝐸𝐸 = 𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓 ∗ 𝐿𝐿𝑐𝑐 
 
where 
𝑅𝑅𝐸𝐸 is the spectral efficiency in bits per second per hertz (b/s/Hz) 
𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓 is the QAM-independent system efficiency in symbols per second per hertz (sym/s/Hz) 
𝐿𝐿𝑐𝑐 is the number of bits per symbol for the modulation order in use 
 
 
Example: 
What is the spectral efficiency for a synchronous OFDM signal using 512-QAM (9 bits per symbol) and 
has a QAM-independent system efficiency of 0.8031 symbols per second per hertz? 
 
Solution: 
𝑅𝑅𝐸𝐸 = 𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓 ∗ 𝐿𝐿𝑐𝑐 
 
𝑅𝑅𝐸𝐸 = 0.8031 ∗ 9 
 
𝑅𝑅𝐸𝐸 = 7.2279 
 
Answer: The spectral efficiency is 7.2279 b/s/Hz. 
 

29.8.5. Calculate weighted average OFDM spectral efficiency 

Cable operators often take advantage of DOCSIS 3.1’s support for multiple modulation profiles, which 
means that different modulation orders can be used for different cable modems. Multiple modulation 
profiles can accommodate the normal variations in network performance in different parts of, for 
example, a node’s service area (e.g., end-of-line versus closer to the node), or different signal quality 
within the OFDM signal (e.g., part of the OFDM signal overlaps the downstream rolloff). When multiple 
modulation profiles are used, characterizing performance can be done using a weighted average of OFDM 
spectral efficiency. Calculating the weighted average OFDM spectral efficiency involves several steps, 
discussed in this section. For more information, see [29]. 
 
Example: 
Assume OFDM operation in a cable network in which the following modulation orders can be used: 128-
QAM, 256-QAM, 512-QAM, 1024-QAM, 2048-QAM, and 4096-QAM, and the estimated QAM-
independent system efficiency is 0.8031 sym/s/Hz. First calculate the spectral efficiency for each 
modulation order using the formula from the previous section (𝑅𝑅𝐸𝐸 = 𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓 ∗ 𝐿𝐿𝑐𝑐). 
 
128-QAM (7 bits per symbol): 
𝑅𝑅𝐸𝐸 = 0.8031 ∗ 7 
 
𝑅𝑅𝐸𝐸 = 5.6217 



SCTE 270 2021r1   

SCTE OPERATIONAL PRACTICE  © SCTE 274 

 
Answer: The spectral efficiency for 128-QAM is 5.6217 b/s/Hz 
 
256-QAM (8 bits per symbol): 
𝑅𝑅𝐸𝐸 = 0.8031 ∗ 8 
 
𝑅𝑅𝐸𝐸 = 6.4248 
 
Answer: The spectral efficiency for 256-QAM is 6.4248 b/s/Hz. 
 
512-QAM (9 bits per symbol): 
𝑅𝑅𝐸𝐸 = 0.8031 ∗ 9 
 
𝑅𝑅𝐸𝐸 = 7.2279 
 
Answer: The spectral efficiency for 512-QAM is 7.2279 b/s/Hz. 
 
1024-QAM (10 bits per symbol): 
𝑅𝑅𝐸𝐸 = 0.8031 ∗ 10 
 
𝑅𝑅𝐸𝐸 = 8.0310 
 
Answer: The spectral efficiency for 1024-QAM is 8.0310 b/s/Hz. 
 
2048-QAM (11 bits per symbol): 
𝑅𝑅𝐸𝐸 = 0.8031 ∗ 11 
 
𝑅𝑅𝐸𝐸 = 8.8341 
 
Answer: The spectral efficiency for 2048-QAM is 8.8341 b/s/Hz. 
 
4096-QAM (12 bits per symbol): 
𝑅𝑅𝐸𝐸 = 0.8031 ∗ 12 
 
𝑅𝑅𝐸𝐸 = 9.6372 
 
Answer: The spectral efficiency for 4096-QAM is 9.6372 b/s/Hz. 
 
Next, assume that variations in signal-to-noise ratio performance throughout a cable network means that 
some modems can use 4096-QAM, some can use 2048-QAM, some can use 1024-QAM, and so forth. 
Further assume the distribution of cable modems capable of using each modulation order is as shown in 
Figure 60. Of particular interest is the percentages of modems that are able to reliably use each 
modulation profile, which will be used to calculate a weighted average OFDM spectral efficiency. 
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Figure 60 - Distribution of modems versus SNR (courtesy Ayham Al-Banna, 

CommScope). 

Note: A weighted average value is not the same thing as an arithmetic average. For more information, see, 
for instance, https://www.wikihow.com/Calculate-Weighted-Average. In this example, the values used to 
calculate the desired weighted average spectral efficiency are summarized in Table 21 - Parameters for 
calculating weighted average spectral efficiency. 

Table 21 - Parameters for calculating weighted average spectral efficiency 
Modulation 

order 
SE 

(b/s/Hz) 
Percentage 
of modems 

Weighting 
factor 

SE ∗ 
weighting 

factor 
128-QAM 5.6217 0% 0 0 
256-QAM 6.4248 0.02% 0.0002 0.0013 
512-QAM 7.2279 8.38% 0.0838 0.6057 
1024-QAM 8.0310 61.86% 0.6186 4.9680 
2048-QAM 8.8341 29.64% 0.2964 2.6184 
4096-QAM 9.6372 0.1% 0.0010 0.0096 

 
Since the weighting factors in the fourth column of Table 21 total 1, then the weighted average of the 
spectral efficiency values is simply the sum of the values in the table’s fifth column: 0 + 0.0013 + 0.6057 
+ 4.9680 + 2.6184 + 0.0096 = 8.2030 b/s/Hz, or about 8.2 b/s/Hz. 
 
 
 

 
  

https://www.wikihow.com/Calculate-Weighted-Average
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30. Reference Equations 
This section includes a variety of useful formulas and related information, but typically without the “how 
to” example and solution format used in other parts of this Operational Practice.  
 

30.1. Shannon-Hartley theorem 

30.1.1. Introduction 

The Shannon-Hartley theorem describes the channel capacity in terms of the maximum amount of data 
that can be transmitted error-free, in a specified bandwidth with a given signal-to-noise ratio. Expressed 
mathematically: 
 
 

𝐶𝐶 = 𝑑𝑑 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎2 �1 +
𝑅𝑅
𝑁𝑁

� 
 
where 
𝐶𝐶 is channel capacity in bits per second (bps) 
𝑑𝑑 is bandwidth in hertz (Hz) 
𝑙𝑙𝐿𝐿𝑎𝑎2 is base 2 logarithm (see Appendix A for information about calculating base 2 logarithms) 
𝑅𝑅 is average signal power within bandwidth 𝑑𝑑, in units of watts 
𝑁𝑁 is average noise power within bandwidth 𝑑𝑑, in the same unit of watts as 𝑅𝑅 
 
Note: The ratio 𝑅𝑅

𝑁𝑁
 is a linear power ratio, not a logarithmic ratio in decibels. For example, if the 

logarithmic ratio of  𝑅𝑅
𝑁𝑁

= 40 𝑑𝑑𝑑𝑑, the linear power ratio is 1040 10⁄ = 10,000. 
 
 
Discussion:  
The Shannon-Hartley theorem, named after Claude Shannon and Ralph Hartley, provides what is 
sometimes called the “Shannon limit,” the maximum bit rate that can be transmitted without errors in a 
communications channel of a specified bandwidth in the presence of noise.  
 
The following is excerpted from [31]: 
 

Theorem 2: Let 𝑃𝑃 be the average transmitter power, and suppose the noise is white 
thermal noise of power 𝑁𝑁 in the band 𝑚𝑚. By sufficiently complicated encoding systems it 
is possible to transmit binary digits at a rate 
 

𝐶𝐶 = 𝑚𝑚 log2
𝑃𝑃 + 𝑁𝑁

𝑁𝑁
 

 
with as small a frequency of errors as desired. It is not possible by any encoding method 
to send at a higher rate and have an arbitrarily low frequency of errors. [emphasis 
added] 

 
In order to support an increased bit rate, the communications channel’s bandwidth and/or the signal-to-
noise ratio must be increased. For example, consider an analog voice circuit with a bandwidth of 3,000 
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Hz. If the signal-to-noise ratio is 20 dB (linear power ratio = 1020 10⁄ = 100), then the maximum bit rate 
is  
 

𝐶𝐶 = 𝑑𝑑 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎2 �1 +
𝑅𝑅
𝑁𝑁

� 
 

𝐶𝐶 = 3,000 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎2(1 + 100) 
 

𝐶𝐶 = 3,000 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎2(101) 
 

𝐶𝐶 = 3,000 ∗ (6.66) 
 

𝐶𝐶 = 19,974.63 𝑏𝑏𝑝𝑝𝐿𝐿 
 
If the bandwidth is doubled to 6,000 Hz but the signal-to-noise ratio is unchanged at 20 dB, the maximum 
bit rate increases to 
 

𝐶𝐶 = 6,000 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎2(1 + 100) 
 

𝐶𝐶 = 6,000 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎2(101) 
 

𝐶𝐶 = 6,000 ∗ (6.66) 
 

𝐶𝐶 = 39,949.27 𝑏𝑏𝑝𝑝𝐿𝐿 
 
Alternatively, maintaining the original 3,000 Hz bandwidth but increasing the signal-to-noise ratio from 
20 dB to 30 dB (linear power ratio = 1030 10⁄ = 1,000), then the maximum bit rate is  
 

𝐶𝐶 = 3,000 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎2(1 + 1,000) 
 

𝐶𝐶 = 3,000 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎2(1,001) 
 

𝐶𝐶 = 3,000 ∗ (9.97) 
 

𝐶𝐶 = 29,901.68 𝑏𝑏𝑝𝑝𝐿𝐿 
 

30.1.2. Power limited, bandwidth unlimited channel 

Clearly, there are tradeoffs with respect to bandwidth and signal-to-noise ratio, and the maximum possible 
bit rate – the “Shannon limit.” Improving the signal-to-noise ratio generally means increasing the power 
of the transmitted data signal. If the transmit power is constrained, then using the widest possible 
bandwidth will yield the best performance. An important point: One cannot continually get more capacity 
with more bandwidth. From [31]: 
 

As we increase the band, the capacity increases rapidly until the total noise power 
accepted is about equal to the signal power; after this, the increase is low, and it 
approaches an asymptotic value log2 ℯ times the capacity for W = W0. 
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There are three parameters which determine the channel capacity for bits per second (with arbitrarily low 
errors): transmit power, P watts; channel bandwidth, W Hz; and one-sided noise power spectral density, 
N0 watts per Hz. Figure 61 shows the capacity as a function of bandwidth, with transmit power held 
constant. This tradeoff or view of the capacity theorem, with the transmit power held constant, is 
sometimes called “power limited operation” of the channel, since the bandwidth is unconstrained, but the 
transmit power is constrained; the transmit power is held the same within each triplet of the defining 
parameters in this view. Rather than calling this the “power limited view” it may be more appropriate to 
call it the “bandwidth unlimited view,” but that description doesn’t seem as commonly used. 
 
In Figure 61 (from [31]), C/W0 is plotted as a function of W/W0, where C is channel capacity, W is 
bandwidth, and W0 is P/N0, that is, W0 is the bandwidth in which noise power is equal to signal power. 

 
Figure 61 - Graph from the original Figure 7 in [31], Shannon’s 1949 paper. See text. 

Since P/(N0 ∗ W) is “1” for W equal W0, by the definition of W0, it is apparent that the capacity C for 
bandwidth W0 Hz is W0 bits per second, numerically, where W0 units are Hz, but in this case the capacity 
of the channel in bits per seconds equals W0, too, because the argument of the log2() function is “2.” 
  
Figure 61 illustrates that the normalized channel capacity, bits per second per W0 Hz, does not “grow 
without bound” as the channel bandwidth increases without bound, but rather approaches a finite limit for 
arbitrarily large bandwidth channels. With W0 numerically expressed in Hz, in the power limited channel, 
the capacity C for unlimited channel bandwidth approaches 
 

𝑙𝑙𝐿𝐿𝑎𝑎2�𝑝𝑝𝑒𝑒𝑝𝑝(1)� ∗ 𝑚𝑚0 𝑏𝑏𝑠𝑠𝑡𝑡𝐿𝐿 𝑝𝑝𝑝𝑝𝑝𝑝 𝐿𝐿𝑝𝑝𝑝𝑝𝐿𝐿𝑠𝑠𝑑𝑑 ≅ 1.4427 ∗ 𝑚𝑚0 𝑏𝑏𝑠𝑠𝑡𝑡𝐿𝐿 𝑝𝑝𝑝𝑝𝑝𝑝 𝐿𝐿𝑝𝑝𝑝𝑝𝐿𝐿𝑠𝑠𝑑𝑑 
 

≅ 1.4427 ∗ (𝑃𝑃 𝑁𝑁0⁄ ) 𝑏𝑏𝑠𝑠𝑡𝑡𝐿𝐿 𝑝𝑝𝑝𝑝𝑝𝑝 𝐿𝐿𝑝𝑝𝑝𝑝𝐿𝐿𝑠𝑠𝑑𝑑 
 
To explore an example, let Tb be the time it takes to transmit 1 bit in the channel, and thus the energy per 
bit divided by the one-sided power spectral density is Eb/N0 = P * Tb/N0. Consider a case where the Eb/N0 
is 0 dB with a proposed bit rate of 10 Mbps. This pair of values determines the ratio P/N0.  
 
We will answer the following three questions for this example: 
 
Q1. For this value of P/N0, what is the channel capacity with unlimited bandwidth?  
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Q2. What is the channel bandwidth which is required according to the capacity theorem, for the proposed 
bit rate?  
 
Q3. If the channel bandwidth is unlimited and the bit rate is operated at the channel capacity for this same 
value of P/N0, what is the resulting value of Eb/N0? 
 
Answer 1. For this value of P/N0, what is the channel capacity with unlimited bandwidth?  

(𝐸𝐸𝑐𝑐 𝑁𝑁0⁄ ) ∗ (1 𝑇𝑇𝑐𝑐⁄ ) = 𝑃𝑃 𝑁𝑁0 = (1) ∗ (107⁄ ), 
 
Thus, 𝐶𝐶𝑜𝑜𝑖𝑖𝑡𝑡𝑖𝑖𝑘𝑘𝑖𝑖𝑓𝑓𝑓𝑓𝑑𝑑_𝑐𝑐𝑛𝑛_𝑐𝑐ℎ ≅ 1.4427 ∗ 107 ≅ 14.43 𝑅𝑅𝑏𝑏𝑝𝑝𝐿𝐿 
 
Answer 2. What is the channel bandwidth which is required according to the capacity theorem, for the 
proposed bit rate?  
 
Since we see that for the value of P/N0 the unlimited bandwidth channel supports more than 10 Mbps, we 
can use the capacity theorem to determine what finite bandwidth is needed to support 10 Mbps. The 
solution involves solving the capacity equation for W Hz, where we start by setting the channel capacity 
to the objective of 10 Mbps, and (P/N0) is known: 
 

𝐶𝐶 = 10 𝑅𝑅𝑏𝑏𝑝𝑝𝐿𝐿 = 𝑚𝑚 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎2 �1 +
(𝑃𝑃 𝑁𝑁0⁄ )

𝑚𝑚
� = 𝑚𝑚 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎2 �1 +

(107)
𝑚𝑚

� 

 
and an iterative search (trial, adjust, new trial, etc.) shows that W = 10 MHz, which can easily be checked 
since the argument of the log2() function is “2” exactly, for this case.   
 
Answer 3. If the channel bandwidth is unlimited and the bit rate is operated at the channel capacity for 
this same value of P/N0, what is the resulting value of Eb/N0? 
 
With the bandwidth unlimited, we found in Answer 1 for the 107 value of P/N0 that the capacity is 14.43 
Mbps. So, what is the corresponding Eb/N0 for this channel when it is operated with the maximum 
possible rate of 14.43 Mbps?  
 
We see 
 

𝑇𝑇𝑐𝑐 =
1

(14.43 ∗ 106)  𝐿𝐿𝑝𝑝𝑝𝑝𝐿𝐿𝑠𝑠𝑑𝑑𝐿𝐿 

 
and 
 

𝐸𝐸𝑐𝑐 𝑁𝑁0⁄ = (𝑃𝑃 𝑁𝑁0⁄ ) ∗ 𝑇𝑇𝑐𝑐 =
(107)

(14.43 ∗ 106) = 0.693 

 
and converting to decibels, we find the Eb/N0 for this value of P/N0 when the channel is operated with the 
unlimited bandwidth at the bit rate corresponding to the unlimited bandwidth capacity, is 
 

10𝑙𝑙𝐿𝐿𝑎𝑎10(𝐸𝐸𝑐𝑐 𝑁𝑁0⁄ ) = 10𝑙𝑙𝐿𝐿𝑎𝑎10(0.693) = −1.6 𝑑𝑑𝑑𝑑 
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Summarizing, for any value of P/N0, we can find the capacity of the unlimited bandwidth channel, 
Cunlimited_bw_ch. If the channel is operated at that bit rate, Cunlimited_bw_ch bits per second, the corresponding 
Eb/N0 is –1.6 dB. Operating at a bit rate Rb less than Cunlimited_bw_ch, the unlimited bandwidth channel 
capacity, a corresponding finite bandwidth can be calculated which has capacity equal to that bit rate, Rb. 
The Eb/N0 corresponding to Rb will be greater than –1.6 dB. 
 

30.1.3. Bandwidth limited, power unlimited channel 

Another common view of the capacity equation is the “bandwidth constrained operation,” where the 
bandwidth is held constant and the power increases without bound. This is best illustrated after taking two 
steps to adjust, or “view,” the capacity equation. 
  
The first step is to view the capacity of the fixed-bandwidth channel, of W Hz, normalized by the channel 
bandwidth, W Hz: 
 

𝐶𝐶
𝑚𝑚

= 𝑙𝑙𝐿𝐿𝑎𝑎2 �1 +
𝑃𝑃

(𝑁𝑁0 ∗ 𝑚𝑚)�  𝑏𝑏𝑠𝑠𝑡𝑡𝐿𝐿 𝑝𝑝𝑝𝑝𝑝𝑝 𝐿𝐿𝑝𝑝𝑝𝑝𝐿𝐿𝑠𝑠𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝 𝐻𝐻𝑧𝑧 

 
The second step for this view is defining the channel SNR as [P/(N0 ∗ W)] and expressing SNR in 
decibels: SNRdB = 10 ∗ log10[ P/(N0 ∗ W) ]. This is facilitated by the relationship: 
  

𝑙𝑙𝐿𝐿𝑎𝑎2(𝑒𝑒) =
𝑙𝑙𝐿𝐿𝑎𝑎10(𝑒𝑒)
𝑙𝑙𝐿𝐿𝑎𝑎10(2) 

 
Thus, we see, 
 

𝐶𝐶
𝑚𝑚

= 𝑙𝑙𝐿𝐿𝑎𝑎2 �1 +
𝑃𝑃

(𝑁𝑁0 ∗ 𝑚𝑚)� 

 

=
�𝑙𝑙𝐿𝐿𝑎𝑎10 �1 + 𝑃𝑃

(𝑁𝑁0 ∗ 𝑚𝑚)��

𝑙𝑙𝐿𝐿𝑎𝑎10(2)  

 
Continuing, 
 

𝐶𝐶
𝑚𝑚

=
�10𝑙𝑙𝐿𝐿𝑎𝑎10 �1 + 𝑃𝑃

(𝑁𝑁0 ∗ 𝑚𝑚)��

[10𝑙𝑙𝐿𝐿𝑎𝑎10(2)]  

 

=
�10𝑙𝑙𝐿𝐿𝑎𝑎10 �1 + 𝑃𝑃

𝑁𝑁0 ∗ 𝑚𝑚��

3
 

 
So, the capacity in units of bits per second per Hz is given by: 
 

𝐶𝐶
𝑚𝑚

=
�10𝑙𝑙𝐿𝐿𝑎𝑎10 �1 + 𝑃𝑃

𝑁𝑁0 ∗ 𝑚𝑚��

3
 𝑏𝑏𝑠𝑠𝑡𝑡𝐿𝐿 𝑝𝑝𝑝𝑝𝑝𝑝 𝐿𝐿𝑝𝑝𝑝𝑝𝐿𝐿𝑠𝑠𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝 𝐻𝐻𝑧𝑧. 
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And using the definition for SNR, 
 

𝐶𝐶
𝑚𝑚

= 𝑙𝑙𝐿𝐿𝑎𝑎2(1 + 𝑅𝑅𝑁𝑁𝑅𝑅) 
 

=
(10𝑙𝑙𝐿𝐿𝑎𝑎10[1 + 𝑅𝑅𝑁𝑁𝑅𝑅])

3
 𝑏𝑏𝑠𝑠𝑡𝑡𝐿𝐿 𝑝𝑝𝑝𝑝𝑝𝑝 𝐿𝐿𝑝𝑝𝑝𝑝𝐿𝐿𝑠𝑠𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝 𝐻𝐻𝑧𝑧. 

 
This expression allows a computation of channel capacity in units of bits per second per Hz with the 
channel bandwidth held constant, and allowing P (and equivalently, SNR) to increase without limit. This 
is called the “bandwidth limited operation” or bandwidth limited view of the channel capacity theorem. 
As the complementary view of the power limited operation, in this latter view, the channel capacity is 
examined as the channel power increases without limit. 
 
The channel capacity for the bandwidth limited channel is illustrated in Figure 62, showing capacity, C 
bits per second, versus SNR in dB. 
 

 
Figure 62. Capacity for a bandwidth limited channel; the diagonal blue curve is often 

called the "Shannon limit."  

 

30.1.4. Asymptotic behavior of the bandwidth limited channel with 
large SNR 

We have seen, 
 

𝐶𝐶
𝑚𝑚

=
(10𝑙𝑙𝐿𝐿𝑎𝑎10[1 + 𝑅𝑅𝑁𝑁𝑅𝑅])

3
 𝑏𝑏𝑠𝑠𝑡𝑡𝐿𝐿 𝑝𝑝𝑝𝑝𝑝𝑝 𝐿𝐿𝑝𝑝𝑝𝑝𝐿𝐿𝑠𝑠𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝 𝐻𝐻𝑧𝑧. 

 
 
And for large SNR, for example SNR ≥ 100, the approximation holds well (better than 1 percent): 
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𝐶𝐶
𝑚𝑚

≅
(10𝑙𝑙𝐿𝐿𝑎𝑎10[𝑅𝑅𝑁𝑁𝑅𝑅])

3
 𝑏𝑏𝑠𝑠𝑡𝑡𝐿𝐿 𝑝𝑝𝑝𝑝𝑝𝑝 𝐿𝐿𝑝𝑝𝑝𝑝𝐿𝐿𝑠𝑠𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝 𝐻𝐻𝑧𝑧. 

 
But we see that this is directly using the definition of SNRdB, such that: 
 

𝐶𝐶
𝑚𝑚

≅
𝑅𝑅𝑁𝑁𝑅𝑅𝑑𝑑𝑑𝑑

3
 𝑏𝑏𝑠𝑠𝑡𝑡𝐿𝐿 𝑝𝑝𝑝𝑝𝑝𝑝 𝐿𝐿𝑝𝑝𝑝𝑝𝐿𝐿𝑠𝑠𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝 𝐻𝐻𝑧𝑧. 

 
Thus, for [P/(N0 ∗ W)] equal 1,000, so that SNR is 1,000 and SNRdB is 30 dB, we arrive at, 
 

𝐶𝐶
𝑚𝑚

≅
30
3

≅ 10 𝑏𝑏𝑠𝑠𝑡𝑡𝐿𝐿 𝑝𝑝𝑝𝑝𝑝𝑝 𝐿𝐿𝑝𝑝𝑝𝑝𝐿𝐿𝑠𝑠𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝 𝐻𝐻𝑧𝑧. 
 
For an additional 3 dB SNR, i.e., SNR = 2,000 or SNRdB = 33 dB, so that [P/(N0 ∗ W)] is 2,000, and 
 

𝐶𝐶
𝑚𝑚

≅
33
3

≅ 11 𝑏𝑏𝑠𝑠𝑡𝑡𝐿𝐿 𝑝𝑝𝑝𝑝𝑝𝑝 𝐿𝐿𝑝𝑝𝑝𝑝𝐿𝐿𝑠𝑠𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝 𝐻𝐻𝑧𝑧. 
 
We see that for larger SNR, such as 20 dB and larger, the channel capacity in bits per second per Hz is 
well approximated by (SNRdB)/3 bits per second per Hz. This gives rise to the expression that there is 1 
bit additional capacity for each 3 dB increase in SNR, for channels with large SNR. Recall that this 
applies for a fixed channel bandwidth, W Hz, and the capacity increase is in units of bits per second per 
Hz. 
 

30.1.5. Shannon theory in terms of Eb/N0 

A commonly referenced view of the Shannon capacity theory discusses the theorem and the insights in 
terms of Eb/N0, the ratio of the energy per bit to the one-sided noise power spectral density. This is 
especially relevant for the power limited channel view, as described in Section 30.1.2. We will examine 
this view of the channel capacity theory, in terms of Eb/N0, and begin with the expression for channel 
capacity from Section 30.1.1: 
 

𝐶𝐶 = 𝑚𝑚 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎2 �1 +
𝑃𝑃

(𝑁𝑁0 ∗ 𝑚𝑚)�  𝑏𝑏𝑠𝑠𝑡𝑡𝐿𝐿 𝑝𝑝𝑝𝑝𝑝𝑝 𝐿𝐿𝑝𝑝𝑝𝑝𝐿𝐿𝑠𝑠𝑑𝑑. 

 
Raising each side to the power of 2: 
 

2𝐶𝐶 = 2
�𝐶𝐶∗𝑡𝑡𝑜𝑜𝑤𝑤2�1+ 𝑃𝑃

(𝑁𝑁0∗𝐶𝐶)��
 

 

2𝐶𝐶 = 2
�𝑡𝑡𝑜𝑜𝑤𝑤2��1+ 𝑃𝑃

(𝑁𝑁0∗𝐶𝐶)�
𝑊𝑊

��
 

 

2𝐶𝐶 = ��1 +
𝑃𝑃

(𝑁𝑁0 ∗ 𝑚𝑚)�
𝐶𝐶

� 

 
Rearranging a little bit: 
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2𝐶𝐶 = ��1 +
𝑃𝑃

(𝑁𝑁0 ∗ 𝑚𝑚)�
(𝐶𝐶∗𝑁𝑁0 𝑃𝑃⁄ )

�
(𝑃𝑃 𝑁𝑁0⁄ )

 

 
Then, we recognize the form of the expression within brackets {} and take the limit as 𝑚𝑚 → 𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖, 
where the term within the brackets goes to e in the limit, leaving: 
 

2𝐶𝐶 = 𝑝𝑝(𝑃𝑃 𝑁𝑁0⁄ ) 𝑎𝑎𝐿𝐿 𝑚𝑚 → 𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖 
 
Taking log2() of both sides, returns an expression for channel capacity back in units of bits per second, but 
now as a limit as the channel bandwidth increases to infinity. 
 

𝐶𝐶 = �
𝑃𝑃

𝑁𝑁0
� ∗ 𝑙𝑙𝐿𝐿𝑎𝑎2(𝑝𝑝) 𝑎𝑎𝐿𝐿 𝑚𝑚 → 𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖 

 
It is apparent that this is the same result as shown as the limit in Figure 61, with W0 = P/N0.  
Also, recall the units for channel capacity, C, are bits per second. 
  
Multiplying by a generic time, T seconds, provides: 
 

𝐶𝐶 ∗ 𝑇𝑇 𝑏𝑏𝑠𝑠𝑡𝑡𝐿𝐿 = �𝑃𝑃 ∗
𝑇𝑇

𝑁𝑁0
� ∗ 𝑙𝑙𝐿𝐿𝑎𝑎2(𝑝𝑝) 𝑎𝑎𝐿𝐿 𝑚𝑚 → 𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖 

  
Since C ∗ T is the number of bits at the channel capacity, in a duration of T seconds, the energy for these 
bits is P ∗ T joules. 
  
Now, solving for the time duration needed in this channel, if it operates at its full capacity, to transmit one 
full bit of information, is found by solving for T so that C ∗ T = 1 bit: 
 

𝐶𝐶 ∗ 𝑇𝑇 = �𝑃𝑃 ∗
𝑇𝑇

𝑁𝑁0
� ∗ 𝑙𝑙𝐿𝐿𝑎𝑎2(𝑝𝑝) = 1, 

  

𝑤𝑤ℎ𝑝𝑝𝑠𝑠 𝑇𝑇𝑐𝑐 =
(𝑁𝑁0 𝑃𝑃⁄ )
𝑙𝑙𝐿𝐿𝑎𝑎2(𝑝𝑝)  𝐿𝐿𝑝𝑝𝑝𝑝𝐿𝐿𝑠𝑠𝑑𝑑𝐿𝐿. 

 
So, Tb is the time duration, in seconds, according to the capacity of the channel, to deliver 1 bit, with 
infinite bandwidth, with P/N0 for a given signal power-to-noise PSD ratio. 
  
Since Tb is the time duration for one bit capacity with these channel parameters, P ∗ Tb is the energy per 
bit. We can assign Eb = P ∗ Tb, in units of joules. 
  
Further, since for this unlimited channel bandwidth, we solved for Tb specifically so that we would 
achieve: 
 

𝐶𝐶 ∗ 𝑇𝑇𝑐𝑐 = �𝑃𝑃 ∗
𝑇𝑇𝑐𝑐

𝑁𝑁0
� ∗ 𝑙𝑙𝐿𝐿𝑎𝑎2(𝑝𝑝) = 1, 𝑣𝑣𝑠𝑠𝑙𝑙𝑠𝑠𝑚𝑚𝑠𝑠𝑡𝑡𝑝𝑝𝑑𝑑 𝑝𝑝ℎ𝑎𝑎𝑠𝑠𝑠𝑠𝑝𝑝𝑙𝑙 𝑏𝑏𝑎𝑎𝑠𝑠𝑑𝑑𝑤𝑤𝑠𝑠𝑑𝑑𝑡𝑡ℎ, 

  
and, 
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�𝑃𝑃 ∗
𝑇𝑇𝑐𝑐

𝑁𝑁0
� = 𝐸𝐸𝑐𝑐 𝑁𝑁0⁄  

 
Then, (𝐸𝐸𝑐𝑐 𝑁𝑁0⁄ )𝑜𝑜𝑖𝑖𝑡𝑡𝑖𝑖𝑘𝑘𝑖𝑖𝑓𝑓𝑓𝑓𝑑𝑑_𝑐𝑐ℎ_𝑐𝑐𝑛𝑛 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎2(𝑝𝑝) = 1, 
  
So that, (𝐸𝐸𝑐𝑐 𝑁𝑁0⁄ )𝑜𝑜𝑖𝑖𝑡𝑡𝑖𝑖𝑘𝑘𝑖𝑖𝑓𝑓𝑓𝑓𝑑𝑑_𝑐𝑐ℎ_𝑐𝑐𝑛𝑛 = 1

𝑡𝑡𝑜𝑜𝑤𝑤2(𝑓𝑓) 
 
This provides, 10𝑙𝑙𝐿𝐿𝑎𝑎10�(𝐸𝐸𝑐𝑐 𝑁𝑁0⁄ )𝑜𝑜𝑖𝑖𝑡𝑡𝑖𝑖𝑘𝑘𝑖𝑖𝑓𝑓𝑓𝑓𝑑𝑑_𝑐𝑐ℎ_𝑐𝑐𝑛𝑛� = −1.6 𝑑𝑑𝑑𝑑 
  
For Eb/N0 < –1.6 dB, reliable communication is impossible. 
  
For Eb/N0 > –1.6 dB, a finite bandwidth exists where the capacity will allow reliable communication. 
  
Consider the following example: If you are given a channel of 6 MHz, and –10 dB SNR in AWGN, and a 
service provider claims to have technology to support 10 Mbps in that channel, how does this compare to 
the capacity theorem? We can walk through that. 
 

𝑃𝑃
(𝑁𝑁0∗𝐶𝐶) = 𝑅𝑅𝑁𝑁𝑅𝑅 = 10−1, with W = 6 MHz, 
 
So, P/N0 = SNR * W = (10–1) ∗ (6 ∗ 106) = 6 ∗ 105. 
 
And 10 Mbps implies Tb = 10–7 seconds, 
 
So Eb/N0 = P ∗ Tb/(N0) = (6 ∗ 105) ∗ (10-7) = 6 ∗ 10–2 
  
Computing the value of Eb/N0 in decibels, 
 
Eb/N0 dB = 7.77 – 20 = –12.2 dB. 
  
Eb/N0 dB = –12.2 dB < –1.6 dB. 
  
So, this service provider cannot really deliver on this claim! It is impossible! The claim is on the wrong 
side of Shannon’s capacity theory. 
 
Note that even if the channel SNR were 0 dB instead of –10 dB, or if the bit rate were 1 Mbps instead of 
10 Mbps, the result of either change, individually, would correspond to 10 dB higher Eb/N0, or –2.2 dB, 
which is STILL on the wrong side of the capacity theorem. However, if the claims were 1 Mbps and 
channel the SNR is 0 dB, that is 20 dB higher than the originally stated claim, and the Eb/N0 with the 
revised parameters is 7.8 dB. This is more than 9 dB above the Shannon limit for Eb/N0 (i.e., –1.6 dB). In 
today’s (2021) technology, commercial personal communications systems routinely operate within a few 
dB of the Shannon limit. This was unheard of capability when Shannon developed and published his 
work! 
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30.2. Crest factor 

Crest factor is a characteristic of a waveform, defined as the ratio of its peak to effective value. Expressed 
mathematically: 
 
 

𝐶𝐶 =
|𝜒𝜒𝑐𝑐𝑓𝑓𝑐𝑐𝑘𝑘|

𝜒𝜒𝑚𝑚𝑘𝑘𝑚𝑚
 

 
where 
𝐶𝐶 is crest factor 
𝜒𝜒𝑐𝑐𝑓𝑓𝑐𝑐𝑘𝑘 is the peak value of a waveform 
𝜒𝜒𝑚𝑚𝑘𝑘𝑚𝑚 is the effective or root mean square value of a waveform 
 
 
Expressed in decibels: 
 
 

𝐶𝐶𝑑𝑑𝑑𝑑 = 20𝑙𝑙𝐿𝐿𝑎𝑎10 �
|𝜒𝜒𝑐𝑐𝑓𝑓𝑐𝑐𝑘𝑘|

𝜒𝜒𝑚𝑚𝑘𝑘𝑚𝑚
� 

 
where 
𝐶𝐶𝑑𝑑𝑑𝑑 is crest factor in decibels 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝜒𝜒𝑐𝑐𝑓𝑓𝑐𝑐𝑘𝑘 is the peak value of a waveform 
𝜒𝜒𝑚𝑚𝑘𝑘𝑚𝑚 is the effective or root mean square value of a waveform 
 
 

30.2.1. Peak-to-average power ratio 

Related to crest factor is peak-to-average power ratio (PAPR), defined as the ratio of peak power (i.e., the 
square of the peak value) to average power (i.e., the square of the root mean square value). Expressed 
mathematically: 
 
 

𝑃𝑃𝐴𝐴𝑃𝑃𝑅𝑅 =
|𝜒𝜒𝑐𝑐𝑓𝑓𝑐𝑐𝑘𝑘|2

𝜒𝜒𝑚𝑚𝑘𝑘𝑚𝑚
2  

 
where 
𝑃𝑃𝐴𝐴𝑃𝑃𝑅𝑅 is peak-to-average power ratio 
𝜒𝜒𝑐𝑐𝑓𝑓𝑐𝑐𝑘𝑘 is the peak value of a waveform 
𝜒𝜒𝑚𝑚𝑘𝑘𝑚𝑚 is the effective or root mean square value of a waveform 
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Expressed in decibels, 
 
 

𝑃𝑃𝐴𝐴𝑃𝑃𝑅𝑅𝑑𝑑𝑑𝑑 = 10𝑙𝑙𝐿𝐿𝑎𝑎10 �
|𝜒𝜒𝑐𝑐𝑓𝑓𝑐𝑐𝑘𝑘|2

𝜒𝜒𝑚𝑚𝑘𝑘𝑚𝑚
2 � 

 
where 
𝑃𝑃𝐴𝐴𝑃𝑃𝑅𝑅𝑑𝑑𝑑𝑑 is peak-to-average power ratio in decibels 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝜒𝜒𝑐𝑐𝑓𝑓𝑐𝑐𝑘𝑘 is the peak value of a waveform 
𝜒𝜒𝑚𝑚𝑘𝑘𝑚𝑚 is the effective or root mean square value of a waveform 
 
 
The following table summarizes crest factor and PAPR for some common waveforms. 

Table 22 - Crest factor and PAPR for various waveforms. 
Waveform type Waveform RMS value Crest factor PAPR (dB) 

Direct current  
 1 1 0.0 

Sinusoidal 

 

1
√2

≈ 0.707 √2 ≈ 1.414 3.01 

Triangle 

 

1
√3

≈ 0.577 √3 ≈ 1.732 4.77 

Square 

 
1 1 0.0 

 
 

30.3. Series and parallel resistance formulas 

30.3.1. Series resistance 

The following formula can be used to calculate the total resistance of multiple resistors in series. 
 
 

𝑅𝑅𝐶𝐶 = 𝑅𝑅1 + 𝑅𝑅2 + ⋯ 𝑅𝑅𝑖𝑖 
 
where 
𝑅𝑅𝐶𝐶 is total resistance in ohms 
𝑅𝑅1 is the first resistor’s resistance in ohms 
𝑅𝑅2 is the second resistor’s resistance in ohms 
𝑅𝑅𝑖𝑖 is the nth resistor’s resistance in ohms 
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30.3.2. Parallel resistance 

The following formula can be used to calculate the total resistance of two resistors in parallel. 
 
 

𝑅𝑅𝐶𝐶 =
𝑅𝑅1 ∗ 𝑅𝑅2

𝑅𝑅1 + 𝑅𝑅2
 

 
where 
𝑅𝑅𝐶𝐶 is total resistance in ohms 
𝑅𝑅1 is the first resistor’s resistance in ohms 
𝑅𝑅2 is the second resistor’s resistance in ohms 
 
 
The following formula can be used to calculate the total resistance of multiple resistors in parallel. 
 
 

𝑅𝑅𝐶𝐶 =
1

1
𝑅𝑅1

+ 1
𝑅𝑅2

+ ⋯ 1
𝑅𝑅𝑖𝑖

 

 
where 
𝑅𝑅𝐶𝐶 is total resistance in ohms 
𝑅𝑅1 is the first resistor’s resistance in ohms 
𝑅𝑅2 is the second resistor’s resistance in ohms 
𝑅𝑅𝑖𝑖 is the nth resistor’s resistance in ohms 
 
 

30.4. Series and parallel capacitance formulas 

30.4.1. Parallel capacitance 

The following formula can be used to calculate the total capacitance of multiple capacitors in parallel. 
 
 

𝐶𝐶𝐶𝐶 = 𝐶𝐶1 + 𝐶𝐶2 + ⋯ 𝐶𝐶𝑖𝑖 
 
where 
𝐶𝐶𝐶𝐶 is total capacitance in units of farads (e.g., farads, microfarads, picofarads, etc.) 
𝐶𝐶1 is the first capacitor’s capacitance in the same units of farads 
𝐶𝐶2 is the second capacitor’s capacitance in the same units of farads 
𝐶𝐶𝑖𝑖 is the nth capacitor’s capacitance in the same units of farads 
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30.4.2. Series capacitance 

The following formula can be used to calculate the total capacitance of two capacitors in series. 
 
 

𝐶𝐶𝐶𝐶 =
𝐶𝐶1 ∗ 𝐶𝐶2

𝐶𝐶1 + 𝐶𝐶2
 

 
where 
𝐶𝐶𝐶𝐶 is total capacitance in units of farads (e.g., farads, microfarads, picofarads, etc.) 
𝐶𝐶1 is the first capacitor’s capacitance in the same units of farads 
𝐶𝐶2 is the second capacitor’s capacitance in the same units of farads 
 
 
The following formula can be used to calculate the total capacitance of multiple capacitors in series. 
 
 

𝐶𝐶𝐶𝐶 =
1

1
𝐶𝐶1

+ 1
𝐶𝐶2

+ ⋯ 1
𝐶𝐶𝑖𝑖

 

 
where 
𝐶𝐶𝐶𝐶 is total capacitance in units of farads (e.g., farads, microfarads, picofarads, etc.) 
𝐶𝐶1 is the first capacitor’s capacitance in the same units of farads 
𝐶𝐶2 is the second capacitor’s capacitance in the same units of farads 
𝐶𝐶𝑖𝑖 is the nth capacitor’s capacitance in the same units of farads 
 
 

30.5. Capacitive reactance 

Capacitive reactance is the opposition to alternating current by a capacitor (or capacitance), and is 
expressed in ohms. Capacitive reactance can be calculated using the following formula: 
 
 

𝑋𝑋𝐶𝐶 =
1

2𝜋𝜋𝑓𝑓𝐶𝐶
 

 
where 
𝑋𝑋𝐶𝐶  is capacitive reactance in ohms 
𝑓𝑓 is frequency in hertz (Hz) 
𝐶𝐶 is capacitance in farads (F) 
 
 

30.6. Inductive reactance 

Inductive reactance is the opposition to alternating current by an inductor (or inductance), and is 
expressed in ohms. Inductive reactance can be calculated using the following formula: 
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𝑋𝑋𝐸𝐸 = 2𝜋𝜋𝑓𝑓𝐿𝐿 

where 
𝑋𝑋𝐸𝐸 is inductive reactance in ohms 
𝑓𝑓 is frequency in hertz (Hz) 
𝐿𝐿 is inductance in henrys (H) 
 
 

30.7. Resonance 

A circuit that contains both inductive reactance (𝑋𝑋𝐸𝐸) and capacitive reactance (𝑋𝑋𝐶𝐶) is said to be a tuned or 
resonant circuit. When the inductive reactance and capacitive reactance are the same (that is, 𝑋𝑋𝐸𝐸 = 𝑋𝑋𝐶𝐶), a 
resonant frequency can be calculated using the following formula: 
 
 

𝑓𝑓 =
1

2 ∗ 𝜋𝜋 ∗ √𝐿𝐿 ∗ 𝐶𝐶
 

where 
𝑓𝑓 is frequency in hertz (Hz) 
𝐿𝐿 is inductance in henrys (H) 
𝐶𝐶 is capacitance in farads (F) 
 
 

30.8. Impedance 

Impedance is the total opposition to current in a component, device, or circuit, and is expressed in ohms. 
Impedance is further defined as the frequency domain ratio of voltage to current. Impedance in an AC 
circuit, including RF, is a complex value and includes both resistance (the real part of complex 
impedance) and reactance (the imaginary part of complex impedance) – that is, both magnitude and 
phase. Impedance can be thought of as a way to describe the concept of AC resistance.62 
 
The Cartesian or rectangular form of complex impedance is expressed mathematically as: 
 
 

𝑍𝑍 = 𝑅𝑅 + 𝑗𝑗𝑋𝑋 
 
where 
𝑍𝑍 is complex impedance in ohms 
𝑅𝑅 is the resistance in ohms (the real part of the complex impedance) 
𝑗𝑗 is the imaginary unit or imaginary number63 
𝑋𝑋 is the reactance in ohms (the imaginary part of the complex impedance) 
 
 

 
62 Resistance in a DC circuit also is expressed in ohms but has only magnitude. DC resistance is sometimes called 
“DC impedance.” 
63 In mathematics “i” is commonly used for the imaginary unit, but in electronics and related fields “j” is used 
instead because the letter “i”  (or “I”) is used for current. 
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The polar form of impedance and phase angle is expressed mathematically as: 
 
 

𝑍𝑍 = |𝑍𝑍|∠𝜃𝜃 
 
where 
𝑍𝑍 is impedance in ohms 
|𝑍𝑍| is the magnitude of the impedance 
∠𝜃𝜃 is the phase angle of the impedance 
 
 
Discussion: 
One can graph the Cartesian or rectangular form of complex impedance as shown in Figure 63. 
Resistance R is on the horizontal axis, and reactance X is on the vertical axis. From [2] the impedance of a 
resonant thin half-wave dipole antenna in free space is Z = 73 + j 42.5 ohms. In this example the reactance 
is inductive, so the complex impedance expression includes a plus sign (R + j X). If the reactance were 
capacitive, the complex impedance expression would include a minus sign (R – j X). 
 

XL

XC

R
73

42.5

− j

+j

 
Figure 63 - Graph of Cartesian or rectangular form of the complex impedance of a 

resonant thin half-wave dipole antenna, Z = 73 + j42.5 ohms. 

Impedance can be graphed in a polar form, too. Figure 64 shows the impedance of a resonant thin half-
wave dipole antenna in free space, in polar form: Z = 84.47Ω∠30.21°. The magnitude of the dipole’s 
impedance is derived from the rectangular form of its complex impedance, using Pythagorean’s 
Theorem: |𝑍𝑍| = √732 + 42.52 = 84.47 ohms. The phase angle of the impedance is 𝜃𝜃 = 𝑎𝑎𝑡𝑡𝑎𝑎𝑠𝑠 �42.5

73
� =

30.21 degrees. 



SCTE 270 2021r1   

SCTE OPERATIONAL PRACTICE  © SCTE 291 

XL

XC

R
73

42.5

− j

+j

θ =30.21° 

 
Figure 64 - Graph of polar form of the complex impedance of a half-wave dipole, Z = 

84.47Ω∠30.21°. The latter is read or spoken as “84.47 ohms at an angle of 30.21 degrees.” 

Impedance also can be plotted on a Smith Chart; a simplified example is shown in Figure 65. In most 
cases the values on a Smith Chart are normalized – that is, the actual impedance is divided by the 
characteristic impedance.64 The horizontal green line in Figure 65 is the resistance component (R/Z0), 
with the center point “r = 1” representing the normalized characteristic impedance. Here, the point “r = 1” 
is 75 ohms normalized to a value of 1. 
 
The red circles in Figure 65 are normalized resistance circles, centered on the R/Z0 axis. The curved green 
lines are normalized reactance circles; the green lines above the R/Z0 axis are positive reactance circles, 
and the green lines below the R/Z0 axis are negative reactance circles. The dashed circles are admittance 
circles. The normalized complex impedance of a resonant thin halfwave dipole is plotted as the blue dot 
in Figure 65. The dipole’s complex impedance of Z = 73 + j42.5 ohms, when normalized, is Znorm = 0.97 + 
j0.57 ohms. 
 
For more information about the Smith Chart, see [32]. 

 
64 Multiplication or division of complex numbers can be done in polar or rectangular form using complex 
conjugates. 
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Figure 65 - Normalized complex impedance of a resonant thin half-wave dipole, Znorm = 

0.97 + j0.57 ohms, plotted on a Smith Chart. Plot created online at 
https://quicksmith.online 

 

30.9. Group delay distortion 

If propagation or transit time through a device is the same at all frequencies, phase is said to be linear 
with respect to frequency. If phase changes uniformly with frequency, an output signal will be identical to 
the input signal, except that it will have a time shift because of the uniform delay through the device. If 
propagation or transit time through a device is different at different frequencies, the result is a delay shift 
or non-linear phase shift. If phase changes non-linearly with frequency, the output signal will be distorted. 
 
Delay distortion – also known as phase distortion – is usually expressed in units of time: millisecond 
(ms), microsecond (µs) or nanosecond (ns) relative to a reference frequency. Phase distortion is related to 
phase delay, and phase distortion is measured using a parameter called envelope delay distortion, or group 
delay distortion. To limit the amount of group delay distortion in a system, equipment often has a 
specification on group delay variation (GDV) setting a limit on the amount of variation in the group delay 
over a given frequency range, in some manner. 
 
According to [27], group delay is “the [negative] derivative of radian phase with respect to radian 
frequency. It is equal to the phase delay for an ideal non-dispersive delay device, but may differ greatly in 
actual devices where there is a ripple in the phase versus frequency characteristic.” 
 
In its simplest form, group delay can be expressed mathematically as: 
 

𝐺𝐺𝑀𝑀 = −
𝑑𝑑𝑠𝑠
𝑑𝑑𝜔𝜔

 
where 
𝐺𝐺𝑀𝑀 is group delay 
𝑑𝑑 is derivative 
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𝑠𝑠 is phase in radians 
𝜔𝜔 is angular frequency in radians per second 
 
In other words, if phase-versus-frequency is non-linear, group delay distortion exists. In a system, 
network, device or component with no group delay distortion, all frequencies propagate through the 
system, network, device or component in the same amount of time – that is, with equal time delay. 
If group delay distortion exists, signals (or parts of signals) at some frequencies propagate faster or slower 
than signals (or parts of signals) at other frequencies. 
 

30.10. Modulation error ratio 

A commonly used metric to characterize the health of digital signals is modulation error ratio (MER), 
defined as the ratio of average signal constellation power to average constellation error power. Most MER 
measurements of interest in cable are receive modulation error ratio (RxMER), which is the MER as 
measured in a digital receiver after demodulation, with or without adaptive equalization. Less commonly 
used is transmit modulation error ratio (TxMER), the MER produced by a transmitter under test, as 
measured by an ideal test receiver. Expressed mathematically: 
 
 

 
 
where 
MER is modulation error ratio 
log10 is base 10 logarithm 
I and Q are the real (in-phase) and imaginary (quadrature) parts of each sampled ideal target symbol 
vector 
δI and δQ are the real (in-phase) and imaginary (quadrature) parts of each modulation error vector 
 
 

30.11. Error vector magnitude 

The following discussion about error vector magnitude is excerpted from [6]. Used with permission of the 
authors. 
 

Another measurement metric that is closely related to MER is error vector magnitude 
(EVM). As shown … in Figure 13 in [6], EVM is the magnitude of the vector drawn 
between the ideal (reference or target) symbol position of the constellation, or hard 
decision, and the measured symbol position, or soft decision. By convention, EVM is 
reported as a percentage of peak signal level, usually defined by the constellation corner 
states. Mathematically, EVM follows: 
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𝐸𝐸𝑉𝑉𝑅𝑅 = �
𝐸𝐸𝑅𝑅𝑀𝑀𝑅𝑅

𝑅𝑅𝑘𝑘𝑐𝑐𝑐𝑐
� ∗ 100 

where 
𝐸𝐸𝑉𝑉𝑅𝑅 is error vector magnitude 
𝐸𝐸𝑅𝑅𝑀𝑀𝑅𝑅 is the root mean square error magnitude 
𝑅𝑅𝑘𝑘𝑐𝑐𝑐𝑐 is the maximum symbol magnitude 
 

 
Error vector magnitude is normally expressed as a linear measurement in percent, and 
MER is normally expressed as a logarithmic measurement in dB. Why use EVM instead 
of MER to characterize a data signal? Many data engineers are familiar with EVM, and 
for some, linear measurements are easier to work with than logarithmic measurements. 
Error vector magnitude links directly with the constellation display, and there is a linear 
relationship between EVM and a constellation symbol point “cloud size” or “fuzziness.” 

 
Maximum-to-Average Constellation Power Ratio and EVM/MER Conversion 
Because EVM and MER are referenced differently, in order to relate EVM to MER, we 
must first compute the ratio of the peak constellation symbol power to the average 
constellation power. The peak constellation power is the squared magnitude of the 
outermost (corner) QAM symbol. Its formula for a square QAM constellation on an 
integer grid follows: 
 
𝑃𝑃𝑐𝑐𝑓𝑓𝑐𝑐𝑘𝑘 = 2�√𝑅𝑅 − 1�

2
 

 
where M is the number of points in the constellation (M = 4, 16, 64, 256, etc.) and the 
points are spaced by 2 on each axis. For example, for 16-QAM, the I and Q coordinates 
take on values from the set {–3, –1, 1, 3} and the peak power is 2(4 – 1)2 = 32 + 32 = 18. 
(Use of the integer grid is for illustration purposes only and does not imply any particular 
power normalization.) 

 
The average constellation power (averaged equally over all symbols in the constellation) 
follows:65 

 

𝑃𝑃𝑐𝑐𝑟𝑟 =
2
3

(𝑅𝑅 − 1) 
 

For example, for 16-QAM, the average constellation power is (2/3) (16 – 1) = 10. Note 
that this result happens to equal the power of one of the constellation points; the point 
(3,1) also has power 32 + 12 = 10. 

 
The maximum-to-average constellation power ratio (MTA) is, therefore, the unitless ratio 
 

MTA =
Ppeak
Pav

= 3
√M − 1
√M + 1

 

 
65 Simon, Hinedi, and Lindsey, Digital Communication Techniques, equation 10.25, page 628. 
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which approaches 3, or in decibels, 10log10(3) = 4.77 dB, for very-high-order QAM. 
MTA (converted to dB) is tabulated in Table 23, which contains entries for the standard 
square constellations as well double-square constellations. A double-square constellation 
is a subset consisting of half the points of the next-higher square constellation, arranged 
like the black squares on a checkerboard, and contains the same peak and average values 
as the next-higher square constellation. DOCSIS uses 64-QAM and 256-QAM square 
constellations for downstream transmission, and both square and double-square 
constellations from QPSK to 128-QAM for upstream transmission. 

Table 23 - MTA ratio for square and double-square QAM constellations. 
Constellation (DS = Double-Square) MTA Ratio for Constellation Symbols 

(dB) 
QPSK and BPSK  0 
16-QAM and 8-QAM-DS  2.55 
64-QAM and 32-QAM-DS  3.68 
256-QAM and 128-QAM-DS  4.23 
1024-QAM and 512-QAM-DS  4.50 
Limit for infinite QAM 4.77 

 

We can now convert from MER to EVM using the formula: 
 
 

𝐸𝐸𝑉𝑉𝑅𝑅_% = 100 ∗ 10−(𝑀𝑀𝐸𝐸𝑅𝑅_𝑑𝑑𝑑𝑑+𝑀𝑀𝐶𝐶𝐴𝐴_𝑑𝑑𝑑𝑑) 20⁄  
where 
𝐸𝐸𝑉𝑉𝑅𝑅_% is error vector magnitude (percent) 
𝑅𝑅𝐸𝐸𝑅𝑅_𝑑𝑑𝑑𝑑 is modulation error ratio (dB) 
𝑅𝑅𝑇𝑇𝐴𝐴_𝑑𝑑𝑑𝑑 is maximum-to-average constellation ratio (dB) 
 
 

MTA Versus Peak-to-Average Ratio of an RF Signal 
It is important not to confuse MTA with the peak-to-average ratio (PAR) of the actual 
transmitted signal. MTA accounts only for the distribution of the ideal QAM 
constellation symbols. Because of the subsequent spreading, filtering, and modulation 
processes that operate on the symbols, the effective PAR of a single modulated RF carrier 
will typically lie in the range of 6 to 13 dB or more. (The effect of filtering was illustrated 
previously by the long tails in the distribution in part (c) of Figure 9 of [6].) The actual 
PAR value depends on the modulation, excess bandwidth, and whether pre-equalization 
or S-CDMA spreading is in use.66 The PAR of a combined signal containing multiple 
carriers (such as the aggregate upstream or downstream signal on the cable plant) can 
become very large. Fortunately, the peaks occur very seldom, and the aggregate signal 
can often be treated like a random Gaussian signal. 
 

 
66 HEYS Professional Services’ Francis Edgington has measured practical PAR values in the 6.3- to 7.3-dB range 
for 64-QAM signals and 6.5- to 7.5-dB range for 256-QAM signals. 
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30.12. Understanding CMTS OFDM power configuration 

The material in this section is excerpted and adapted from SCTE 258 2020 DOCSIS 3.1 Downstream 
OFDM Power Definition, Calculation, and Measurement Techniques. Refer to that document for more 
information.67 
 
The addition of OFDM signals to the cable network signal lineup will normally require the CMTS output 
power level configuration be consistent with existing headend combining networks. Many operators have 
elected to migrate their headend systems to converged cable access platform (CCAP) equipment which 
generates a full line-up of SC-QAM and OFDM signals for digital video, DOCSIS 3.0 and DOCSIS 3.1 
services. The CCAP’s RF output levels may need to accommodate analog optical transport systems to 
serve hybrid fiber/coax (HFC) nodes in the field. The CCAP output levels may be flat or tilted as required 
to satisfy the HFC design rules established by each operator.  
 
Independent of this deployment practice, the DOCSIS 3.1 specification authors needed to describe how 
the CMTS output fidelity should be defined. They documented their agreement about this in Section 
7.5.9.1 CMTS Output Electrical Requirements in the DOCSIS 3.1 Physical Layer Specification. This 
section of the DOCSIS 3.1 Specification is not intended to define how the CMTS should be configured 
for any network deployment. It assumes that the power for each legacy SC-QAM channel in the lineup is 
set to the same value. Any OFDM signal generated by the CMTS is treated as the equivalent of a sum of 
SC-QAM channels which would occupy the total spectrum of the OFDM signal. Section 7.5.9.1 says that 
the total power (the average power) of an OFDM signal is the sum of the power of all these virtual legacy 
digital channels which were “generated” in place of the OFDM signal. 
 
Here’s the relevant wording from the spec: “CMTS power is configured by power per CEA channel and 
number of occupied CEA channels for each OFDM channel.” The spec goes on to say “For each OFDM 
channel, the total power is Power per CEA channel + 10log10(Number of occupied CEA channels) for that 
OFDM channel.”68 
 
The aforementioned text seems straightforward enough, but there is potential confusion surrounding how 
CMTS output power is defined in the spec’s Table 42 - CMTS Output Power. As mentioned previously, 
an OFDM signal’s total power is measured (or calculated) over its occupied bandwidth, while Table 42 
describes the required power capabilities for the modulator in terms of the power per 6 MHz. Further 
confusing things is a description in Table 44 - CMTS OFDM Channel Characteristic that describes 
certain characteristics of an OFDM channel (emphasis on “channel”).  
 
When discussing an OFDM signal, it is important to be clear what is meant by the following: an OFDM 
channel (sometimes called OFDM block), an OFDM signal (often intended to be the same thing as an 
OFDM channel), the OFDM signal’s total power, and its per 6 MHz power (aka OFDM channel power).  
A suggestion for the logical progression for configuring the downstream lineup power is outlined in the 
following paragraph, and then detailed examples are provided.  
 
The first step is to plan the downstream spectrum that is to be modulated, accounting for all the CTA 
channel slots which are occupied by OFDM signals and legacy SC-QAM signals. Count the number of 
occupied CTA channels in this lineup, and denote this number of CTA channels for the entire 

 
67 The referenced document is available on SCTE’s standards download page at https://www.scte.org/ 
68 The CEA-542-D standard was renamed CTA-542-D when the Consumer Electronics Association changed its 
name to the Consumer Technology Association. The latest version of the standard is “CTA-542-D R-2018 Cable 
Television Channel Identification Plan,” so the correct designation for 6 MHz channels on cable networks is “CTA 
channels” rather than “CEA channels” (or the older “EIA channels”). 
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downstream lineup as Noccupied. Use the DOCSIS 3.1 PHY spec’s Table 42 to determine the range of 
admissible values of modulated power per 6 MHz using Noccupied (in place of Neq’) and the modulator 
capability Neq, and select a value from within this range (if the modulator has more capability than the 
ranges in Table 42, the operator may select such value for which the modulator is capable and is desired). 
The next step is to determine the OFDM channel power for any OFDM signal, based on the occupied 
bandwidth of the OFDM signal.  
 
The next step for the modulator is to determine the power settings for each subcarrier, given the OFDM 
channel power, but this is beyond the scope of this document.  
 
[Also adding potential confusion, the spec intentionally uses a different reference in the spurious 
emissions requirements for signal power, referenced as “0 dBc” in 6 MHz, than is used to set up the total 
power for the OFDM channel. The spurious emissions requirements are referenced to the “0 dBc” signal 
power, which derives from a) the amount of modulated spectrum, and b) the highest power 6 MHz within 
the OFDM signal (the 6 MHz containing the PHY link channel (PLC) also contains no inactive 
subcarriers, and more boosted subcarriers than the remaining 6 MHz spans of spectrum in the OFDM 
signal). On the other hand, the OFDM channel power is based on the occupied bandwidth. The amount of 
modulated spectrum and the occupied bandwidth are different values. (This document does not delve into 
why the different definitions are applied in the spec, but the definitions were reasoned.)]  
 
An excerpt from Table 42 of the DOCSIS 3.1 PHY spec is included here for reference:  

 
 
The terms N*, Neq, Neq’, “ceil,” “ceiling,” and “minimum” in the table may benefit from clarification. The 
first usage of some of the terms can be found in the DOCSIS 3.1 PHY spec’s section 7.5.9 Fidelity 
Requirements: “CMTSs capable of generating N-channels of legacy DOCSIS plus NOFDM-channels of 
OFDM per RF port, for purposes of the DRFI output electrical requirements, the device is said to be 
capable of generating Neq-channels per RF port, where Neq = N + 32 ∗ NOFDM "equivalent legacy DOCSIS 
channels."”  
 
Let’s look at the terms “ceil” and “minimum” first. 

• ceil – An abbreviation for ceiling, which, according to the DOCSIS 3.1 PHY spec’s glossary is 
“A mathematical function that returns the lowest-valued integer that is greater than or equal to a 
given value.” For example, solve the following equation: 

ceil(13/3) = ?  
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By itself, (13/3) = 4.33, but when the ceiling function is applied, 4.33 is “rounded up” to the 
nearest integer. So, ceil(13/3) = 5. If the value to which the ceiling function is applied is an 
integer – for instance, ceil(12) – the returned value is ceil(12) = 12. 

• minimum – The smallest value in a set. Consider the set of numbers [10, 2, 15, 8]. In this case, 
minimum[10, 2, 15, 8] = 2. If the set contains formulas, the minimum is the smallest valued 
answer or solution to the formulas.  

The following is an overview of the various “N” terms (refer to the Appendix of [28] for more 
information). 

• N – The number of legacy DOCSIS channels per RF port that a CMTS is capable of generating 
(According to 6.4.2 Downstream Electrical Input to the CM “A CMTS MUST support at least 
32 active downstream channels”). 
 

• NOFDM – The number of downstream OFDM channels per RF port the CMTS is capable of 
generating. (According to 7.2.2 Downstream CMTS Spectrum “The CMTS MUST support a 
minimum of two independently configurable OFDM channels each occupying a spectrum of up 
to 192 MHz in the downstream.”) 
 

• Neq – The number of equivalent legacy DOCSIS channels per RF port the CMTS is capable of 
generating, defined by the formula  

Neq = N + 32 ∗ NOFDM  
 
For example, assume the CMTS is capable of 32 SC-QAM channels and two 192 MHz-wide 
OFDM channels per RF port. In this example, N = 32 and NOFDM = 2. Solving for Neq, we get  
 
Neq = 32 + 32 ∗ 2  
Neq = 32 + 64  
Neq = 96  
 
In other words, the CMTS is capable of generating the equivalent of 96 legacy DOCSIS SC-
QAM channels per RF port. 

• Neq’ – The number of active equivalent legacy DOCSIS channels per RF port. According to the 
DOCSIS 3.1 PHY spec, the number of equivalent active legacy DOCSIS channels in the OFDM 
channel Neq’ is the ceiling function applied to the modulated spectrum69 divided by 6 MHz.  

Here’s an example of calculating Neq’. Assume that the CMTS is configured to generate just one 
96 MHz-wide OFDM channel per port. For a 96 MHz-wide downstream OFDM channel with no 
exclusion bands and with the minimum 1 MHz-wide taper region on each end of the channel, the 
modulated spectrum is 94 MHz, so Neq’ = ceil[94 MHz/6 MHz] = 16 active equivalent legacy SC-
QAM DOCSIS channels. 

• N* – The adjusted number of active channels combined per RF port. The DOCSIS 3.1 PHY spec 
says “For an Neq-channel per RF port device, the applicable maximum power per channel and 

 
69 See Section 10 of [28] for more information about modulated spectrum, encompassed spectrum, and occupied 
bandwidth. 
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spurious emissions requirements are defined using a value of N* = minimum(4Neq’, 
ceiling[Neq/4]) for Neq’ < Neq/4, and N* = Neq’ otherwise.” 

That is, if Neq’ < Neq/4, then N* = minimum[4Neq’, ceil(Neq/4)]. Or, if Neq’ ≥ Neq/4, then N* = 
Neq’.  

 
The importance of N* is that in Table 42 of the DOCSIS 3.1 PHY spec, the required power per channel 
for Neq’ channels combined onto a single RF port is stated as “Required power in dBmV per channel 60 – 
ceil[3.6 ∗ log2(N*)] dBmV.” Note that the ceiling function is used in this equation. Also note that the 
logarithm function is base-2, not the more common base-10.70  
 

30.12.1. Power Calculation Example  

The following example illustrates how to calculate a DOCSIS 3.1 CMTS’s downstream OFDM transmit 
power.71 For the example, assume the CMTS is capable of generating 32 legacy SC-QAM channels (N = 
32) and two 192 MHz-wide OFDM channels (NOFDM = 2) per RF port. For this hypothetical CMTS, then, 
Neq = 96. Further assume that the intended full downstream lineup will have Noccupied as given in the 
following example. Note that Noccupied is the number of CTA channels occupied by the entire downstream 
lineup, but if there is only one channel in the downstream lineup, then that channel alone determines 
Noccupied. 
 

30.12.1.1. OFDM power per channel example  

In order to calculate the power per channel (that is, power per 6 MHz), it’s necessary to first determine 
the value of N*. To do that, we need the values for Neq and Neq’, to use Table 42 from the DOCSIS 3.1 
PHY spec, but where the latter is Neq’ = Noccupied for the first step in determining output power.  
 
Assume the CMTS is configured for a single 192 MHz-wide OFDM channel per RF port, with the OFDM 
channel’s modulated spectrum equal to 190 MHz and a taper region of 1 MHz on each side, and centered 
within the CTA channel boundaries so that Noccupied = 32. From the previously stated assumptions for 
these examples, we know that Neq = 96.  
 
Neq’ = Noccupied  
Neq’ = 32 active equivalent legacy SC-QAM DOCSIS channels  
 
Next, solve for Neq/4, which in this example is 96/4 = 24. Here, Neq’ > Neq/4 (that is, 32 > 24), so N* = 
Neq’, or N* = 32. Now we can calculate the per-channel power:  
 
60 – ceil[3.6 ∗ log2(N*)]  
60 – ceil[3.6 ∗ log2(32)]  
60 – ceil[3.6 ∗ 5]  
60 – ceil[18]  
60 – 18 = 42  
 

 
70 Refer to Appendix A of this document for information on how to calculate base-2 logarithms. 
71 See the Data-Over-Cable Service Interface Specifications Downstream RF Interface Specification for information 
on characterization and calculation of downstream DOCSIS SC-QAM per-channel power. 
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The per-channel power in this example is 42 dBmV.72 
 

30.12.2. OFDM total power  

What is the total power for the previous example? We know the per-channel power (remember, DOCSIS 
3.1 downstream transmit power for the CMTS is configured by power per CTA channel or power per 6 
MHz). Recall that the DOCSIS 3.1 spec says “For each OFDM channel, the total power is Power per CEA 
channel + 10log10(Number of occupied CEA channels) for that OFDM channel.” 
 
Knowing that, let’s calculate the total power for the previous example. 
 

30.12.2.1. OFDM total power example  

The per-channel power was calculated to be 42 dBmV. The occupied bandwidth of the single 192 MHz-
wide OFDM channel is 32 CTA channels, so the total power is 
 
Ptotal = 42 + 10log10(32)  
Ptotal = 42 + 10 ∗ log10(32)  
Ptotal = 42 + 10 ∗ 1.51  
Ptotal = 42 + 15.05  
Ptotal = 57.05 dBmV 
 

30.13. Phase noise 

The characterization of a signal source such as an oscillator includes a variety of parameters. Some 
examples of those parameters are output power capability, frequency stability, amplitude stability, 
harmonics and spurious signals, and phase noise. The latter can be thought of as an undesired spreading 
of the signal spectrum in the frequency domain caused by phase fluctuations in the signal source, and is 
equivalent to jitter in the time domain. From Wikipedia,73 “…IEEE defines phase noise as ℒ(f) 
= Sφ(f)/2 where the ‘phase instability’ Sφ(f) is the one-sided spectral density of a signal’s phase deviation.” 
All signal sources exhibit some phase noise. See Figure 66. 
 
Measurement of phase noise is usually a single-sideband (SSB) measurement in a 1 Hz bandwidth, at a 
specified frequency offset from the carrier – for example, 1 kHz, 10 kHz, etc. For more information about 
phase noise, see Appendix K. 
 

 
72 Note: If the 192 MHz of OFDM channel bandwidth were used instead for legacy SC-QAM channels, and no other 
legacy digital channels were transmitted, then (192 MHz)/(6 MHz per channel) = 32 SC-QAM channels would be 
modulated and the same per-channel power of 42 dBmV would result for each of those legacy SC-QAM channels.   
73 See https://en.wikipedia.org/wiki/Phase_noise 
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Figure 66 - Frequency domain representation of a carrier from an ideal signal source 

(left), and a carrier from a signal source with phase noise (right).  

The following formula is known as Leeson's equation,74 an empirical expression that describes 
an oscillator's phase noise spectrum. The formula gives SSB phase noise in decibel carrier per hertz 
(dBc/Hz), augmented for flicker noise. 
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where 
𝐿𝐿(𝑓𝑓𝑘𝑘) is single-sideband phase noise in dBc/Hz  
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑓𝑓0 is the output frequency 
𝑄𝑄𝑡𝑡 is the loaded quality factor 
𝑓𝑓𝑘𝑘 is the offset from the output frequency hertz (Hz) 
𝑓𝑓𝑐𝑐 is the 1/f corner frequency 
𝑁𝑁 is the noise factor of the amplifier 
𝑘𝑘 is Boltzmann's constant in joules/kelvin 
𝑇𝑇 is absolute temperature in kelvin 
𝑃𝑃𝑚𝑚 is the available power at the sustaining amplifier input 
 
 

30.14. Total composite power 

Signal levels in cable networks are often stated as per-channel values. For example, §76.605(b)(1) of the 
FCC Rules75 says 
 

“The visual signal level, across a terminating impedance which correctly matches the 
internal impedance of the cable system as viewed from the subscriber terminal, shall not 
be less than 1 millivolt across an internal impedance of 75 ohms (0 dBmV).” 

 

 
74 See https://en.wikipedia.org/wiki/Leeson%27s_equation 
75 As of February 2021 
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The 1 millivolt (0 dBmV) value in the above text is the per-channel peak envelope power of an analog 
TV signal’s visual carrier. 
 
Sometimes it is necessary to know the total composite power (TCP, aka total power) at the input to a 
device such as a set-top box or cable modem, or at the output of a node or amplifier. Total (composite) 
power is the combined power of all signals and/or signal components in a defined bandwidth, such as the 
downstream spectrum.76 
 
One reason is that total composite power is important is because of its impact on the performance of an 
active device such as a STB or amplifier. If the total power at the input to a STB or modem is too high, it 
can overload the front-end circuitry of the device and result in distortions being generated inside of that 
device. Likewise, for an active device such as a node or amplifier, the RF stages have limitations on the 
output total composite power that they can support. As operational total composite power approaches the 
maximum supported capability of a device, signal compression and clipping can occur. 
 
Consider the RF input to a cable modem. Assume that the downstream spectrum is from 54 MHz to 1,002 
MHz, and that there are 154 active 6 MHz-wide channels. Further assume that all 154 channels have the 
same per-channel power of 0 dBmV. The total power at the input to the modem is 𝑃𝑃𝑓𝑓𝑜𝑜𝑓𝑓𝑐𝑐𝑡𝑡 = 0 𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 +
10𝑙𝑙𝐿𝐿𝑎𝑎10(154) = 21.88 𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉. As long as the per-channel power is the same value for all channels, 
calculation of total power is relatively straightforward. 
 
Where things become complicated is when the RF spectrum is not flat, but has tilt, such as at the output 
of a node or amplifier. The formulas in the next section can be used to calculate total composite power 
when linear and cable equalization come into play. Refer to Appendix J for a mathematical derivation of 
the formulas used here. 
 

30.14.1. Amplifier equalizer total composite power formulas 

Richard S. Prodan, Ph.D. 
Comcast Cable 

Linear Equalizer: 

𝑃𝑃𝑑𝑑𝑑𝑑(f) = mf + b  (dBmV/MHz) ; m ≡ slope, b ≡ intercept 

is the linear function of power per MHz (i.e., power spectral density PSD per MHz) in decibel millivolt as 
a function of frequency in MHz with slope m and intercept b. The total composite power TCP in decibel 
millivolt (dBmV) from the equalizer start frequency fstart to the equalizer stop frequency fstop is given by 
the logarithm of the integral of PdB(f) as: 
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where 

𝐸𝐸𝐸𝐸𝑣𝑣𝑎𝑎𝑙𝑙𝑠𝑠𝑧𝑧𝑝𝑝𝑝𝑝 𝑇𝑇𝑠𝑠𝑙𝑙𝑡𝑡 (𝑑𝑑𝑑𝑑) = 𝐿𝐿𝑝𝑝𝑎𝑎𝑝𝑝𝑙𝑙 @ 𝐸𝐸𝐸𝐸𝑣𝑣𝑎𝑎𝑙𝑙𝑠𝑠𝑧𝑧𝑝𝑝𝑝𝑝 𝑅𝑅𝑡𝑡𝐿𝐿𝑝𝑝 𝑁𝑁𝑝𝑝𝑝𝑝𝐸𝐸𝑣𝑣𝑝𝑝𝑠𝑠𝑝𝑝𝑖𝑖 −  𝐿𝐿𝑝𝑝𝑎𝑎𝑝𝑝𝑙𝑙 @ 𝐸𝐸𝐸𝐸𝑣𝑣𝑎𝑎𝑙𝑙𝑠𝑠𝑧𝑧𝑝𝑝𝑝𝑝 𝑅𝑅𝑡𝑡𝑎𝑎𝑝𝑝𝑡𝑡 𝑁𝑁𝑝𝑝𝑝𝑝𝐸𝐸𝑣𝑣𝑝𝑝𝑠𝑠𝑝𝑝𝑖𝑖  

 
76 See Section Appendix I for more information on total power. 
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m = 𝐸𝐸𝐸𝐸𝑜𝑜𝑐𝑐𝑡𝑡𝑖𝑖𝑀𝑀𝑓𝑓𝑚𝑚 𝐶𝐶𝑖𝑖𝑡𝑡𝑓𝑓
𝐸𝐸𝐸𝐸𝑜𝑜𝑐𝑐𝑡𝑡𝑖𝑖𝑀𝑀𝑓𝑓𝑚𝑚 𝑅𝑅𝑓𝑓𝑜𝑜𝑐𝑐 𝑁𝑁𝑚𝑚𝑓𝑓𝐸𝐸𝑜𝑜𝑓𝑓𝑖𝑖𝑐𝑐𝑠𝑠 −𝐸𝐸𝐸𝐸𝑜𝑜𝑐𝑐𝑡𝑡𝑖𝑖𝑀𝑀𝑓𝑓𝑚𝑚 𝑅𝑅𝑓𝑓𝑐𝑐𝑚𝑚𝑓𝑓 𝑁𝑁𝑚𝑚𝑓𝑓𝐸𝐸𝑜𝑜𝑓𝑓𝑖𝑖𝑐𝑐𝑠𝑠

 

b = Transmit Level @ Equalizer Start Frequency −  Equalizer Slope * Equalizer Start Frequency − 10𝑙𝑙𝐿𝐿𝑎𝑎10(6)  

and Transmit Level @ Equalizer Start Frequency = PSD per 6 MHz (dBmV/6 MHz) at that initial frequency. 
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 . 

Cable Equalizer: 

𝑃𝑃𝑑𝑑𝑑𝑑(f) = m�𝑓𝑓+ b  (dBmV/MHz) ; m ≡ slope, b ≡ intercept 

is the linear function of power per √𝑅𝑅𝐻𝐻𝑧𝑧 (i.e., power spectral density PSD per √𝑅𝑅𝐻𝐻𝑧𝑧) in decibel 
millivolt as a function of the square root of frequency in √𝑅𝑅𝐻𝐻𝑧𝑧 with slope m and intercept b. The total 
composite power TCP in decibel millivolt (dBmV) from the equalizer start frequency fstart to the equalizer 
stop frequency fstop is given by the logarithm of the integral of PdB(f) as: 

𝑇𝑇𝐶𝐶𝑃𝑃 = 10 𝑙𝑙𝐿𝐿𝑎𝑎10 � � 10� 𝑘𝑘�𝑓𝑓+𝑐𝑐 �/10

𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑐𝑐

𝑑𝑑𝑓𝑓� = 10 𝑙𝑙𝐿𝐿𝑎𝑎10 � 
2 · 10� 𝑘𝑘�𝑓𝑓+𝑐𝑐 �/10

� 𝑚𝑚
10 ln(10)�2 

� 𝑚𝑚
10 ln(10) �𝑓𝑓 - 1��

𝑓𝑓𝑚𝑚𝑓𝑓𝑜𝑜𝑐𝑐
𝑓𝑓𝑚𝑚𝑓𝑓𝑐𝑐𝑚𝑚𝑓𝑓

�   (𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉) 

where 

𝑚𝑚 =
𝐸𝐸𝐸𝐸𝑣𝑣𝑎𝑎𝑙𝑙𝑠𝑠𝑧𝑧𝑝𝑝𝑝𝑝 𝑇𝑇𝑠𝑠𝑙𝑙𝑡𝑡

�𝐸𝐸𝐸𝐸𝑣𝑣𝑎𝑎𝑙𝑙𝑠𝑠𝑧𝑧𝑝𝑝𝑝𝑝 𝑅𝑅𝑡𝑡𝐿𝐿𝑝𝑝 𝑁𝑁𝑝𝑝𝑝𝑝𝐸𝐸𝑣𝑣𝑝𝑝𝑠𝑠𝑝𝑝𝑖𝑖 −  �𝐸𝐸𝐸𝐸𝑣𝑣𝑎𝑎𝑙𝑙𝑠𝑠𝑧𝑧𝑝𝑝𝑝𝑝 𝑅𝑅𝑡𝑡𝑎𝑎𝑝𝑝𝑡𝑡 𝑁𝑁𝑝𝑝𝑝𝑝𝐸𝐸𝑣𝑣𝑝𝑝𝑠𝑠𝑝𝑝𝑖𝑖
 

b  =  Transmit Level @ Equalizer Start Frequency + Equalizer Tilt −  𝑚𝑚�𝐸𝐸𝐸𝐸𝑣𝑣𝑎𝑎𝑙𝑙𝑠𝑠𝑧𝑧𝑝𝑝𝑝𝑝 𝑅𝑅𝑡𝑡𝐿𝐿𝑝𝑝 𝑁𝑁𝑝𝑝𝑝𝑝𝐸𝐸𝑣𝑣𝑝𝑝𝑠𝑠𝑝𝑝𝑖𝑖  − 10 𝑙𝑙𝐿𝐿𝑎𝑎10(6)  

Note: Cable equalizers are designed to offset both the tilt and the shape associated with coaxial cable loss. 
A cable equalizer dB value equals the attenuation at the equalizer stop frequency approximately given by:  

Cable EQ (dB) =  
𝐸𝐸𝐸𝐸𝑜𝑜𝑐𝑐𝑡𝑡𝑖𝑖𝑀𝑀𝑓𝑓𝑚𝑚 𝐶𝐶𝑖𝑖𝑡𝑡𝑓𝑓

1− �𝐸𝐸𝐸𝐸𝑜𝑜𝑐𝑐𝑡𝑡𝑖𝑖𝑀𝑀𝑓𝑓𝑚𝑚 𝑅𝑅𝑓𝑓𝑐𝑐𝑚𝑚𝑓𝑓 𝑁𝑁𝑚𝑚𝑓𝑓𝐸𝐸𝑜𝑜𝑓𝑓𝑖𝑖𝑐𝑐𝑠𝑠 𝐸𝐸𝐸𝐸𝑜𝑜𝑐𝑐𝑡𝑡𝑖𝑖𝑀𝑀𝑓𝑓𝑚𝑚 𝑅𝑅𝑓𝑓𝑜𝑜𝑐𝑐 𝑁𝑁𝑚𝑚𝑓𝑓𝐸𝐸𝑜𝑜𝑓𝑓𝑖𝑖𝑐𝑐𝑠𝑠⁄
 

Example: 
The previous formulas can be embedded in a spreadsheet to facilitate calculation of TCP and plots of 
equalizer response and node or amplifier output, as shown in the following examples. 

 

                   

 Total Composite Power = 73.8 (dBmV)    Total Composite Power = 70.0 (dBmV) 

Node L.E.
Transmit Level (dBmV/6 MHz): 37 32

Equalizer Direction (Node): Downstream
Equalizer Type (Cable,Linear,Flat,Tilt,Sawtooth): Linear
Equalizer Low Frequency (MHz): 111
Equalizer High Frequency (MHz): 1215
Equalizer Tilt (dB/1104 MHz): 21

   
  

Equalizer Direction (Line Extender): Downstream
Equalizer Type (Cable,Linear): Cable
Equalizer Low Frequency (MHz): 111
Equalizer High Frequency (MHz): 1215
Equalizer Tilt (dB/1104 MHz): 21
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Figure 67 - Graphs of an example node’s downstream output signal with a 21 dB Linear 

Equalizer (top) and an example line extender amplifier’s downstream output signal with a 
30 dB Cable Equalizer (bottom). The blue trace in each graph is amplitude in dBmV/6 

MHz, and the red trace is the equalizer attenuation in dB. For the top graph, TCP = 73.8 
dBmV, and for the bottom graph TCP = 70.0 dBmV. 

 
Of particular importance is managing TCP when adjusting levels for improved node signal-to-reflection 
interference ratio or cable modem downstream receive level in full duplex operation, or managing TCP in 
extended spectrum operation – for instance, to 1.8 GHz (or higher). Several approaches can be used to 
manage signal levels and TCP across a wide operating bandwidth, including a suitable constant tilt from 
the start of the downstream spectrum (fstart) to the upper frequency limit (fstop); unused gaps in the 
spectrum; a reduction (“step” or “stepdown”) in the operating levels above a certain frequency; multiple 
steps in operating levels at higher frequencies; and so forth. See Figure 68. 
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Figure 68 - Examples of ways to manage TCP: constant tilt (left), tilt with single stepdown 
(center), and tilt with multiple stepdowns (right). 

 
If you have an amplitude step down of D dB above frequency fD with the same slope, then  
 

𝑇𝑇𝐶𝐶𝑃𝑃 = 10 𝑙𝑙𝐿𝐿𝑎𝑎10 � 
10(𝑘𝑘𝑓𝑓+𝑐𝑐)/10

𝑚𝑚
10 ln(10)

� 𝑓𝑓𝑋𝑋
𝑓𝑓𝑚𝑚𝑓𝑓𝑐𝑐𝑚𝑚𝑓𝑓

+ 10−𝑋𝑋/10 10(𝑘𝑘𝑓𝑓+𝑐𝑐)/10

𝑚𝑚
10 ln(10)

�
𝑓𝑓𝑚𝑚𝑓𝑓𝑜𝑜𝑐𝑐

𝑓𝑓𝑋𝑋
� 

 
The same basic approach can be used iteratively for piecewise continuous PSD segments with or without 
gaps and/or stepdowns (e.g., multiple stepdowns producing a “sawtooth” PSD profile). 
 

fstart fstopFrequency
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gn

al
 le

ve
l

f1 f2  
Figure 69 - Example of a gap in the power spectrum lowering TCP. 

 
If the linearly tilted spectrum is continuous between fstart and fstop, then  
 

𝑇𝑇𝐶𝐶𝑃𝑃 = 10 𝑙𝑙𝐿𝐿𝑎𝑎10 �
10(𝑘𝑘𝑓𝑓+𝑐𝑐)/10

𝑚𝑚
10 ln(10)

�
𝑓𝑓𝑚𝑚𝑓𝑓𝑜𝑜𝑐𝑐
𝑓𝑓𝑚𝑚𝑓𝑓𝑐𝑐𝑚𝑚𝑓𝑓

�    

 
If there is a gap between f1 and f2 (e.g., an exclusion zone), then 
 

𝑇𝑇𝐶𝐶𝑃𝑃 = 10 𝑙𝑙𝐿𝐿𝑎𝑎10 � 
10(𝑘𝑘𝑓𝑓+𝑐𝑐)/10

𝑚𝑚
10 ln(10)

� 𝑓𝑓1
𝑓𝑓𝑚𝑚𝑓𝑓𝑐𝑐𝑚𝑚𝑓𝑓

+
10(𝑘𝑘𝑓𝑓+𝑐𝑐)/10

𝑚𝑚
10 ln(10)

�
𝑓𝑓𝑚𝑚𝑓𝑓𝑜𝑜𝑐𝑐

𝑓𝑓2
� 

 
Therefore, a summation of any number of gaps can be accommodated with such additional terms.  
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30.15. Network reliability and availability 

In the 1990s as cable operators were upgrading network architectures to what we now call hybrid 
fiber/coax (HFC), important metrics for those new architectures included network reliability and 
availability. At the time, operators were striving to achieve “four nines” (99.99%) availability.77 This 
section includes many of the basic formulas related to network reliability and availability, and are from 
Chapter 20 in [7], where the reader can find more detailed information (the same material also can be 
found in Chapter 12 in [4]). 
 

30.15.1. Component failure rate 

According to [7], “The failure rate of a component or system is defined as the statistical probability of 
failure of any one of a similar group of components in a given time interval.” One way to calculate failure 
rate is to use actual data from installed devices. Expressed mathematically: 
 
 

𝜆𝜆 =
𝑘𝑘

𝑠𝑠 ∗ 𝑡𝑡
 

where 
𝜆𝜆 is annual failure rate 
𝑘𝑘 is the number of observed failures 
𝑠𝑠 is the number of items in the test sample 
𝑡𝑡 is the observation time in years 
 
 

30.15.2. System failure rate 

The following formula is used for a “simple nonredundant connection” and assumes that “n components 
are connected in such a way that the failure of any one of them will lead to a failure of some identified 
system or function … and the failures do not have a common cause.” The formula is not exact because it 
is further assumed that the aforementioned failures don’t overlap in time. 
 
 

𝜆𝜆𝑚𝑚𝑠𝑠𝑚𝑚𝑓𝑓𝑓𝑓𝑘𝑘 = � 𝜆𝜆𝑖𝑖

𝑖𝑖

𝑖𝑖=1

 

where 
𝜆𝜆𝑚𝑚𝑠𝑠𝑚𝑚𝑓𝑓𝑓𝑓𝑘𝑘 is the net system failure rate 
𝜆𝜆𝑖𝑖 is the failure rate of component i 
𝑠𝑠 is the number of components (any of whose failure will cause a system failure) 
 
 

 
77 99.99% availability means that out of 8,760 hours per year, a network or service will be available 99.99% of the 
time, or about 8,759 hours and 7 minutes. Looked at another way, the network or service will be unavailable 0.01% 
of the time, or about 53 minutes per year. Five nines (99.999%) availability means that a network, device, or service 
will be unavailable 0.001% of the time during a year, or just over 5 minutes.  
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30.15.3. System reliability 

System reliability is “the probability that the system will not fail during some specific period.” The 
following formula is for a “simple nonredundant connection”: 
 
 

𝑅𝑅(𝑡𝑡) = 𝑝𝑝−𝜆𝜆𝑓𝑓 
where 
𝜆𝜆 and 𝑡𝑡 are in consistent units (for example, 𝜆𝜆 is failure rate per year and 𝑡𝑡 is years, or 𝜆𝜆 is failure rate per 
hour and t is hours) 
 
 
When devices with a known reliability are connected such that the failure of any device causes a system 
failure, the net system reliability can be calculated using the following formula: 
 
 

𝑅𝑅𝑚𝑚(𝑡𝑡) = 𝑅𝑅1(𝑡𝑡)𝑅𝑅2(𝑡𝑡) … 𝑅𝑅𝑖𝑖(𝑡𝑡) 
where 
𝑅𝑅𝑚𝑚(𝑡𝑡) is net system reliability over period 𝑡𝑡 
𝑅𝑅1, 𝑅𝑅2, …, 𝑅𝑅𝑖𝑖 is reliabilities of the individual components, measured over period 𝑡𝑡 
 
 

30.15.4. Mean time between failures 

MTBF is the calculated time between failures and is the inverse of the failure rate. Expressed 
mathematically: 
 
 

𝑅𝑅𝑇𝑇𝑑𝑑𝑁𝑁 =
1
𝜆𝜆

 
where 
𝑅𝑅𝑇𝑇𝑑𝑑𝑁𝑁 and 𝜆𝜆 are in consistent units 
 
 

30.15.5. Mean time to restore 

From [7], “When a failure does occur, the mean time between failure and restoration of the defined 
function is the MTTR.” Note: MTTR also can be mean time to repair. 
 

30.15.6. Availability 

Availability is often confused with reliability. Recall that reliability is the probability that something will 
not fail during a specified period of time. From [7], availability is the “ratio of time that a service is 
available for use to the total time.” A common availability goal is “four nines” or 99.99% over the course 
of a year. That means the service is available for 8759.12 hours out of a total of 8760 hours. Availability 
also can be calculated from MTBF and MTTR, using the following formula: 
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𝐴𝐴 =
𝑅𝑅𝑇𝑇𝑑𝑑𝑁𝑁

𝑅𝑅𝑇𝑇𝑑𝑑𝑁𝑁 + 𝑅𝑅𝑇𝑇𝑇𝑇𝑅𝑅
 

where 
𝐴𝐴 is availability 
𝑅𝑅𝑇𝑇𝑑𝑑𝑁𝑁 is mean time between failure 
𝑅𝑅𝑇𝑇𝑇𝑇𝑅𝑅 is mean time to restore 
 
 

30.15.7. Unavailability 

Unavailability is the ratio of time that a service is unavailable to total time. Unavailability can be 
calculated using the following formula: 
 
 

𝐻𝐻 = 1 − 𝐴𝐴 
where 
𝐻𝐻 is unavailability 
𝐴𝐴 is availability 
 
 

30.15.8. Outage time 

From [7], outage time is “the amount of time that the network is unavailable during a defined period.” 
Outage time is commonly stated in minutes per year, calculated using the following formula: 
 
 

𝑇𝑇𝑜𝑜(𝑚𝑚𝑠𝑠𝑠𝑠/𝑖𝑖𝑝𝑝) = (𝑚𝑚𝑠𝑠𝑠𝑠/𝑖𝑖𝑝𝑝)(1 − 𝐴𝐴) = 525,600(1 − 𝐴𝐴) 
where 
𝑇𝑇𝑜𝑜 is outage time 
𝑚𝑚𝑠𝑠𝑠𝑠/𝑖𝑖𝑝𝑝 is minutes per year 
𝐴𝐴 is availability 
 
 
For a discussion about the effects of redundant network connections, the reader is referred to Chapter 20, 
Section 20.4 in [7].  



SCTE 270 2021r1   

SCTE OPERATIONAL PRACTICE  © SCTE 309 

31. Miscellaneous Formulas 

31.1. Amplitude modulation 

Amplitude modulation conveys information by varying the amplitude of a carrier wave in proportion to a 
baseband modulating signal, such as audio, video, or digital data. The visual carriers of analog NTSC 
television signals are amplitude modulated, as are radio signals in the medium wave AM broadcast band. 
Some test signals used for cable network leakage monitoring are amplitude modulated. 
 

31.1.1. AM in the frequency domain 

Figure 70 illustrates a frequency domain representation of a 139.25 MHz RF carrier that is amplitude 
modulated by a baseband 1 kHz sine wave, similar to what one would see on a spectrum analyzer. In a 
simple double-sideband AM signal as shown here, the modulation percentage can be determined by the 
relationship between the amplitude of the carrier and the amplitude of each of the two sidebands. 
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Figure 70 - Frequency domain example of amplitude modulation. 
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31.1.1.1. Convert modulation percentage to sideband level difference 

To convert modulation percentage to sideband level below the carrier, use the following formula: 
 
 

𝐿𝐿𝑠𝑠𝑑𝑑𝑝𝑝𝑏𝑏𝑎𝑎𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑 = −20𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝑅𝑅%

200
� 

 
where 
𝐿𝐿𝑠𝑠𝑑𝑑𝑝𝑝𝑏𝑏𝑎𝑎𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑 is the amplitude difference in decibels between the carrier and lower or upper sideband 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑅𝑅% is the modulation percentage 
 
 
Example: 
What is the difference, in decibels, between the carrier and sidebands for an amplitude modulation 
percentage of 50%? 
 
Solution: 

𝐿𝐿𝑠𝑠𝑑𝑑𝑝𝑝𝑏𝑏𝑎𝑎𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑 = −20𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝑅𝑅%

200
� 

 

𝐿𝐿𝑠𝑠𝑑𝑑𝑝𝑝𝑏𝑏𝑎𝑎𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑 = −20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10 �
50

200
� 

 
𝐿𝐿𝑠𝑠𝑑𝑑𝑝𝑝𝑏𝑏𝑎𝑎𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑 = −20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10(0.250) 
 
𝐿𝐿𝑠𝑠𝑑𝑑𝑝𝑝𝑏𝑏𝑎𝑎𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑 = −20 ∗ (−0.60206) 
 
𝐿𝐿𝑠𝑠𝑑𝑑𝑝𝑝𝑏𝑏𝑎𝑎𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑 = 12.04 
 
Answer: The amplitude difference between the carrier and sidebands is 12.04 dB. 
 

31.1.1.2. Convert sideband level difference to modulation percentage 

To convert sideband level below the carrier to modulation percentage, use the following formula: 
 
 

𝑅𝑅% = 10−𝑚𝑚𝑖𝑖𝑑𝑑𝑓𝑓𝑐𝑐𝑐𝑐𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑 20⁄ ∗ 200 
 
where 
𝑅𝑅% is the modulation percentage 
𝐿𝐿𝑠𝑠𝑑𝑑𝑝𝑝𝑏𝑏𝑎𝑎𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑 is the level of the lower or upper sideband below the carrier in decibels 
 
 
Example: 
What is the modulation percentage if the sidebands are 20 dB lower than the carrier, as shown in Figure 
70? 
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Solution: 
𝑅𝑅% = 10−𝑚𝑚𝑖𝑖𝑑𝑑𝑓𝑓𝑐𝑐𝑐𝑐𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑 20⁄ ∗ 200 
 
𝑅𝑅% = 10−20 20⁄ ∗ 200 
 
𝑅𝑅% = 10−1.00 ∗ 200 
 
𝑅𝑅% = 0.10 ∗ 200 
 
𝑅𝑅% = 20 
 
Answer: The modulation percentage is 20%. 
 

31.1.2. AM in the time domain 

Figure 71 illustrates a time domain representation of an RF carrier (lower part of figure) amplitude 
modulated by a sinusoidal baseband signal (upper part of figure), similar to what one would see on an 
oscilloscope. In an AM signal as shown here, the modulation percentage can be determined by the 
relationship of the modulated RF carrier envelope’s maximum to minimum peak-to-peak voltage. 
Modulation percentage also is related to the ratio of the peak-to-peak voltage of the modulating signal to 
the peak-to-peak voltage of the unmodulated RF carrier’s envelope. 
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Figure 71 - Time domain representation of baseband modulating signal (top) and 

amplitude modulated RF carrier (bottom). 
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31.1.2.1. Calculate modulation percentage from the maximum and 
minimum peak-to-peak voltages of the modulated carrier’s RF 
envelope 

To calculate the modulation percentage from the maximum and minimum peak-to-peak voltages of the 
modulated carrier’s RF envelope use the following formula: 
 
 

𝑅𝑅% = �
𝐸𝐸𝑘𝑘𝑐𝑐𝑐𝑐 − 𝐸𝐸𝑘𝑘𝑖𝑖𝑖𝑖

𝐸𝐸𝑘𝑘𝑐𝑐𝑐𝑐 + 𝐸𝐸𝑘𝑘𝑖𝑖𝑖𝑖
� ∗ 100 

 
where 
𝑅𝑅% is the modulation percentage 
𝐸𝐸𝑘𝑘𝑐𝑐𝑐𝑐 is the maximum peak-to-peak voltage of the modulated carrier’s RF envelope 
𝐸𝐸𝑘𝑘𝑖𝑖𝑖𝑖 is the minimum peak-to-peak voltage of the modulated carrier’s RF envelope 
 
 
Example: 
Refer to Figure 71: What is the modulation percentage if the maximum peak-to-peak voltage of the 
modulated carrier’s RF envelope is 3 volts and the minimum peak-to-peak voltage is 1 volt? 
 
Solution: 

𝑅𝑅% = �
𝐸𝐸𝑘𝑘𝑐𝑐𝑐𝑐 − 𝐸𝐸𝑘𝑘𝑖𝑖𝑖𝑖

𝐸𝐸𝑘𝑘𝑐𝑐𝑐𝑐 + 𝐸𝐸𝑘𝑘𝑖𝑖𝑖𝑖
� ∗ 100 

 

𝑅𝑅% = �
3 − 1
3 + 1

� ∗ 100 
 

𝑅𝑅% = �
2
4

� ∗ 100 
 
𝑅𝑅% = (0.50) ∗ 100 
 
𝑅𝑅% = 50 
 
Answer: The modulation percentage is 50%. 
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31.1.2.2. Calculate modulation percentage from peak-to-peak voltage of 
unmodulated RF carrier’s envelope and peak-to-peak voltage of 
baseband modulating signal 

Consider a simple AM modulator. This modulator is described by the equation 
 

𝐸𝐸(𝑡𝑡) = [𝑝𝑝𝐿𝐿𝐿𝐿(2 ∗ 𝜋𝜋 ∗ 𝑓𝑓 ∗ 𝑡𝑡)] ∗ �𝑅𝑅𝑁𝑁𝑐𝑐 + 𝑅𝑅(𝑡𝑡)� 
 
where 
𝐸𝐸(𝑡𝑡) is the modulated AM signal 
𝑡𝑡 is time 
𝑓𝑓 is the frequency of the RF carrier 
𝑅𝑅𝑁𝑁𝑐𝑐 is the peak voltage of the unmodulated RF carrier 
𝑅𝑅(𝑡𝑡) the baseband modulating signal 
 
Such a modulator would produce the results shown in Figure 71. To calculate the modulation percentage 
from the peak-to-peak voltage of the unmodulated RF carrier’s envelope and peak-to-peak voltage of the 
baseband modulating signal, the following formula can be used: 
 
 

𝑅𝑅% = �
𝑅𝑅𝑐𝑐−𝑐𝑐

𝑅𝑅𝑁𝑁𝑐𝑐−𝑐𝑐
� ∗ 100 

 
where 
𝑅𝑅% is the modulation percentage 
𝑅𝑅𝑐𝑐−𝑐𝑐 is the peak-to-peak voltage of the baseband modulating signal 
𝑅𝑅𝑁𝑁𝑐𝑐−𝑐𝑐 is the peak-to-peak voltage of the unmodulated RF carrier’s envelope 
 
 
Example: 
Refer to Figure 71: If the peak-to-peak voltage of the baseband modulating signal is 1 volt and the peak-
to-peak voltage of the unmodulated RF carrier’s envelope is 2 volts, what is the modulation percentage? 
 
Solution: 

𝑅𝑅% = �
𝑅𝑅𝑐𝑐−𝑐𝑐

𝑅𝑅𝑁𝑁𝑐𝑐−𝑐𝑐
� ∗ 100 

 

𝑅𝑅% = �
1
2

� ∗ 100 
 
𝑅𝑅% = (0.50) ∗ 100 
 
𝑅𝑅% = 50 
 
Answer: The modulation percentage is 50%. 
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31.2. Frequency modulation 

Frequency modulation conveys information by varying the frequency of a carrier wave in proportion to a 
baseband modulating signal, such as audio or video. The aural carriers of analog NTSC television signals 
are frequency modulated, as are radio signals in the FM broadcast band. 
 

31.2.1. Modulation index 

Modulation index is the ratio of peak frequency deviation to the maximum baseband modulating 
frequency, and can be calculated with the following formula: 
 
 

ℎ =
∆𝑓𝑓
𝑓𝑓𝑘𝑘

 

 
where 
ℎ is the modulation index 
∆𝑓𝑓 is the peak frequency deviation in units of hertz (e.g., kilohertz) 
𝑓𝑓𝑘𝑘 is the highest baseband modulating frequency in the same units as ∆𝑓𝑓 
 
 
Example: 
What is the modulation index for a monaural NTSC aural carrier, when the peak frequency deviation is 25 
kHz and the highest modulating frequency is 15 kHz? 
 
Solution: 

ℎ =
∆𝑓𝑓
𝑓𝑓𝑘𝑘

 

 

ℎ =
25
15

 
 
ℎ = 1.6667 
 
Answer: The modulation index is 1.67. 
 

31.2.2. Bessel null technique for setting deviation 
When frequency modulating a carrier with a sine wave, one can use the Bessel null technique to set peak 
deviation. The carrier will null to zero and all of the power will be in the FM signal’s sidebands when the 
modulation index is 2.4. The following formula can be used to calculate the frequency of a baseband 
signal that will result in a modulation index of 2.4. 
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𝑓𝑓𝑘𝑘 =
∆𝑓𝑓
2.4

 
 
where 
𝑓𝑓𝑘𝑘 is the baseband modulating frequency in units of hertz 
∆𝑓𝑓 is the peak frequency deviation in the same units as 𝑓𝑓𝑘𝑘 
2.4 is the modulation index used to produce the FM signal’s carrier null 
 
 
Example: 
What baseband modulating frequency can be used to create a carrier null when the modulation index is 
2.4 and the peak deviation is 25 kHz? 
 
Solution: 

𝑓𝑓𝑘𝑘 =
∆𝑓𝑓
2.4

 

𝑓𝑓𝑘𝑘 =
25
2.4

 
 
𝑓𝑓𝑘𝑘 = 10.42 
 
Answer: The baseband modulating frequency is 10.42 kHz. 
 
Note: When using the Bessel null technique to set frequency deviation, be sure to take pre-emphasis into 
account. For monaural NTSC aural carriers, pre-emphasis is used to reduce noise, and at 10.42 kHz adds 
14 dB to the low-frequency deviation. This is especially important if using this technique to calibrate a 
deviation measurement instrument. 
 

31.2.3. Carson’s Bandwidth Rule 

Also known as Carson’s Rule, the following formula can be used to calculate the approximate occupied 
bandwidth of a modulated FM signal: 
 
 

𝑑𝑑𝑚𝑚 ≅ 2 ∗ (∆𝑓𝑓 + 𝑓𝑓𝑘𝑘) 
 
where 
𝑑𝑑𝑚𝑚 is the approximate occupied RF bandwidth of a modulated FM signal in units of Hz, kHz, etc. 
∆𝑓𝑓 is the peak frequency deviation in the same units as BW 
𝑓𝑓𝑘𝑘 is the highest baseband modulating frequency in the same units as 𝑑𝑑𝑚𝑚 
 
 
Example: 
What is the approximate occupied RF bandwidth of a monaural NTSC aural carrier when the peak 
deviation is 25 kHz and the highest baseband modulating frequency is 15 kHz? 
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Solution: 
𝑑𝑑𝑚𝑚 ≅ 2 ∗ (∆𝑓𝑓 + 𝑓𝑓𝑘𝑘) 
 
𝑑𝑑𝑚𝑚 ≅ 2 ∗ (25 + 15) 
 
𝑑𝑑𝑚𝑚 ≅ 2 ∗ (40) 
 
𝑑𝑑𝑚𝑚 ≅ 80 
 
Answer: The approximate occupied RF bandwidth is 80 kHz. 
 

31.3. Trigonometry 

Certain distances and heights can be determined using trigonometry, the foundation of which is based 
upon the relationships between the lengths of the sides and the angles of triangles. In a right triangle – that 
is, a triangle with one 90 degrees angle – such as that shown in Figure 72, the relationship of angle A, 
called angle θ in the figure, to the lengths of the sides of the triangle can be used for calculating distances 
and heights.78 

90° 

b

a

θ adjacent

opposite

A C

B

 
Figure 72 - Right triangle used for the basis of calculations in this section. 

The following formulas describe common trigonometric ratios: 
  

 
78 The material in this section is adapted from [24] with updates. 
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𝐿𝐿𝑠𝑠𝑠𝑠∠𝜃𝜃 =
𝐿𝐿𝑝𝑝𝑝𝑝𝐿𝐿𝐿𝐿𝑠𝑠𝑡𝑡𝑝𝑝

ℎ𝑖𝑖𝑝𝑝𝐿𝐿𝑡𝑡𝑝𝑝𝑠𝑠𝑣𝑣𝐿𝐿𝑝𝑝
=

𝑙𝑙𝑝𝑝𝑠𝑠𝑎𝑎𝑡𝑡ℎ 𝐿𝐿𝑓𝑓 𝐿𝐿𝑠𝑠𝑑𝑑𝑝𝑝 𝑎𝑎
𝑙𝑙𝑝𝑝𝑠𝑠𝑎𝑎𝑡𝑡ℎ 𝐿𝐿𝑓𝑓 𝐿𝐿𝑠𝑠𝑑𝑑𝑝𝑝 𝑝𝑝

 

 

𝑝𝑝𝐿𝐿𝐿𝐿∠𝜃𝜃 =
𝑎𝑎𝑑𝑑𝑗𝑗𝑎𝑎𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡

ℎ𝑖𝑖𝑝𝑝𝐿𝐿𝑡𝑡𝑝𝑝𝑠𝑠𝑣𝑣𝐿𝐿𝑝𝑝
=

𝑙𝑙𝑝𝑝𝑠𝑠𝑎𝑎𝑡𝑡ℎ 𝐿𝐿𝑓𝑓 𝐿𝐿𝑠𝑠𝑑𝑑𝑝𝑝 𝑏𝑏
𝑙𝑙𝑝𝑝𝑠𝑠𝑎𝑎𝑡𝑡ℎ 𝐿𝐿𝑓𝑓 𝐿𝐿𝑠𝑠𝑑𝑑𝑝𝑝 𝑝𝑝

 

 

𝑡𝑡𝑎𝑎𝑠𝑠∠𝜃𝜃 =
𝐿𝐿𝑝𝑝𝑝𝑝𝐿𝐿𝐿𝐿𝑠𝑠𝑡𝑡𝑝𝑝
𝑎𝑎𝑑𝑑𝑗𝑗𝑎𝑎𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡

=
𝑙𝑙𝑝𝑝𝑠𝑠𝑎𝑎𝑡𝑡ℎ 𝐿𝐿𝑓𝑓 𝐿𝐿𝑠𝑠𝑑𝑑𝑝𝑝 𝑎𝑎
𝑙𝑙𝑝𝑝𝑠𝑠𝑎𝑎𝑡𝑡ℎ 𝐿𝐿𝑓𝑓 𝐿𝐿𝑠𝑠𝑑𝑑𝑝𝑝 𝑏𝑏

 

 
 
where 
∠𝜃𝜃 is angle A in Figure 72 
𝐿𝐿𝑠𝑠𝑠𝑠 is the sine function 
𝑝𝑝𝐿𝐿𝐿𝐿 is the cosine function 
𝑡𝑡𝑎𝑎𝑠𝑠 is the tangent function 
 
 
From the aforementioned trigonometric ratios the formulas in Figure 73 can be derived. 
 

90° 

b

a

θ 90° 

b

a

θ 90° 

b

a

θ 

90° 

b

a

θ 90° 

b

a

θ 90° 

b

a

θ 

Unknown value

Known 
value

Known 
value

Unknown 
value

Unknown value Known value Known value

Unknown 
value

Unknown 
value

Known 
value

Unknown 
value

Known 
value

b = c(cosθ) a = c(sinθ) c = a/(sinθ) 

b = a/(tanθ) a = b(tanθ) c = b/(cosθ)
 

Figure 73 - Formulas and trigonometric relationships for examples in this section. 

Example 1: 
Refer to Figure 74. What is the height of the utility pole, assuming angle θ (measured with a surveying 
instrument such as an Abney level) is 20 degrees and the distance from the base of the pole to where the 
angle is measured is 150 feet? 
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θ = 20°  

150 feet

?

 
Figure 74 - What is the height of the utility pole if ∠𝛉𝛉 = 20° as measured from a distance 

of 150 feet from the base of the pole? 

Solution 1: 
𝑎𝑎 = 𝑏𝑏(𝑡𝑡𝑎𝑎𝑠𝑠𝜃𝜃) 
 
𝑎𝑎 = 150 ∗ (𝑡𝑡𝑎𝑎𝑠𝑠20°) 
 
𝑎𝑎 = 150 ∗ (0.36) 
 
𝑎𝑎 = 54.6 
 
Answer: The height of the utility pole is about 55 feet. 
 
Example 2: 
Refer to Figure 75. In order to receive signals from a new satellite, a new antenna must be installed at the 
headend. However, the only available space for the new antenna is directly behind an existing antenna. 
Assuming the existing antenna is 18 feet tall, the required elevation angle for the new antenna is 32°, and 
the lower rim of the new antenna will be 3 feet above the ground, what is the minimum horizontal 
separation between the two antennas in order for the new antenna to “see” over the top of the existing 
one? 
 

θ = 32°  

15 feet

?
3 feet

18 feet

 
Figure 75 - What is the minimum horizontal separation between the two satellite antennas 

to ensure a new antenna (left) has an unobstructed view above an existing antenna 
(right) at the elevation angle shown? 
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Solution 2: 
Subtract the new antenna’s lower rim height of 3 feet from the height of the existing antenna (18 – 3 = 
15). That gives the length of the opposite side (side a) of the superimposed right triangle.  
 
𝑏𝑏 =

𝑎𝑎
(𝑡𝑡𝑎𝑎𝑠𝑠𝜃𝜃) 

 

𝑏𝑏 =
15

(𝑡𝑡𝑎𝑎𝑠𝑠32°) 

 

𝑏𝑏 =
15

(0.62) 

 
𝑏𝑏 = 24.01 
 
Answer: The minimum horizontal separation is 24 feet. 
 

31.4. Convert degrees, minutes, seconds to decimal degrees 
The following formula can be used to convert degrees, minutes, seconds to decimal degrees: 
 
 

𝑑𝑑𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝐿𝐿𝑑𝑑𝑓𝑓𝑐𝑐𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡 = 𝑑𝑑𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝐿𝐿 +
𝑚𝑚𝑠𝑠𝑠𝑠𝑣𝑣𝑡𝑡𝑝𝑝𝐿𝐿

60
+

𝐿𝐿𝑝𝑝𝑝𝑝𝐿𝐿𝑠𝑠𝑑𝑑𝐿𝐿
3,600

 

 
 
Example: 
What is a latitude value of 39˚31’44” N (39 degrees, 31 minutes, 44 seconds north) in decimal degrees? 
 
Solution: 

𝑑𝑑𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝐿𝐿𝑑𝑑𝑓𝑓𝑐𝑐𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡 = 𝑑𝑑𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝐿𝐿 +
𝑚𝑚𝑠𝑠𝑠𝑠𝑣𝑣𝑡𝑡𝑝𝑝𝐿𝐿

60
+

𝐿𝐿𝑝𝑝𝑝𝑝𝐿𝐿𝑠𝑠𝑑𝑑𝐿𝐿
3,600

 

 

𝑑𝑑𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝐿𝐿𝑑𝑑𝑓𝑓𝑐𝑐𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡 = 39 +
31
60

+
44

3,600
 

 
𝑑𝑑𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝐿𝐿𝑑𝑑𝑓𝑓𝑐𝑐𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡 = 39 + 0.516667 + 0.012222 
 
𝑑𝑑𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝐿𝐿𝑑𝑑𝑓𝑓𝑐𝑐𝑖𝑖𝑘𝑘𝑐𝑐𝑡𝑡 = 39.528889 
 
Answer: The latitude value in decimal degrees is 39.528889˚. 
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31.5. Distance to optical horizon 

The distance to the optical horizon can be calculated with the following formulas:79 
 
 

𝑀𝑀𝑘𝑘𝑖𝑖 = 1.22459�ℎ𝑓𝑓𝑓𝑓 

 
where 
𝑀𝑀𝑘𝑘𝑖𝑖 is the distance to the optical horizon in statute miles 
ℎ𝑓𝑓𝑓𝑓 is the height of the observer in feet above mean sea level 
 

𝑀𝑀𝑘𝑘𝑘𝑘 = 3.56972�ℎ𝑘𝑘 
 
where 
𝑀𝑀𝑘𝑘𝑘𝑘 is the distance to the optical horizon in kilometers 
ℎ𝑘𝑘 is the height of the observer in meters above mean sea level 
 
Note: The calculations are based on a smooth, spherical Earth. 
 
 
Example: 
What is the distance to the optical horizon for an observer at sea level, when the height of the observer’s 
eyes is 6 feet above the ground? 
 
Solution: 
𝑀𝑀 = 1.22459√ℎ 
 
𝑀𝑀 = 1.22459 ∗ √6 
 
𝑀𝑀 = 1.22459 ∗ 2.4495 
 
𝑀𝑀 = 2.9996 
 
Answer: The distance to the optical horizon is approximately 3 miles. 
  

 
79 Derivation of the formulas can be found at https://sites.math.washington.edu/~conroy/m120-general/horizon.pdf 
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31.6. Calculate worst-case downstream frequency response flatness 

In the past, the following formula was widely used to determine the worst-case acceptable frequency 
response flatness after a cascade of amplifiers. The formula was commonly used with a sweep response 
factor of x = 1 in all-coax tree-and-branch networks whose highest downstream frequency was about 300 
MHz. As network RF bandwidth expanded beyond 300 MHz, x increased, too, to values such as 1.5 and 
2. Over time – and as cable network downstream bandwidths became even greater – the formula was no 
longer satisfactory. The formula is included here for historical reference purposes. 
 
 

𝑑𝑑𝑑𝑑𝑐𝑐𝑓𝑓𝑐𝑐𝑘𝑘 𝑓𝑓𝑜𝑜 𝑟𝑟𝑐𝑐𝑡𝑡𝑡𝑡𝑓𝑓𝑠𝑠 = �
𝑁𝑁
10

� + 𝑒𝑒 
 
where 
𝑑𝑑𝑑𝑑𝑐𝑐𝑓𝑓𝑐𝑐𝑘𝑘 𝑓𝑓𝑜𝑜 𝑟𝑟𝑐𝑐𝑡𝑡𝑡𝑡𝑓𝑓𝑠𝑠 is the worst case acceptable peak-to-valley frequency response within a defined 
frequency range, stated in decibels 
𝑁𝑁 is the number of amplifiers in cascade 
𝑒𝑒 is a sweep response factor, typically provided by the amplifier manufacturer 
 
 
Example: 
What is the targeted end-of-line frequency response flatness for a 220 MHz, 25 amplifier cascade? 
Assume the sweep response factor is 1. 
 
Solution: 

𝑑𝑑𝑑𝑑𝑐𝑐𝑓𝑓𝑐𝑐𝑘𝑘 𝑓𝑓𝑜𝑜 𝑟𝑟𝑐𝑐𝑡𝑡𝑡𝑡𝑓𝑓𝑠𝑠 = �
𝑁𝑁
10

� + 𝑒𝑒 
 

𝑑𝑑𝑑𝑑𝑐𝑐𝑓𝑓𝑐𝑐𝑘𝑘 𝑓𝑓𝑜𝑜 𝑟𝑟𝑐𝑐𝑡𝑡𝑡𝑡𝑓𝑓𝑠𝑠 = �
25
10

� + 1 
 
𝑑𝑑𝑑𝑑𝑐𝑐𝑓𝑓𝑐𝑐𝑘𝑘 𝑓𝑓𝑜𝑜 𝑟𝑟𝑐𝑐𝑡𝑡𝑡𝑡𝑓𝑓𝑠𝑠 = (2.50) + 1 
 
𝑑𝑑𝑑𝑑𝑐𝑐𝑓𝑓𝑐𝑐𝑘𝑘 𝑓𝑓𝑜𝑜 𝑟𝑟𝑐𝑐𝑡𝑡𝑡𝑡𝑓𝑓𝑠𝑠 = 3.50 
 
Answer: The targeted end-of-line sweep frequency response is 3.5 dB peak-to-valley. 
 

31.7. Convert watts to British thermal units per hour 
The British thermal unit per hour (Btu/h) is a unit of power used for heating and cooling systems. For 
instance, one can calculate a rough approximation of cooling requirements for a facility such as a headend 
in Btu/h when the power consumption in watts is known for the facility’s equipment. A specialist should 
be consulted for final heating, ventilation, and air conditioning (HVAC) system design. 
 
The following formulas can be used to convert power in watts (or kilowatts) to Btu/h: 
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𝑑𝑑𝑡𝑡𝑣𝑣/ℎ = 𝑚𝑚 ∗ 3.412 
 
where 
𝑑𝑑𝑡𝑡𝑣𝑣/ℎ is British thermal units per hour 
𝑚𝑚 is power in watts 
 
Alternatively, 

𝑑𝑑𝑡𝑡𝑣𝑣/ℎ = 𝑘𝑘𝑚𝑚 ∗ 3,412.142 
 
where 
𝑑𝑑𝑡𝑡𝑣𝑣/ℎ is British thermal units per hour 
𝑘𝑘𝑚𝑚 is power in kilowatts 
 
 
Example: 
What is the approximate cooling requirement in Btu/h for a small hub site in which the total power 
consumption of all of the equipment is 19,500 watts? 
 
Solution: 
𝑑𝑑𝑡𝑡𝑣𝑣/ℎ = 𝑚𝑚 ∗ 3.412 
 
𝑑𝑑𝑡𝑡𝑣𝑣/ℎ = 19,500 ∗ 3.412 
 
𝑑𝑑𝑡𝑡𝑣𝑣/ℎ = 66,534 
 
Answer: The approximate cooling requirement is 66,534 Btu/h. 
 
Note: One ton of cooling, a unit used in air conditioning applications, is equal to 12,000 Btu/h. For the 
previous example, the approximate required air conditioning in tons is (66,534 Btu/h)/12,000 = 5.54 
tons.80 
  

 
80 Calculation of the heat load for a facility requires taking into consideration several factors beyond the scope of 
this document. Some examples include the area of the facility in square feet or meters; size and location of any 
windows (i.e., sun-facing); the number of facility occupants, if applicable; and heat generated by equipment and 
lighting. As mentioned previously, a specialist should be consulted for HVAC system design. 
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31.8. Temperature conversions 

Conversions between kelvin, degree Celsius, and degree Fahrenheit are done using the following 
formulas: 
 

°𝐶𝐶 = (°𝑁𝑁 − 32) ∗
5
9

 
 

°𝑁𝑁 = �°𝐶𝐶 ∗
9
5

� + 32 
 

𝐾𝐾 = °𝐶𝐶 + 273.15 
 

°𝐶𝐶 = 𝐾𝐾 − 273.15 
 

°𝑁𝑁 = �(𝐾𝐾 − 273.15) ∗
9
5

� + 32 
 

𝐾𝐾 = �(°𝑁𝑁 − 32) ∗
5
9

� + 273.15 
 
where 
°𝐶𝐶 is degree Celsius 
°𝑁𝑁 is degree Fahrenheit 
𝐾𝐾 is kelvin 
 
 
Example 1: 
A common temperature range over which some products are specified to operate is –40 °C to +60 °C. 
What is that temperature range in Fahrenheit? 

Solution 1: 

°𝑁𝑁 = �−40 ∗
9
5

� + 32 
 
°𝑁𝑁 = (−72) + 32 
 
°𝑁𝑁 = −40 
 
The low temperature is –40 °F. 
 

°𝑁𝑁 = �60 ∗
9
5

� + 32 
 
°𝑁𝑁 = (108) + 32 
 
°𝑁𝑁 = 140 
 
The high temperature is 140 °F. 
 
Answer: The range in Fahrenheit is –40 °F to +140 °F. 
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Example 2: 
A standard temperature used in noise figure calculations and measurements is 290 K. What is that 
standard temperature in Celsius and Fahrenheit? 
 
Solution 2: 
°𝐶𝐶 = 290 − 273.15 
 
°𝐶𝐶 = 16.85 
 
The first answer is 16.85 °C. 
 

°𝑁𝑁 = �(290 − 273.15) ∗
9
5

� + 32 
 

°𝑁𝑁 = �(16.85) ∗
9
5

� + 32 
 
°𝑁𝑁 = [30.33] + 32 
 
°𝑁𝑁 = 62.33 
 
The second answer is 62.33 °F. 
 

31.9. Length/distance/size conversions 

While most of the world uses the metric system, the United States for the most part still uses 
U.S./Imperial length, distance, and size measures. Conversions are relatively straightforward, with some 
of the more commonly used parameters and applicable conversion formulas summarized in two tables. 
 

31.9.1. Convert metric to U.S./Imperial lengths, distances, and sizes 

The following table includes formulas to convert from a variety of commonly used metric to 
U.S./Imperial length, distance, and size measures: 

Table 24 - Metric to U.S./Imperial length, distance, and size conversions. 

FROM ↓     TO → 
inch (in) foot (ft) yard (yd) mile (mi) 

millimeter (mm) in = mm ∗ 0.03937 ft = mm ∗ 
0.0032808 

yd = mm ∗ 
0.0010936 

mi = mm ∗ 
0.0000006213 

centimeter (cm) in = cm ∗ 
0.3937007 

ft = cm ∗ 
0.0328083 

yd = cm ∗ 
0.0109361 

mi = cm ∗ 
0.0000062138 

meter (m) in = m ∗ 39.370078 ft = m ∗ 
3.2808398 

yd = m ∗ 
1.0936132 

mi = m ∗ 
0.0006213881 

kilometer (km) in = km ∗ 
39370.078 

ft = km ∗ 
3280.8398 

yd = km ∗ 
1093.6132 

mi = km ∗ 
0.6213881 
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Example 1: 
A point-to-point microwave path is 35.4 kilometers long. What is that path length in miles? 
 
Solution 1: 
𝑚𝑚𝑠𝑠 = 𝑘𝑘𝑚𝑚 ∗ 0.6213881 
 
𝑚𝑚𝑠𝑠 = 35.4 ∗ 0.6213881 
 
𝑚𝑚𝑠𝑠 = 21.9971 
 
Answer: The path length is about 22 miles. 
 
Example 2: 
The span length between two utility poles is 60.96 meters. What is that span length in feet? 
 
Solution 2: 
𝑓𝑓𝑡𝑡 = 𝑚𝑚 ∗ 3.2808398 
 
𝑓𝑓𝑡𝑡 = 60.96 ∗ 3.2808398 
 
𝑓𝑓𝑡𝑡 = 200 
 
Answer: The span length is 200 feet. 
 
Example 3: 
What is the diameter of 12.7 mm coaxial cable in inches? 
 
Solution 3: 
𝑠𝑠𝑠𝑠 = 𝑚𝑚𝑚𝑚 ∗ 0.03937 
 
𝑠𝑠𝑠𝑠 = 12.7 ∗ 0.03937 
 
𝑠𝑠𝑠𝑠 = 0.500 
 
Answer: The cable’s diameter is 0.500 inch. 
 

31.9.2. Convert U.S./Imperial to metric lengths, distances, and sizes 

The following table includes formulas to convert from a variety of commonly used U.S./Imperial to 
metric length, distance, and size measures: 
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Table 25 - U.S./Imperial to metric length, distance, and size conversions. 

FROM ↓     TO → 
millimeter (mm) centimeter (cm) meter (m) kilometer (km) 

inch (in) mm = in ∗ 25.4 cm = in ∗ 2.54 m = in ∗ 0.0254 km = in ∗ 
0.0000254 

foot (ft) mm = ft ∗ 304.8 cm = ft ∗ 30.48 m = ft ∗ 0.3048 km = ft ∗ 
0.0003048 

yard (yd) mm = yd ∗ 914.4 cm = yd ∗ 91.44 m = yd ∗ 0.9144 km = yd ∗ 
0.0009144 

mile (mi) mm = mi ∗ 
1,609,300 

cm = mi ∗ 
160,930 

m = mi ∗ 1609.3 km = mi ∗ 1.6093 

 
Example 1: 
A point-to-point microwave path is 22 miles long. What is that path length in kilometers? 
 
Solution 1: 
𝑘𝑘𝑚𝑚 = 𝑚𝑚𝑠𝑠 ∗ 1.6093 
 
𝑘𝑘𝑚𝑚 = 22 ∗ 1.6093 
 
𝑘𝑘𝑚𝑚 = 35.4046 
 
Answer: The path length is about 35.4 kilometers. 
 
Example 2: 
A span between two utility poles measures 200 feet. What is that span length in meters? 
 
Solution 2: 
𝑚𝑚 = 𝑓𝑓𝑡𝑡 ∗ 0.3048 
 
𝑚𝑚 = 200 ∗ 0.3048 
 
𝑚𝑚 = 60.96 
 
Answer: The span length is 60.96 meters, or about 61 meters. 
 
Example 3: 
What is the diameter of .500 hardline coax in millimeters? 
 
Solution 3: 
𝑚𝑚𝑚𝑚 = 𝑠𝑠𝑠𝑠 ∗ 25.4 
 
𝑚𝑚𝑚𝑚 = 0.500 ∗ 25.4 
 
𝑚𝑚𝑚𝑚 = 12.7 
 
Answer: The cable’s diameter is 12.7 millimeters. 
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31.10. Area calculations 

While most of the world uses the metric system, the United States for the most part still uses 
U.S./Imperial units for area. Conversions are relatively straightforward, with some of the more commonly 
used parameters and applicable conversion formulas summarized in two tables. 
 

31.10.1. Convert metric to U.S./Imperial area units 
The following table includes formulas to convert from a variety of commonly used metric to 
U.S./Imperial area units: 

Table 26 - Metric to U.S./Imperial area conversions. 

FROM ↓        TO → 
square inch (in2) square foot (ft2) square yard (yd2) square mile (mi2) 

square millimeter 
(mm2) 

in2 = mm2 ∗ 
0.00155 

ft2 = mm2 ∗ 
0.000010764 
 

yd2 = mm2 ∗ 
0.000001196 

mi2 = mm2 ∗ 3.861 ∗ 
10-13 

square 
centimeter (cm2) 

in2 = cm2 ∗ 
0.155 

ft2 = cm2 ∗ 
0.0010764 

yd2 = cm2 ∗ 
0.0001196 

mi2 = cm2 ∗ 3.861 ∗ 
10-11 

square meter 
(m2) 

in2 = m2 ∗ 1550 ft2 = m2 ∗ 
10.764 

yd2 = m2 ∗ 1.196 mi2 = m2 ∗ 3.861 ∗ 
10-7 

square kilometer 
(km2) 

in2 = km2 ∗ 1.55 
∗ 109 

ft2 = km2 ∗ 
10764000 

yd2 = km2 ∗ 
1196000 

mi2 = km2 ∗ 0.3861 

 
Example 1: 
A Wi-Fi access point serves an area of 470 square meters. What is that area in square feet? 
 
Solution 1: 
𝑓𝑓𝑡𝑡2 = 𝑚𝑚2 ∗ 10.764 
 
𝑓𝑓𝑡𝑡2 = 470 ∗ 10.764 
 
𝑓𝑓𝑡𝑡2 = 5,059.08 
 
Answer: The area is about 5,059 square feet. 
 
Example 2: 
A service technician has been assigned an area of plant covering 1,030 square kilometers. What is that 
area in square miles? 
 
Solution 2: 
𝑚𝑚𝑠𝑠2 = 𝑘𝑘𝑚𝑚2 ∗ 0.3861 
 
𝑚𝑚𝑠𝑠2 = 1030 ∗ 0.3861 
 
𝑚𝑚𝑠𝑠2 = 397.68 
 
Answer: The area is 397.68 square miles. 
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31.10.2. Convert U.S./Imperial to metric area units 
The following table includes formulas to convert from a variety of commonly used U.S./Imperial to 
metric area units: 

Table 27 - U.S./Imperial to metric area conversions. 

FROM ↓   TO → 
square millimeter 
(mm2) 

square centimeter 
(cm2) 

square meter (m2) square kilometer 
(km2) 

square inch 
(in2) 

mm2 = in2 ∗ 
645.16 

cm2 = in2 ∗ 6.4516 m2 = in2 ∗ 
0.00064516 

km2 = in2 ∗ 
6.4516 ∗ 10-10 

square foot 
(ft2) 

mm2 = ft2 ∗ 
92902.27 

cm2 = ft2 ∗ 
929.0227 

m2 = ft2 ∗ 
0.09290227 

km2 = ft2 ∗ 
9.290227 ∗ 10-8 

square yard 
(yd2) 

mm2 = yd2 ∗ 
836120.40 

cm2 = yd2 ∗ 
8361.2040 

m2 = yd2 ∗ 
0.83612040 

km2 = yd2 ∗ 
8.361240 ∗ 10-7 

square mile 
(mi2) 

mm2 = mi2 ∗ 2.59 
∗ 1012 

cm2 = mi2 ∗ 2.59 ∗ 
1010 

m2 = mi2 ∗ 
259000 

km2 = mi2 ∗ 2.59 

 
Example 1: 
A Wi-Fi access point serves an area of 5,059 square feet. What is that area in square meters? 
 
Solution 1: 
𝑚𝑚2 = 𝑓𝑓𝑡𝑡2 ∗ 0.09290227 
 
𝑚𝑚2 = 5,059 ∗ 0.09290227 
 
𝑚𝑚2 = 469.99 
 
Answer: The area is about 470 square meters. 
 
Example 2: 
A service technician has been assigned an area of plant covering 397.68 square miles. What is that area in 
square kilometers? 
 
Solution 2: 
𝑘𝑘𝑚𝑚2 = 𝑚𝑚𝑠𝑠2 ∗ 2.59 
 
𝑘𝑘𝑚𝑚2 = 397.68 ∗ 2.59 
 
𝑘𝑘𝑚𝑚2 = 1029.99 
 
Answer: The area is about 1,030 square kilometers. 
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31.11. Weight calculations 

This section includes formulas to convert between some common measures of weight.81 

31.11.1. Convert ounce to gram 

The following formula can be used to convert from the common or avoirdupois ounce (oz) to gram (g): 
 

 
𝑎𝑎 = 𝐿𝐿𝑧𝑧 ∗ 28.349523125 

 
where 
𝑎𝑎 is gram 
𝐿𝐿𝑧𝑧 is the common or avoirdupois ounce 
 
 
Example: 
What is the weight of a 32 oz. bag of F connectors in grams? 
 
Solution: 
𝑎𝑎 = 𝐿𝐿𝑧𝑧 ∗ 28.349523125 
 
𝑎𝑎 = 32 ∗ 28.349523125 
 
𝑎𝑎 = 907.17 
 
Answer: The 32 oz. bag of F connectors weighs 907.17 g. 
 

31.11.2. Convert gram to ounce 

The following formula can be used to convert from gram (g) to the common or avoirdupois ounce (oz): 
 

 
𝐿𝐿𝑧𝑧 = 𝑎𝑎 ∗ 0.0352739619 

 
where 
𝐿𝐿𝑧𝑧 is the common or avoirdupois ounce 
𝑎𝑎 is gram 
 

 
81 The terms “weight” and “mass” are often used interchangeably. Although related, they are in fact different. From 
the National Institute of Standards and Technology: The mass of a body is a measure of its inertial property or how 
much matter it contains. The weight of a body is a measure of the force exerted on it by gravity or the force needed 
to support it. Gravity on earth gives a body a downward acceleration of about 9.8 m/s2. In common parlance, weight 
is often used as a synonym for mass in weights and measures. For instance, the verb “to weigh” means “to 
determine the mass of” or “to have a mass of.” The incorrect use of weight in place of mass should be phased out, 
and the term mass used when mass is meant. The SI unit of mass is the kilogram (kg). In science and technology, the 
weight of a body in a particular reference frame is defined as the force that gives the body an acceleration equal to 
the local acceleration of free fall in that reference frame. Thus, the SI unit of the quantity weight defined in this way 
(force) is the newton (N). 
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Example: 
What is the weight of a 7.1 grams F connector in ounces? 
 
Solution: 
𝐿𝐿𝑧𝑧 = 𝑎𝑎 ∗ 0.0352739619 

𝐿𝐿𝑧𝑧 = 7.1 ∗ 0.0352739619 
 
𝐿𝐿𝑧𝑧 = 0.25 
 
Answer: The F connector weighs 0.25 oz. 
 

31.11.3. Convert pound to kilogram 

The following formula can be used to convert from pound (lb) to kilogram (kg): 
 

 
𝑘𝑘𝑎𝑎 = 𝑙𝑙𝑏𝑏 ∗ 0.45359237 

 
where 
𝑘𝑘𝑎𝑎 is kilogram 
𝑙𝑙𝑏𝑏 is pound (avoirdupois pound) 
 
 
Example: 
What is the weight of a 6 lb meter in kg? 
 
Solution: 
𝑘𝑘𝑎𝑎 = 𝑙𝑙𝑏𝑏 ∗ 0.45359237 
 
𝑘𝑘𝑎𝑎 = 6 ∗ 0.45359237 

𝑘𝑘𝑎𝑎 = 2.72 
 
Answer: The meter weighs 2.72 kg. 
 

31.11.4. Convert kilogram to pound 

The following formula can be used to convert from kilogram (kg) to pound (lb): 
 

 
𝑙𝑙𝑏𝑏 = 𝑘𝑘𝑎𝑎 ∗ 2.2046226218 

 
where 
𝑙𝑙𝑏𝑏 is pound (avoirdupois pound) 
𝑘𝑘𝑎𝑎 is kilogram 
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Example: 
What is the weight of a 17.7 kg reel of Series 6 coaxial cable in pounds? 

Solution: 
𝑙𝑙𝑏𝑏 = 𝑘𝑘𝑎𝑎 ∗ 2.2046226218 
 
𝑙𝑙𝑏𝑏 = 17.7 ∗ 2.2046226218 
 
𝑙𝑙𝑏𝑏 = 39.02 
 
Answer: The reel of cable weighs 39.02 kg. 
 

31.11.5. Convert pound to tonne (metric ton) 

The following formula can be used to convert from pound (lb) to tonne (t), also called metric ton:82 
 

 
𝑡𝑡 = 𝑙𝑙𝑏𝑏 ∗ 0.0004535924 

 
where 
𝑡𝑡 is tonne (metric ton) 
𝑙𝑙𝑏𝑏 is pound (avoirdupois pound) 
 
 
Example: 
What is the weight of a 185 lb partial reel of .500 hardline coaxial cable in tonnes? 
 
Solution: 
𝑡𝑡 = 𝑙𝑙𝑏𝑏 ∗ 0.0004535924 
 
𝑡𝑡 = 185 ∗ 0.0004535924 
 
𝑡𝑡 = 0.08 
 
Answer: The partial reel of coaxial cable weighs 0.08 tonne. 
 

31.11.6. Convert tonne (metric ton) to pound 

The following formula can be used to convert from tonne (t) or metric ton to pound (lb): 
 

 
𝑙𝑙𝑏𝑏 = 𝑡𝑡 ∗ 2204.6226218488 

 
where 
𝑙𝑙𝑏𝑏 is pound (avoirdupois pound) 
𝑡𝑡 is tonne (metric ton) 
 

 
82 A tonne or metric ton equals 1,000 kilograms. 
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Example: 
What is the weight of a 2 tonne trailer in pounds? 
 
Solution: 
𝑙𝑙𝑏𝑏 = 𝑡𝑡 ∗ 2204.6226218488 
 
𝑙𝑙𝑏𝑏 = 2 ∗ 2204.6226218488 
 
𝑙𝑙𝑏𝑏 = 4409.25 
 
Answer: The trailer weighs 4,409.25 lb. 
 

31.11.7. Convert pound to ton (short or common ton) 

The following formula can be used to convert from pound (lb) to ton, also called a short or common ton:83 
 

 
𝑡𝑡𝐿𝐿𝑠𝑠 = 𝑙𝑙𝑏𝑏 ∗ 0.0005 

 
where 
𝑡𝑡𝐿𝐿𝑠𝑠 is short or common ton 
𝑙𝑙𝑏𝑏 is pound (avoirdupois pound) 
 
 
Example: 
What is the weight of a 185 lb partial reel of .500 hardline coaxial cable in tons? 
 
Solution: 
𝑡𝑡𝐿𝐿𝑠𝑠 = 𝑙𝑙𝑏𝑏 ∗ 0.0005 
 
𝑡𝑡𝐿𝐿𝑠𝑠 = 185 ∗ 0.0005 
 
𝑡𝑡𝐿𝐿𝑠𝑠 = 0.09 
 
Answer: The partial reel of coaxial cable weighs 0.09 ton. 
 

31.11.8. Convert ton (short or common ton) to pound 

The following formula can be used to convert from ton (short or common ton) to pound (lb): 
  

 
83 A short or common ton equals 2,000 pounds, not to be confused with the long ton, which equals 2,240 pounds. 
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𝑙𝑙𝑏𝑏 = 𝑡𝑡𝐿𝐿𝑠𝑠 ∗ 2,000 
 
where 
𝑙𝑙𝑏𝑏 is pound (avoirdupois pound) 
𝑡𝑡𝐿𝐿𝑠𝑠 is short or common ton 
 

Example: 
What is the weight of a 2 ton trailer in pounds? 
 
Solution: 
𝑙𝑙𝑏𝑏 = 𝑡𝑡𝐿𝐿𝑠𝑠 ∗ 2,000 
 
𝑙𝑙𝑏𝑏 = 2 ∗ 2,000 
 
𝑙𝑙𝑏𝑏 = 4,000 
 
Answer: The trailer weighs 4,000 lb. 
 

31.12. Volume calculations 

Volume is the amount of space, measured in cubic units, that an object or substance occupies. While most 
of the world uses the metric system, the United States for the most part still uses U.S. and some Imperial 
cubic units for volume. Conversions are relatively straightforward, with some of the more commonly used 
parameters and applicable conversion formulas summarized in four tables. 
 

31.12.1. Convert metric to U.S./Imperial volume units (object) 
The following table includes formulas to convert from a variety of commonly used metric to 
U.S./Imperial volume units as they relate to an object:  

Table 28. Metric to U.S./Imperial volume conversions (object). 

FROM ↓      TO → 
cubic inch (in3) cubic foot (ft3) cubic yard (yd3) 

cubic millimeter 
(mm3) 

in3 = mm3 ∗ 
0.000061024 

ft3 = mm3 ∗ 
3.5315 ∗ 10-8 
 

yd3 = mm3 ∗ 1.30795 ∗ 10-9 

cubic centimeter 
(cm3) 

in3 = cm3 ∗ 0.061024 ft3 = cm3 ∗ 
0.000035315 

yd3 = cm3 ∗ 0.00000130795 

cubic meter (m3) in3 = m3 ∗ 61024 ft3 = m3 ∗ 35.315 yd3 = m3 ∗ 1.30795 
 
Example 1: 
A new earth station antenna installation requires a foundation concrete volume of 13.6 cubic meters. 
What is that volume in cubic feet? 
 
Solution 1: 
𝑓𝑓𝑡𝑡3 = 𝑚𝑚3 ∗ 35.315 
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𝑓𝑓𝑡𝑡3 = 13.6 ∗ 35.315 
 
𝑓𝑓𝑡𝑡3 = 480.28 
 
Answer: The volume is 480.28 cubic feet. 
 
Example 2: 
An underground equipment installation requires a pedestal with a minimum volume of 188,872 cubic 
centimeters. What is that volume in cubic inches? 
 
Solution 2: 
𝑠𝑠𝑠𝑠3 = 𝑝𝑝𝑚𝑚3 ∗ 0.061024 
 
𝑠𝑠𝑠𝑠3 = 188,872 ∗  0.061024 
 
𝑠𝑠𝑠𝑠3 = 11,525.72 
 
Answer: The volume is 11,525.72 cubic inches. 
 

31.12.2. Convert U.S./Imperial to metric volume units (object) 
The following table includes formulas to convert from a variety of commonly used U.S./Imperial to 
metric volume units as they relate to an object: 

Table 29 - U.S./Imperial to metric volume conversions (object). 

FROM ↓     TO → 
cubic millimeter (mm3) cubic centimeter (cm3) cubic meter (m3) 

cubic inch (in3) mm3 = in3 ∗ 16386.995 cm3 = in3 ∗ 16.386995 m3 = in3 ∗ 1.6386995∗10-5 
cubic foot (ft3) mm3 = ft3 ∗ 28316579.36 cm3 = ft3 ∗ 28316.579 m3 = ft3 ∗ 0.028316597 
cubic yard (yd3) mm3 = yd3 ∗ 76455522 cm3 = yd3 ∗ 764555.22 m3 = yd3 ∗ 0.76455522 

 
Example 1: 
A new earth station antenna installation requires a foundation concrete volume of 480.28 cubic feet. What 
is that volume in cubic meters? 
 
Solution 1: 
𝑚𝑚3 = 𝑓𝑓𝑡𝑡3 ∗ 0.028316597 
 
𝑚𝑚3 = 480.28 ∗  0.028316597 
 
𝑚𝑚3 = 13.6 
 
Answer: The volume is 13.6 cubic meters. 
 
Example 2: 
An underground equipment installation requires a pedestal with a minimum volume of 11,525.72 cubic 
inches. What is that volume in cubic centimeters? 
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Solution 2: 
𝑝𝑝𝑚𝑚3 = 𝑠𝑠𝑠𝑠3 ∗ 16.386995 
 
𝑝𝑝𝑚𝑚3 = 11,525.72 ∗  16.386995 
 
𝑝𝑝𝑚𝑚3 = 188,871.92 
 
Answer: The volume is about 188,872 cubic centimeters. 
 

31.12.3. Convert metric to U.S. volume units (substance) 
The following table includes formulas to convert from a variety of commonly used U.S. to metric volume 
units as they relate to a substance: 

Table 30 - Metric to U.S. volume conversions (substance). 

FROM ↓    TO → 
fluid ounce (fl. oz.) pint (pt) quart (qt) gallon (gal) 

 
milliliters (mL) fl. oz. = mL ∗ 

0.033814 
pt = mL ∗ 
0.0021134 

qt = mL ∗ 0.0010567 
 

gal = mL ∗ 
0.00026417 

centiliters (cL) fl. oz. = cL ∗ 
0.33814 

pt = cL ∗ 0.021134 qt = cL ∗ 0.010567 gal= cL ∗ 
0.0026417 

deciliters (dL) fl. oz. = dL ∗ 
3.3814 

pt = dL ∗ 0.21134 qt = dL ∗ 0.10567 gal = dL ∗ 
0.026417 

liter (L) fl. oz. = L ∗ 33.814 pt = L ∗ 2.1134 qt = L ∗ 1.0567 gal = L ∗ 
0.26417 

 
Example 1: 
A portable backup generator has a fuel tank that holds 23.85 liters. What is that volume in gallons? 
 
Solution 1: 
𝑎𝑎𝑎𝑎𝑙𝑙 = 𝐿𝐿 ∗ 0.26417 
 
𝑎𝑎𝑎𝑎𝑙𝑙 = 23.85 ∗ 0.26417 
 
𝑎𝑎𝑎𝑎𝑙𝑙 = 6.3 
 
Answer: The volume is 6.3 gallons. 
 
Example 2: 
A fiber optic cleaning kit includes a bottle containing 8.28 deciliters of isopropyl alcohol. What is that 
volume in fluid ounces?  
 
Solution 2: 
𝑓𝑓𝑙𝑙. 𝐿𝐿𝑧𝑧. = 𝑑𝑑𝐿𝐿 ∗ 3.3814 
 
𝑓𝑓𝑙𝑙. 𝐿𝐿𝑧𝑧. = 8.28 ∗ 3.3814 
 
𝑓𝑓𝑙𝑙. 𝐿𝐿𝑧𝑧. = 27.99 
 
Answer: The volume is about 28 fluid ounces.  
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31.12.4. Convert U.S. volume to metric units (substance) 
The following table includes formulas to convert from a variety of commonly used U.S. to metric volume 
units as they relate to a substance: 

Table 31 - U.S. to metric volume conversions (substance). 

FROM ↓        TO → 
milliliters (mL) centiliters (cL) deciliters 

(dL) 
liter (L) 

fluid ounce (fl. oz.) mL = fl. oz. ∗ 29.573549 cL = fl. oz. ∗ 2.957349 dL = fl. oz. ∗ 
0.29573549 

L= fl. oz. ∗ 
0.029573549 

pint (pt) mL = pt ∗ 473.17 cL = pt ∗ 47.317 dL = pt ∗ 
4.7317 

L= pt ∗ 
0.47317 

quart (qt) mL = qt ∗ 946.34 cL = qt ∗ 94.634 dL = qt ∗ 
9.4634 

L= qt ∗ 
0.94634 

gallon (gal) 
 

mL = gal ∗ 3785.44 cL = gal ∗ 378.544 dL = gal ∗ 
37.8544 

L= gal ∗ 
3.78544 

 
Example 1: 
A portable backup generator has a fuel tank that holds 6.3 gallons. What is that volume in liters? 
 
Solution 1: 
𝐿𝐿 = 𝑎𝑎𝑎𝑎𝑙𝑙 ∗ 3.78544 
 
𝐿𝐿 = 6.3 ∗ 3.78544 
 
𝐿𝐿 = 23.85 
 
Answer: The volume is 23.85 liters. 
 
Example 2: 
A fiber optic cleaning kit includes a bottle containing 28 fluid ounces of isopropyl alcohol. What is that 
volume in deciliters?  
 
Solution 2: 
𝑑𝑑𝐿𝐿 = 𝑓𝑓𝑙𝑙. 𝐿𝐿𝑧𝑧.∗ 0.29573549 
 
𝑑𝑑𝐿𝐿 = 28 ∗ 0.29573549 
 
𝑑𝑑𝐿𝐿 = 8.28 
 
Answer: The volume is 8.28 deciliters. 
 

31.13. Torque calculations 

A commonly used unit of torque is the pound·foot (lbf·ft or lb·ft)84, and its SI counterpart is the 
newton·meter (N·m). The pound·inch (lbf·in or lb·in) is another unit of torque, equal to 1/12 of a 
pound·foot, used, for example, to describe connector tightening. 
 

 
84 Not to be confused with foot·pound (energy). 
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The formula to convert from newton·meter to pound·foot is 
 

 
lb·ft = N·m ∗ 0.737562 

 
where 
lb·ft is torque in units of pound·foot 
N·m is torque in units of newton·meter 
 
 
Example: 
What is 300 N·m expressed in lb·ft? 
 
Solution: 
lb·ft = 300 ∗ 0.737562 
 
lb·ft = 221.27 
 
The answer is 221.27 lb·ft. 

 
The formula to convert from pound·foot to newton·meter is 
 

 
N·m = lb·ft  ∗ 1.355818 

 
where 
N·m is torque in units of newton·meter 
lb·ft is torque in units of pound·foot 
 
 
Example: 
What is 273 lb·ft expressed in N·m? 

Solution: 
N·m = 273 ∗ 1.355818 
 
N·m = 370.14 
 
The answer is 370.14 N·m. 
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 How to Calculate Base-2 
Logarithms 

Some applications involve calculations using base-2 logarithms (log2) rather than the more common base-
10 logarithms (log10). 
 
Scientific calculators have a base-10 logarithm function. Some scientific calculators also have a natural 
logarithm (ln) – also called base-e or loge – function. How can one calculate the base-2 logarithm of a 
given quantity? The following examples illustrate two ways to do so using base-10 and natural logarithm 
functions.85 
 

 Base 10 logarithm method 
To find the base-2 logarithm of a quantity x, use the formula 
 
log2(x) = log10(x)/log10(2) 
 
For example, calculate the base-2 logarithm of the number 24. 
 
log2(24) = log10(24)/log10(2) 
log2(24) = 1.380211/0.301030 
log2(24) = 4.584963 
 

 Natural logarithm method 
To find the base-2 logarithm of a quantity x, use the formula 
 
log2(x) = ln(x)/ln(2) 
 
For example, calculate the base-2 logarithm of the number 24. 
 
log2(24) = ln(24)/ln(2) 
log2(24) = 3.178054/0.693147 
log2(24) = 4.584963 
  

 
85 Microsoft® Excel® supports calculation of base-2 logarithms, using the formula LOG(number, [base]). For 
example, to calculate the base-2 logarithm of the value in a spreadsheet’s cell number B6, the formula for that cell 
would be =LOG(B6, 2). 
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 International System of Units (SI) 
The following tables are from National Institute of Standards and Technology publications. Care should 
be taken to ensure that the correct upper or lower case is used. For example, the SI prefix M = mega, 
while m = milli; lowercase k is used for kilo, while uppercase K is for kelvin. 

Table 32 - SI prefixes 

Factor Name Symbol Factor Name Symbol 
1024 yotta Y 10-1 deci d 
1021 zetta Z 10-2 centi c 
1018 exa E 10-3 milli m 
1015 peta P 10-6 micro µ 
1012 tera T 10-9 nano n 
109 giga G 10-12 pico p 
106 mega M 10-15 femto f 
103 kilo k 10-18 atto a 
102 hecto h 10-21 zepto z 
101 deka da 10-24 yocto y 

Table 33 - SI base units 

Base quantity Name Symbol 
length meter m 
mass kilogram kg 
time second s 
electric current ampere A 
thermodynamic temperature kelvin K 
amount of substance mole mol 
luminous intensity candela cd 

Table 34. Examples of SI coherent derived units expressed in terms of SI base units. 

 

 
  

Derived quantity Name Symbol 
area square meter m2 
volume cubic meter m3 
speed, velocity meter per second m/s 
acceleration meter per second squared m/s2 
wave number reciprocal meter m-1 
density, mass density kilogram per cubic meter kg/m3 
specific volume cubic meter per kilogram m3/kg 
current density ampere per square meter A/m2 
magnetic field strength ampere per meter A/m 
amount-of-substance 
concentration 

mole per cubic meter mol/m3 

luminance candela per square meter cd/m2 
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Table 35 - SI coherent derived units with special names and symbols. 

 

SI coherent derived unit(a) 

Special Name Special 
Symbol 

Expression  
in terms of  

other SI units 

Expression 
in terms of 

SI base units 
plane angle radian (b) rad 1(b) m/m 
solid angle steradian (b) sr (c) 1(b) m2/m2 
frequency hertz(d) Hz - s-1 
force newton N - m·kg·s-2 
pressure, stress pascal Pa N/m2 m-1·kg·s-2 
energy, work, amount of 
heat 

joule J N·m m2·kg·s-2 

power, radiant flux watt W J/s m2·kg·s-3 
electric charge, amount of 
electricity 

coulomb C - s·A 

electric potential 
difference(e), 
electromotive force 

volt V W/A m2·kg·s-3·A-1 

capacitance farad F C/V m-2·kg-1·s4·A2 
electric resistance ohm Ω V/A m2·kg·s-3·A-2 
electric conductance siemens S A/V m-2·kg-1·s3·A2 
magnetic flux weber Wb V·s m2·kg·s-2·A-1 
magnetic flux density tesla T Wb/m2 kg·s-2·A-1 
inductance henry H Wb/A m2·kg·s-2·A-2 
Celsius temperature degree 

Celsius(f) 
°C - K 

luminous flux lumen lm cd·sr (c) Cd 
illuminance lux lx lm/m2 m-2·cd 
activity referred to a 
radionuclide(g) 

becquerel(d) Bq - s-1 

absorbed dose, specific 
energy (imparted), kerma 

gray Gy J/kg m2·s-2 

dose equivalent, ambient 
dose equivalent, directional 
dose equivalent, personal 
doze equivalent 

sievert Sv J/kg m2·s-2 

catalytic activity katal kat - s-1·mol 
 
(a) The SI prefixes may be used with any of the special names and symbols, but when this is done the resulting unit will no 
longer be coherent. 
(b) The radian and steradian are special names for the number one that may be used to convey information about the quantity 
concerned. In practice the symbols rad and sr are used where appropriate, but the symbol for the derived unit one is generally 
omitted in specifying the values of dimensionless quantities. 
(c) In photometry, the unit name steradian and the unit symbol sr are usually retained in expressions for derived units. 
(d) The hertz is used only for periodic phenomena, and the becquerel is used only for stochastic processes in activity referred to a 
radionuclide. 
(e) Electric potential difference is also called “voltage” in the United States. 
(f) The degree Celsius is the special name for the kelvin used to express Celsius temperatures. The degree Celsius and the kelvin 
are equal in size, so that the numerical value of a temperature difference or temperature interval is the same when expressed in 
either degrees Celsius or in kelvins. 
(g) Activity referred to a radionuclide is sometimes incorrectly called radioactivity.  
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Table 36. Examples of SI coherent derived units expressed with the aid of SI derived 
units having special names and symbols 

Derived quantity Name Symbol 
dynamic viscosity pascal second Pa·s 
moment of force newton meter N·m 
surface tension newton per meter N/m 
angular velocity radian per second rad/s 
angular acceleration radian per second squared rad/s2 
heat flux density, irradiance watt per square meter W/m2 
heat capacity, entropy joule per kelvin J/K 
specific heat capacity, 
specific entropy joule per kilogram kelvin J/(kg·K) 

specific energy joule per kilogram J/kg 
thermal conductivity watt per meter kelvin W/(m·K) 
energy density joule per cubic meter J/m3 
electric field strength volt per meter V/m 
electric charge density coulomb per cubic meter C/m3 
electric flux density, electric 
displacement coulomb per square meter C/m2 

permittivity farad per meter F/m 
permeability henry per meter H/m 
molar energy joule per mole J/mol 
molar entropy, molar heat 
capacity joule per mole kelvin J/(mol·K) 

exposure (χ and γ rays) coulomb per kilogram C/kg 
absorbed dose rate gray per second Gy/s 
radiant intensity watt per steradian W/sr 
radiance watt per square meter steradian W/(m2·sr) 
catalytic activity 
concentration katal per cubic meter kat/m3 
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  Micro-Reflections 
 Micro-reflections: An introduction 

Note: The overview of micro-reflections in this section uses just a single frequency (and single value of 
coaxial cable attenuation and return loss) with a single reflection to simplify the concept. 
 
A micro-reflection is an echo (reflection) with a relatively short time delay, typically from less than a 
symbol period to several symbol periods. Consider the example shown in Figure 76, in which two water-
damaged taps separated by 100 feet of coaxial cable result in a pair of impedance mismatches in the 
distribution network. The 100 ft. span of cable in this example is an echo tunnel (or echo cavity). 
 

 
Figure 76. Echo tunnel formed by two water-damaged taps separated by 100 feet of 

coaxial cable. 

Refer to Figure 77 for the following example. Assume that the attenuation in the 100 ft. span of coaxial 
cable between the taps is 1 dB, the cable’s velocity factor is 0.87, and the return loss of each damaged tap 
is 7 dB. If the signal leaving the output port of the 23 dB tap at time T0 is +31 dBmV, that signal will be 
attenuated by 1 dB as it passes through the cable and will arrive at the 20 dB tap at a level of +30 dBmV 
at time T1. Because of the 20 dB tap’s degraded return loss (7 dB), the amplitude of the signal reflected by 
the 20 dB tap is 30 dBmV – 7 dB = 23 dBmV. That first reflection will travel back through the span of 
coax and reach the 23 dB tap at a level of +22 dBmV. Because of the poor return loss of the 23 dB tap 
(also 7 dB), there will be a reflection from that tap whose amplitude is 22 dBmV – 7 dB = 15 dBmV. That 
second reflection will travel through the span of coax toward the 20 dB tap, arriving at the 20 dB tap at 
time T2 with an amplitude of +14 dBmV. 
 
 

 
Figure 77. Propagation of incident signal and reflections within echo tunnel. 

 
Figure 78 shows a graphical representation of the +30 dBmV incident signal at the input to the 20 dB tap 
at time T1 along with the second reflection (+14 dBmV) at time T2. The 234 ns time delay is equal to the 
round trip propagation time through the 100 ft. span of coaxial cable (117 ns each direction).86 If the 

 
86 For coaxial cable with a velocity factor of 0.87 (87% velocity of propagation), the propagation or transit time 
through a foot of cable is 1/(983,571,056.43 x 0.87) = 1.17 nanosecond. The propagation time through 100 feet of 
that cable is 1.17 ns ∗ 100 = 117 ns. Note: 983,571,056.43 is the speed of light in a vacuum in feet per second. 
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downstream signals in this example are 6 MHz-wide 256-QAM signals, their symbol period is 1/5360537 
symbols per second = 1.87 ∗ 10–7 second, or 187 ns. The 234 ns time delay in this example is just a bit 
longer than the symbol period, so the term micro-reflection is certainly applicable. 

 
Figure 78. Graphical representation of incident signal and reflection at input to 20 dB tap. 

The amplitude ripple produced in this example would be similar to that shown in Figure 79, with peaks at 
31.28 dBmV and nulls at 28.5 dBmV. The frequency separation between adjacent peaks (or adjacent 
nulls) is about 4.27 MHz. 
 
 

 
Figure 79. Amplitude ripple produced in example. 

Figure 80 illustrates how one can determine the amplitude ripple’s appearance. The blue arrow is a vector 
that represents the magnitude of the incident signal (+30 dBmV = 31.62 mV) normalized to 1, and the 
shorter green arrow is a vector that represents the echo (+14 dBmV = 5.01 mV), normalized to 0.16. As 
the shorter green arrow rotates counterclockwise around the end of the longer blue arrow, the vector sum 
of the two arrows equals the red dashed line. A red dashed line for each rotational position of the green 
arrow can be plotted as shown in the right side of Figure 80, which produces the shape of the amplitude 
ripple. 
 
When the blue arrow (equivalent to 31.62 mV) and green arrow (equivalent to 5.01 mV) are lined up to 
produce a longer overall end-to-end length, the sum of the two arrows is 31.62 mV + 5.01 mV = 36.63 
mV, or 31.28 dBmV for the peak on the amplitude ripple. When the green arrow rotates 180 degrees and 
overlaps the blue arrow, the vector sum is 31.62 mV – 5.01 mV = 26.61 mV, or 28.5 dBmV for the null. 
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Figure 80. A graphical representation of vectors (left) and how they can be used to 

determine the shape of amplitude ripple (see text). 

 
The length of the echo tunnel in feet can be confirmed with the formula 
 

D = 492 ∗ �
𝑉𝑉𝑁𝑁

𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀
� 

 

D = 492 ∗ �
0.87
4.27

� 
 
D = 492 ∗ (0.2037) 
 
D = 100.2 
 
or about 100 feet between the two water-damaged taps. 
 
The relative amplitude of the echo to the incident signal can be calculated using the following formula: 
 
 

Echo𝑑𝑑𝑑𝑑𝑐𝑐 = 20𝑙𝑙𝐿𝐿𝑎𝑎10
𝑉𝑉𝑐𝑐 − 𝑉𝑉𝑖𝑖

𝑉𝑉𝑐𝑐 + 𝑉𝑉𝑖𝑖
 

 
where 
𝐸𝐸𝑝𝑝ℎ𝐿𝐿𝑑𝑑𝑑𝑑𝑐𝑐 is the relative amplitude of the echo to the incident signal in dBc 
𝑙𝑙𝐿𝐿𝑎𝑎10 is base 10 logarithm 
𝑉𝑉𝑐𝑐 is the magnitude of the amplitude ripple peak in units of volts (millivolts in this example) 
𝑉𝑉𝑖𝑖 is the magnitude of the amplitude ripple null in the same units of volts as 𝑉𝑉𝑐𝑐 
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Example: 
What is the relative amplitude of the echo for the amplitude ripple shown in Figure 79? 
 
Solution: 
First convert the +31.28 dBmV peak and +28.5 dBmV null values to millivolts. 
 
For 𝑉𝑉𝑐𝑐: 

𝑚𝑚𝑉𝑉 = 10
𝑑𝑑𝑑𝑑𝑘𝑘𝑑𝑑

20  
 

𝑚𝑚𝑉𝑉 = 10
31.28

20  
 
𝑚𝑚𝑉𝑉 = 101.56 
 
𝑚𝑚𝑉𝑉 = 36.64 
 
For 𝑉𝑉𝑖𝑖: 

𝑚𝑚𝑉𝑉 = 10
𝑑𝑑𝑑𝑑𝑘𝑘𝑑𝑑

20  
 

𝑚𝑚𝑉𝑉 = 10
28.5
20  

 
𝑚𝑚𝑉𝑉 = 101.43 
 
𝑚𝑚𝑉𝑉 = 26.61 
 
Then calculate the echo’s relative magnitude in dBc, when 𝑉𝑉𝑐𝑐 = 36.64 mV and 𝑉𝑉𝑖𝑖 = 26.61 mV. 
 

Echo𝑑𝑑𝑑𝑑𝑐𝑐 = 20𝑙𝑙𝐿𝐿𝑎𝑎10
𝑉𝑉𝑐𝑐 − 𝑉𝑉𝑖𝑖

𝑉𝑉𝑐𝑐 + 𝑉𝑉𝑖𝑖
 

 

Echo𝑑𝑑𝑑𝑑𝑐𝑐 = 20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10
36.64 − 26.61
36.64 + 26.61

 
 

Echo𝑑𝑑𝑑𝑑𝑐𝑐 = 20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎10
10.03
63.25

 
 
Echo𝑑𝑑𝑑𝑑𝑐𝑐 = 20 ∗ 𝑙𝑙𝐿𝐿𝑎𝑎100.16 
 
Echo𝑑𝑑𝑑𝑑𝑐𝑐 = 20 ∗ −0.80 
 
Echo𝑑𝑑𝑑𝑑𝑐𝑐 = −16 
 
Answer: The magnitude of the echo is –16 dBc relative to the incident signal. 
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 Micro-reflections: transmission and echo (reflection) transfer 
functions 

Note: The overview of micro-reflections in this section uses the entire frequency range of the signal of 
interest (and corresponding range of values vs. frequency of coaxial cable attenuation and return loss). 

 Transmission transfer function 

Consider a signal transmitted downstream from a tap output to the adjacent tap input as shown in Figure 
81 with cable impulse response 𝑎𝑎(𝑡𝑡) and amplitude response 𝐴𝐴(𝑓𝑓) with linear phase response. The 
transmitter at the signal source has (nearly) matched impedance to the cable but with a return loss RLo 

(dB). In general, the return loss is also a function of frequency 𝑅𝑅𝐿𝐿(𝑓𝑓). The signal traverses the cable to 
the sink tap with propagation delay T which has a (nearly) matched impedance to the cable with return 
loss RLi (dB). A portion of the signal equal to the reflection coefficient ρi = 10–RLi/20 is reflected back to 
the source tap, which in turn a portion of the reflected signal equal to the reflection coefficient  
ρo = 10–RLo/20 is re-reflected back toward the sink tap, and so on ad infinitum. This can be represented as a 
sum of the signal x(t) incident at the sink tap and the infinite series of reflections each delayed by the 
round-trip time (i.e., twice the propagation delay or 2T) of the cable as shown in Figure 81.  

  ρix(t-T)⊛a(t)Reflections

Reflections
Main Signal

Source
RLo

Sink
RLi

 
x(t)

 ρiρox(t-2T)⊛a(t)⊛a(t)
  ρi

2ρox(t-3T)⊛a(t)⊛a(t)⊛a(t) ρi
2ρo

2x(t-4T)⊛a(t)⊛a(t)⊛a(t)⊛a(t)

 

Tap Span

 
Figure 81. Signal reflections in a cable between adjacent taps. 

This represents a transmission line with frequency response 𝐻𝐻(𝑓𝑓) from source to sink tap transmitting the 
input signal 𝑋𝑋(𝑓𝑓) plus the discrete delays of each round-trip reflected signal yielding 𝑌𝑌(𝑓𝑓).  The 
transmitted signal transfer function 𝐻𝐻(𝑓𝑓) (equal to the scattering parameter S21) is given by: 
 
𝐻𝐻(𝑓𝑓) = 𝑌𝑌(𝑓𝑓)/𝑋𝑋(𝑓𝑓)   
 
It can be shown [28] that the (complex) transmitted signal transfer function 𝐻𝐻(𝑓𝑓) from source to sink is 
given by: 
 

𝐻𝐻(𝑓𝑓) =  
𝐴𝐴(𝑓𝑓) 𝑝𝑝−𝑗𝑗2𝜋𝜋𝑓𝑓𝐶𝐶

1 − 𝐴𝐴2(𝑓𝑓) 10− (RLi+RLo)
20 𝑝𝑝−𝑗𝑗4𝜋𝜋𝑓𝑓𝐶𝐶

 

 
An example of the log magnitude transmission frequency response = 10𝑙𝑙𝐿𝐿𝑎𝑎10|𝐻𝐻(𝑓𝑓)| of a 100 foot 
hardline cable with 0.87 velocity factor and 1 dB/100 ft attenuation at 500 MHz connecting two taps each 
with a (constant) return loss of 7 dB is shown in Figure 82:  
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Figure 82. Log magnitude transmission response (20log10|S21| of Figure 81. 

 

 Echo (reflection) transfer function  
Consider a signal transmitted downstream from a tap output to the adjacent tap input as shown in Figure 
81 with cable impulse response 𝑎𝑎(𝑡𝑡) and amplitude response 𝐴𝐴(𝑓𝑓) with linear phase response. The 
transmitter at the signal source has (nearly) matched impedance to the drop cable but with a return loss 
RLo (dB). In general, the return loss is also a function of frequency RL( f ). The signal traverses the cable 
to the sink tap with propagation delay T which has a (nearly) matched impedance to the cable with return 
loss RLi (dB). A portion of the signal equal to the reflection coefficient 10–RLi/20 is reflected back toward 
the source tap, which in turn a portion of the reflected signal equal to the reflection coefficient 10–RLo/20 is 
re-reflected back toward the sink tap, and so on ad infinitum. This reflected signal can be represented as a 
sum of the infinite series of reflections each delayed by the propagation delay T plus multiples of the 
round-trip time (i.e., twice the propagation delay or 2T) of the cable as shown in Figure 81.  
 
This represents a transmission line with reflected signal frequency response 𝐸𝐸𝑚𝑚(𝑓𝑓) at the source tap (equal 
to the scattering parameter S11) consisting of the sum of the discrete delays of each round-trip reflected 
input signal. 
 
It can be shown [28] that the (complex) reflected echo transfer function 𝐸𝐸𝑚𝑚(𝑓𝑓) at the source is given by: 

𝐸𝐸𝑚𝑚(𝑓𝑓) =  
𝐴𝐴2(𝑓𝑓) 10− (RLi)

20 𝑝𝑝−𝑗𝑗4𝜋𝜋𝑓𝑓𝐶𝐶

1 − 𝐴𝐴2(𝑓𝑓) 10− (RLi+RLo)
20 𝑝𝑝−𝑗𝑗4𝜋𝜋𝑓𝑓𝐶𝐶

= 𝐻𝐻(𝑓𝑓) �𝐴𝐴(𝑓𝑓) 10− (RLi)
20 𝑝𝑝−𝑗𝑗2𝜋𝜋𝑓𝑓𝐶𝐶� 
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An example of the log magnitude reflected echo frequency response = 20𝑙𝑙𝐿𝐿𝑎𝑎10|𝐸𝐸𝑚𝑚(𝑓𝑓)| of a 100 foot 
hardline cable with 0.87 velocity factor and 1 dB/100 ft attenuation at 500 MHz connecting two taps each 
with a (constant) return loss of 7 dB is shown in Figure 83: 

 
Figure 83. Log magnitude reflected echo response (20log10|S11|) of Figure 81. 

Similarly, the (complex) incident echo transfer function 𝐸𝐸𝑖𝑖(𝑓𝑓) at the sink is equal to the transmission 
frequency response 𝐻𝐻(𝑓𝑓) minus the incident source signal portion of the response attenuated by the cable 
response 𝐴𝐴(𝑓𝑓) and delayed by the propagation delay T which is given by: 
 

𝐸𝐸𝑖𝑖(𝑓𝑓) =  𝐻𝐻(𝑓𝑓) − 𝐴𝐴(𝑓𝑓) 𝑝𝑝−𝑗𝑗2𝜋𝜋𝑓𝑓𝐶𝐶 
 
An example of the log magnitude incident echo frequency response = 20𝑙𝑙𝐿𝐿𝑎𝑎10|𝐸𝐸𝑖𝑖(𝑓𝑓)| of a 100 foot 
hardline cable with 0.87 velocity factor and 1 dB/100 ft attenuation at 500 MHz connecting two taps each 
with a (constant) return loss of 7 dB is shown in Figure 84: 

 
Figure 84: Log magnitude incident echo response (20log10|S21 – A e-jωT|) of Figure 81. 

 
 
  



SCTE 270 2021r1   

SCTE OPERATIONAL PRACTICE  © SCTE 349 

 Distortion Performance Analysis 
 
This section includes a detailed analysis of distortions in cable networks. The material was excerpted 
from a document written by Lamar West as the qualifying exam for his Ph.D. at the Georgia Institute of 
Technology. The exam was entitled “Distortion Characteristics of CATV Broadband Networks,” and 
focused on cable networks carrying analog TV channels. The concepts remain applicable to modern all-
digital cable networks. Used with permission of the author. 
 

Distortion Performance Analysis 
 

Lamar West, Ph.D. 
LEW Consulting, LLC 

 
The standards that have been developed for characterizing distortion performance in broadband coaxial 
networks have been based on the assumption that only mild nonlinearities will be encountered. Most 
devices for use in cable applications exhibit mild nonlinearities when properly operated. It is worthwhile 
to explain what we mean by mild nonlinearities in this context. 
 
CATV repeater amplifiers (e.g., trunk, line-extender) are designed with a single input and output unless 
intended for bridging applications. Bridging is the term applied to active devices that are used in location 
where multiple amplified outputs are required. However, for the purposes of this analysis, the single 
input, single output case is examined. Consequently, the amplifier is modeled as a two-port device. 
Initially, we consider the case of a memory-less two-port device. The transfer characteristic h(x) of such a 
device may be modeled using a Taylor series expansion 

( ) ( ) ( ) ( ) ( )y h x a a x a x a x a x= = + ⋅ + ⋅ + ⋅ + ⋅ +0 1 2
2

3
3

4
4                         (2.18)  

 
In the case of CATV RF amplifiers, α0 is generally assumed to be zero due to AC coupling in and out of 
the device. The α1 term is associated with the desired, linear system output. Term α2 is associated with 
second order distortion, term α3 is associated with third order distortion, and so on. 
 
In order to be considered a device with mild nonlinearities in the CATV case, terms α4, α5, α6, and higher 
must be sufficiently small so that their effect on system performance may be ignored (D. McEwen). 
Typically, in cable systems, only second order and third distortion terms are considered. In this context 
we define mild nonlinearities to be nonlinearities in which distortion terms of order greater than three are 
of sufficiently small amplitude as to be insignificant. Therefore, the memory-less transfer characteristic 
simplifies to 

( ) ( ) ( )y a x a x a x= ⋅ + ⋅ + ⋅1 2
2

3
3                                               (2.19)  

 
One may also plot the transfer characteristic as shown in Figure 85. 
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Figure 85 - Typical transfer characteristic. 

The nonlinearity exhibited in this transfer characteristic is greatly exaggerated with respect to that shown 
by typical cable devices. 
 
Let us examine the case of a single RF channel being passed through this device. We model the channel as a 
sinusoid of amplitude A and frequency ω1 (ωI = 2πfi), 

x =  A  tcos ω1                                                                 (2.20)  
 
The phase has been set to zero for simplicity of analysis. The output is given by 

y =  a A  t +  a A   t +  a A   t1 2
2 2

3
3 3cos cos cosω ω ω1 1 1                            (2.21)  

 
After application of trigonometric identities we get 

y =
1
2 a A + [ a A +  

3
4 a A ] t t +

1
2 a A  2 t +

1
4 a A  3 t2

2
1 3

3
2

2
3

3cos cos cosω ω ω1 1 1       (2.22)   
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Figure 86. Power spectrum described by equation (2.22) 

A power spectrum is shown in Figure 86. A purely real load impedance of value R0 is assumed in this figure. 
 
Thus, the application of a single frequency sinusoid results in an output containing components at DC, the 
input frequency and harmonics of the input frequency. The components associated with the second order term 
of the transfer characteristic are referred to as second order distortion or second order beats and fall at DC and 
at twice the fundamental frequency. Typically, the term at DC is ignored as long as it is sufficiently small so 
as not to impact the bias of the devices in question. The resulting components associated with the third order 
term are referred to as third order distortion or third order beats. Third order beats in this example fall at the 
fundamental frequency and at the third harmonic of that frequency. 
 
A similar analysis can be performed if the input consists of two sinusoids at different frequencies, ω1 and ω2 
respectively. Let 

x = A  t +  B  tcos cosω ω1 2                                                     (2.23)  
 
If we apply this to the transfer characteristic and then simplify, the result becomes 
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           (2.24)  

 
Note that there are terms up to and including all third order sums and differences of the frequencies ω1 and 
ω2. A similar analysis is given in (Laboratories, 1971) for the case of an input consisting of three sinusoids. 
As one might expect, that result becomes substantially more complex. 
 
An important conclusion may be reached by examination of these results. A key figure of merit for the 
performance of a device is the ratio of the power in a desired carrier (the first order term in the above 
expressions) to the sum of the power in the distortion terms (higher order terms). In particular, the ratio of the 
carrier power to the sum of the power associated with the second order terms (carrier-to-second order) and 
the ratio of the carrier power to the sum of the power associated with the third order terms (carrier-to-third 
order) is a significant figure of merit. It is useful to examine the behavior these ratios as a function of the level 
of the desired carriers. 
 
First, note that the amplitudes of the desired outputs are linearly proportional to the amplitudes of the inputs. 
However, the amplitudes of the second order terms are proportional to the square, or a second order product, 
of the amplitudes of the inputs. In other words, an increase in the absolute amplitude of the input signals of 1 
dB will result in increase in absolute amplitude of the desired output signals of 1 dB but an increase in 
amplitude of the second order distortion products of 2 dB. Such a 1 dB increase in input level will result in a 
1 dB decrease in carrier-to-second order distortion ratio. Similarly, a 1 dB increase in input level will result in 
a 3 dB increase in the level of the third order products and consequently a 2 dB decrease in carrier-to-third 
order distortion ratio. These results are shown graphically in Figure 87.  
 
This important relationship makes it possible to predict the carrier-to-second order distortion ratio and carrier-
to-third order distortion ratio at any level based on the known performance at a given level, so long as the 
levels involved are well below the compression point of the amplifier. The compression point is defined as 
the output level for a device above which these relationships no longer hold. (Jacobi, November, 1986) 
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Figure 87 - Relationship between carrier level and carrier-to-distortion. 

Carrier-to-second order distortion ratio decreases at a one-to-one rate with desired carrier level. Carrier-to-
third order distortion ratio decreases at a two-to-one rate with desired carrier level. 
 

 Results with a large number of carriers 
The analysis above indicates the complexity of intermodulation distortion when only a small number of 
carriers are present. In the case of a conventional CATV system, the number of carriers may be very large. In 
such a situation, the characterization of the network by purely analytical means would be extremely difficult. 
The difficulty is complicated by the fact that one of the assumptions in our simplified distortion model is 
violated. 
 
In the case of a conventional CATV system, the memory-less assumption is not valid. (Chang, 1975) This 
results in a dependence of the distortion product amplitude on not only the amplitudes of the input carriers but 
also on the frequency of the input carriers. An analysis of this problem for a small number of carriers using a 
Volterra series expansion has been described by K.Y. Chang (Chang, 1975). This method begins by 
generalizing the Taylor series expansion described previously into a generalized series  

y t y t y t y t( ) ( ) ( ) ( )= + + +1 2 3                                                   (2.26)  
 
where the individual terms are defined by a series of convolution integrals given by 

( ) ( ) ( ) ( )y t h x t x t x t d d di i i i i= − − −
−∞

∞

−∞

∞

−∞

∞

∫∫∫    ( , , , )α α α α α α α α α1 2 1 2 1 2         (2.27)  
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and hi is a real-valued symmetric function of i real variables. This representation demonstrates that a 
nonlinear system may be regarded as the combination of a linear and a number of higher order nonlinear 
subsystems. Each of these subsystems is characterized by a multidimensional impulse response given by hi(t1, 
t2, … ,ti) as opposed to the single dimensional impulse response, h(t), in the linear case. 
 
It is possible to take the i-dimensional Fourier transform of the i-dimensional impulse response in order to 
obtain a transfer function for each subsystem.  

( )[ ]H f f h t t j f t f t dt dti i i i i i i( , , ) ( , , ) exp1 1 1 1 12    = ⋅ − + +
−∞

∞

−∞

∞

∫ ∫ π            (2.28)  

 
The result is a family of transfer functions, H1(f1), H2(f1, f2), H3(f1, f2, f3) … 
 
In the case of a conventional CATV system, the input to the system is a spectrum of K conventional analog 
television channels. Based on the previous models,  

( ) ( )x t A fi i i
i

K

= +
=
∑ cos 2

1
π φ                                                        (2.29)  

 
The response of the device may then be determined by substitution of this expression into the Volterra series 
given previously. If we define θ1(f1), θ2(f1, f2), and θ3(f1, f2, f3) as the phase angles of H1(f1), H2(f1, f2) and 
H3(f1, f2, f3), and we consider only the first, second and third order terms (assuming mild nonlinearities, as 
before), substitution into the Volterra series results in the following first, second and third order terms 

( ) ( )y t A H f ti
i

K

i i i1
1

1 1( ) cos= + +
=
∑ ω φ θ                                             (2.30)  

( ) ( ) ( ) ( ) ( ){ }
( ) ( ){ }
( ) ( ){ }
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The term y1 is the desired linear term. Chang associates the term y2 with composite second order (CSO) and 
associates the term y3 with composite third order, or as it is known in the CATV literature, composite triple 
beat (CTB). In the special case where K=2, the term y2 is referred to as discrete second order (DSO) and 
contains terms at DC, the harmonics of the input carrier frequencies and at the sum and differences of the 
frequencies of the input carriers, as in the Taylor series model. 
 
Unfortunately, the application of the Volterra series model to a real world CATV device is a very difficult 
task. In the case of a system with 110 channels (K=110), the determination of composite distortion requires 
the determination of over 900,000 complex quantities that must be summed in order to determine the 
composite distortion. An empirically based technique is generally used to characterize distortion 
performance. 
 

 Empirical methods 

 NCTA standard measurements 

It is useful at this time to examine the frequencies used for carriers in a CATV system. The exact frequency 
assignments have evolved from those initially chosen for broadcast television. The individual broadcast 
channels are 6 MHz wide with the main energy in the channel centered around the picture carrier at 1.25 
MHz above the lower edge of the channel. CATV channels follow this convention. For the purpose of 
intermodulation distortion analysis, CATV channels are modeled as CW carriers located at the visual carrier 
frequency of the channel.87 

 

 
87 Editor’s Note: The discussion here is based on information in “NCTA Recommended Practices for Measurements 
on Cable Television Systems,” which has since been replaced by “SCTE Measurement Recommended Practices for 
Cable Systems, Fourth Edition.” 
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Figure 88 - Second order distortion. 

As shown previously, the second order distortion products formed by a pair of carriers at frequency FA and FB 
respectively will fall at DC, 2FA, 2FB, FA + FB and at FA – FB. An examination of the frequency assignments 
of the CATV channels indicates that the vast majority of visual carriers are located at 0.25 MHz above an odd 
frequency (e.g., 55.25 MHz, 199.25 MHz, etc.). It can easily be shown that when two carriers produce second 
order distortion that falls on another channel, the distortion will typically fall at 1.25 MHz above or below the 
picture carrier of that channel (see Figure 88). The resulting distortion product has the effect of producing a 
beat (diagonal cross-hatching) in the picture of the [analog] channel on which the distortion falls, as shown in 
Figure 89. When these distortion products fall within the CATV band, a figure of merit is the ratio of the 
amplitude of this distortion to the amplitude of the carrier of the channel on which the distortion falls. This 
ratio, called carrier-to-discrete second order (C/DSO– and C/CSO+) is defined in two parts as (Staff, 1989) 
 

C DSO/ log− =






10 10

Carrier Power
DSO Power at Picture Carrier -1.25 MHz

                  (2.33)  

 

C DSO/ log+ =






10 10

Carrier Power
DSO Power at Picture Carrier +1.25 MHz

                 (2.34)  

 
and is measured in decibels (dB). 
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Figure 89 - Subjective effect of CSO on received picture quality; note the diagonal cross-

hatching in the image. 

Second order is a useful number for making comparisons between the performance of two or more devices. 
However, a more useful measurement for characterizing the subjective effects of distortion is carrier-to-
composite second order (C/CSO– and C/CSO+) which results from fully loading the device with carriers. 
(Staff, 1989) 

C CSO/ log− =






10 10

Carrier Power
Average CSO Power in a 30 kHz BW at P.  C.  -1.25 MHz

    (2.35)  

 

C CSO/ log+ =






10 10

Carrier Power
Average CSO Power in a 30 kHz BW at P.  C.  +1.25 MHz

   (2.36)  

 
Unfortunately, in the CATV literature, the terms CSO and CTB are used to refer to both the absolute 
distortion amplitude and the carrier-to-distortion ratio. In this discussion, separate terms will be used as 
defined above. 
 
In a standard frequency CATV system, the individual carriers are generated by a series of individual crystal-
controlled oscillators. These oscillators are therefore not phase locked, and vary slightly from the ideal 
frequencies of the picture carriers. As a consequence, the second order beats that ideally fall at 1.25 MHz 
above the picture carrier for channel 2, for example, in practice do not all fall at exactly 56.500000 MHz. The 
composite distortion manifests itself as a cluster of individual beats clustered around the ideal frequencies of 
56.5 MHz and 54.0 MHz. Similarly, the composite second order on all other channels consists of a cluster of 
beats grouped around the ideal second order frequencies. Hence the requirement for an average power 
measurement in a 30 kHz bandwidth in the definition. This characteristic of CSO greatly affects its 
perceptibility and hence the acceptable limits for this type of distortion. 
 
A similar situation exists for carrier-to-third order distortion (C/CTB) as defined by (Staff, 1989) 
 

C CTB/ log=






10 10

Carrier Power
Average CTB Power in a 30 kHz BW at P.  C

                 (2.37)  
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A simple examination of the frequencies of the standard frequency CATV carriers will show that third order 
distortion products that fall within the CATV band will fall at the picture carrier frequency of a channel as 
shown in Figure 90. 
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Figure 90 - Carrier-to-composite triple beat (C/CTB). 

Consequently, the CTB spectrum looks very much like the CSO spectrum except for its location. Because of 
this location, the subjective effect of CTB is low frequency noise (or streaking) in the video as shown in 
Figure 91. As with CSO, the CATV literature uses the term CTB interchangeably to refer to the absolute 
level of the distortion as well as the carrier-to-distortion ratio. 
 

 
Figure 91 - Subjective effect of CTB on received picture quality. 

An actual CTB measurement is shown in Figure 92. The value of C/CTB in this example is approximately 55 
dB. 
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Figure 92 - Analyzer display of CTB measurement. 

 Cascade effects 
The discussion so far has assumed that devices in CATV systems have mild nonlinearities. As a 
consequence, the distortion generated by any one device is small when compared with the overall system 
distortion goals. What is of concern, however, is how these small distortions add up throughout the system 
cascade to produce the end of line performance. 
 
For the purposes of analysis, it is assumed that any given device (amplifier) has a linear phase-versus-
frequency characteristic. Phase and delay are related by (Laboratories, 1971) 

D =
∂φ
∂ω

                                                                       (2.38)   

 
where D = delay, ϕ = phase and ω = frequency. Hence, linear phase means constant delay. 
 
In this context, phase is defined as the equivalent electrical phase length of the network, not the output phase 
minus the input phase. For example, consider a piece of coaxial cable that has a length, l, of 2.0 meters. 
Assume the cable has a velocity factor of 0.6667. Then at an operating frequency of 100 MHz, the cable has a 
phase length given by 

( ) ( )φ =
⋅

° = °
l f

c 0 6667
360 360

.
                                                    (2.39)  
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As television signals are extremely sensitive to delay distortion, the CATV system delay must be constant 
with frequency, and hence the assumption of linear phase-versus-frequency is valid (Grob, 1984).  
 

φ(ω) = mω + b

mα + b
mβ + b

mγ + b

α β γ
ω

 
Figure 93 - Linear phase-versus-frequency. 

Consider the case of two identical amplifiers separated by a length of cable with a constant delay as shown in 
Figure 93. The phase characteristic of the cable plus second amplifier will be given by 

 ( )φ ω ω= +m b                                                                  (2.40)  
 
where m is the slope of the phase-versus-frequency characteristic and b is a constant phase offset. For 
example, when a carrier at frequency α has zero phase at the output of the first amplifier, the phase of that 
carrier at the output of the second amplifier will be  

φ αα = +m b                                                                    (2.41)  
 
When two signals of the form 

( ) ( )cos ,cosα βt t                                                                 (2.42)  
 
are applied to the input of the first amplifier, a component proportional to 

( )( )cos α β+ t                                                                    (2.43)  
 
will appear at the output of the first amplifier resulting from the second order distortion. Note here that the 
phases of these signals have been chosen to be zero at the output of the first amplifier for simplicity’s sake. At 
the output of the second amplifier, the three signals will be proportional to 

( ) ( ) ( )( )cos ,cos , cosα φ β φ α β φα β α βt t A t+ + + + +                                  (2.44)  

 
where 
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( )α β α βφ α φ β φ α β=  m  +  b,  =  m  +  b,  =  m  +  b+ +                              (2.45)  
 
In the second amplifier, a second order distortion component is generated that is proportional to 

( )( )cos α β φ φα β+ t +   +                                                        (2.46)  

 
with  

( )α βφ φ α β +   =  m + +  2b                                                     (2.47)  
 
At the output of the second amplifier, the second order distortion generated in the first amplifier has a phase 
of m(α+β) + b. At the output of the second amplifier, the second order distortion generated in the second 
amplifier has a phase of m(α+β) + 2b. The difference in the phase of the second order products generated in 
the two amplifiers is given by b. As the value of b is not known a-priori and will vary from span to span 
within the system, second order distortion products will combine on a random phase (power) basis 
throughout the distribution plant. For a cascade of N identical amplifiers where N is large (typically N ≥ 10), 
all operating at the same output power levels and each having composite second order distortion of value 
CSO dB, the total composite second order distortion of the cascade will be given by 

total

CSO

i

N

CSO (dB) =  CSO  (N)10 10 1010
10

1
10log log







 = +

=
∑                             (2.48)  

 

( ) ( )C CSO C CSO Ntotal/ / log+ = + − 10 10                                         (2.49)  

 

( ) ( )C CSO C CSO Ntotal/ / log− = − − 10 10                                         (2.50)  
 
Note that this relationship only holds when N is large, and the devices are identical. If only a small number of 
devices are in cascade the dependence on the phase length of the transmission media separating the devices 
becomes significant. In such a case the assumption of power addition of the distortion no longer holds and the 
10log10 relationship falls apart.88 
 
A similar analysis can be done for third order distortion. Assume three carriers are applied to the first 
amplifier resulting in signals at the output of that amplifier that are proportional to 

( ) ( ) ( ) ( )( )cos ,cos ,cos , cosα β γ α β γt t t B t+ −                                        (2.51)  
 
where the fourth signal comprises a third order distortion product generated in that amplifier. At the output of 
the second amplifier they will have undergone phase shifts of ϕα, ϕβ, ϕγ and ϕα+β–γ respectively, where 

 
88 Editor’s Note: In the 1980s and 1990s some calculations of carrier-to-composite second order distortion ratio used 
15log10 to accommodate the CSO in short cascades “breathing” or varying in amplitude depending on when it was 
measured. The variation was a result of the phasors rotating around creating constructive and destructive 
interference of the individual second order products. Once there are enough distortion products things start to 
average out to power addition.  
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( )φ α β γα β γ+ − = + − +m b                                                        (2.52)  
 
There will also be a third order distortion product generated in the second amplifier that will be proportional 
to 

( )( )cos α β γ φ φ φα β γ+ - t +  +  -                                                 (2.53)  

 
and 

( )α β γφ φ φ α β γ+  -   =  m + - +  b                                                (2.54)  
 
Hence at the output of the second amplifier, the phase of the third order distortion product generated in the 
first amplifier and the phase of the third order distortion product generated in the second amplifier are the 
same. These two products will combine on an in-phase (voltage) basis. For a cascade of N identical 
amplifiers, all operating at the same output power levels and each having composite triple beat distortion of 
value CTB dB, the total composite triple beat distortion of the cascade will be given by 

( ) ( )CTB dB =  CTB Ntotal

CTB

i

N

20 10 2010
20

1
10log log







 = +

=
∑                            (2.55)  

 
and 

( ) ( )C CTB dB = CTB Ntotal/ log− 20 10                                             (2.56)  
 
Note that the results for cascaded third order distortion does not rely on the phase length of the transmission 
media between the devices. Therefore, this relationship holds regardless of the number of devices in cascade. 
 
By making use of either power addition or voltage addition and the rules presented earlier for the calculation 
of distortion as a function of operating level, it is possible to calculate the overall cascade distortion of a series 
of amplifiers even if these amplifiers are not operated at equivalent power levels. 
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 Error Performance Testing 
Confidence Level 

As mentioned in Section 29.7.1, among the factors that can affect BER measurements are the number of 
bits transmitted during the measurement, the duration of the measurement, and whether the bit errors are 
independent and identically distributed (IID). This section includes an overview and analysis of the 
aforementioned factors, written by Tom Kolze. Used with permission. 

 
Error Performance Testing Confidence Level 

 
Tom Kolze, Ph.D. 

Broadcom, Inc. 
 

 Introduction 
One of the primary figures of merit for digital communication systems is the error performance, and for 
many decades the predominant figure of merit for the error performance was the bit error ratio (BER). 
Historically a lot of emphasis has been placed on making reliable measurements of a communication 
system’s error performance, and this section presents a few of the practical “take-aways” while referring 
readers to references for a more rigorous treatment. 
 
Generally, a measurement of error performance, a “test,” is characterized by counting a number of “trials” 
and “errors,” for example, counting the total number of transmitted bits and the number of bit errors that 
occurred during the test. The number of errors is generally a random variable, but the ratio of bit errors to 
total bits typically converges for an increasingly larger number of transmitted bits.    
 
The greater the number of bits, the better the quality of the BER estimation. Ideally, an infinite number of 
bits will give a perfect estimate of error probability, but that’s simply not practical! So, how many bits are 
enough? 
 
The two primary considerations in a BER measurement, or test, are a) how accurately does the ratio of the 
number of bit errors to total bits compare with the “true” (long term) average for the system; and b) how 
much time does it take to make the measurement, which is also “how many bits have to be transmitted to 
get the reliable measurement”? The “confidence level” describes a measure of accuracy for the testing, 
and is given a brief overview in the following section.  
 

 Confidence level of a test  
In qualification testing a buyer is wanting to be assured that the system or product meets its requirements, 
so the buyer’s goal is to identify, and not accept, a product which fails to meet the requirements. Both the 
buyer and seller want to avoid unnecessarily long testing. Methodology has been developed to 
quantitatively describe the buyer’s goal, and define satisfactory testing which meets the goal.  
 
A buyer determines their acceptable amount of risk of “passing” a product which actually fails to meet the 
requirements; for example, a buyer may decide it is okay to accept a non-compliant product 5% of the 
time. Continuing with this example of allowing a PASS on 5% of non-compliant product, the 
methodology is to design a test to meet the buyer’s goal and acceptable risk: Any product that doesn’t 
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meet the requirements will be detected with a FAIL in the testing 95% of the time, or more. Equivalently, 
the non-compliant product may slide by, undetected as non-compliant, up to 5% of the time. Such a test is 
said to have a “95% confidence level.” With a qualifying test of 95% confidence level, the buyer is 
confident that a non-compliant product will be detected 95% of the time (or more).  
 
As an example to illustrate the concept, consider a modem which has a BER requirement of 10–8 or lower 
in a certain test environment (SNR, received power level, etc.). It can be shown that a qualifying test that 
has 3 ∗ 108 (that is, 300 million) transmitted bits, with “independent and identically distributed” (IID) bit 
errors, and operating at the spec BER amount of 10–8, yields a probability of no errors at all in the 300 
million transmitted bits, at 4.98%. This is just under 5%. Thus, this qualifying test for the modem which 
involves transmitting 300 million bits and requires no bit errors to obtain a PASS has a 95% confidence 
level. To explain, if the modem had a BER of just a little worse (higher) than 10–8, there would be AT 
LEAST a 95% chance of the modem having at least one bit error out of the 300 million, and thus 
FAILING. There is 95% confidence for the buyer to detect and weed out a non-compliant modem. 
 
Summarizing, the confidence level of a test is related to the buyer’s confidence of detecting a FAILING 
product. The risk of a non-compliant system actually PASSING the test, quantitatively, is 1 minus the 
stated confidence level (5% risk equals 1 minus 95%, where 95% is the confidence level in the example).  
 
It is worth mentioning that there are many qualifying tests, even in this specific example of a modem with 
a 10–8 BER requirement (in specified conditions), which have a 95% confidence level. For example, 
another such 95% confidence level test would be to transmit 1.06 billion bits (1.06 ∗ 109), and a PASS 
requires five or fewer bit errors. This test requires more than three times the number of transmitted bits as 
the test described previously (1.06 billion versus 300 million), but has the same 95% confidence level. A 
key difference is that five bit errors are allowed while still achieving a PASS in the longer test, whereas in 
the test with 300 million transmitted bits, the occurrence of any bit error will result in a FAIL.  
 
Finally, it is worth pointing out that a system that is precisely compliant with the specified BER, with no 
margin, will FAIL the test 95% of the time! This is not a great deal for the seller!  
 
In practice, the seller would either go to lengths to ensure that their products (modems in this example) 
have lots of margin compared to the 10–8 BER, or, if they could not ensure such margin (could not 
provide very much lower BER than the requirement), they would recognize that they needed a much 
longer qualifying test. With the much longer qualifying test, the 95% confidence level corresponds to a 
higher limit on the number of bit errors which would PASS. It is also the case that the qualifying limit for 
the number of bit errors that still passes ALSO corresponds to a higher BER average, as the test length 
gets longer. In the example, if the modem has an average BER of 3 ∗ 10–9, which is much better than the 
spec of 10–8, when the qualifying test is 1.06 ∗ 109 transmitted bits, the cable modem will incur five or 
fewer bit errors, and thus PASS, 90% of the time; however, this means that this satisfactory cable modem 
still FAILs 10% of the time. If the cable modem has an even lower average BER, 10–9, it will PASS the 
test with five or fewer bit errors 99.9% of the time.  
 
Once the buyer has determined the confidence level they desire for the qualifying test, the seller 
determines the test duration (or jointly the buyer and seller agree), with a large consideration being the 
expected margin for the product. A product performing vastly better than the requirement will allow 
shorter duration qualifying tests and still achieve a high PASS rate for the compliant product. 
 
In practice, a buyer and seller can agree to allow retesting in the event of FAILs, but the cases are very 
carefully monitored, recorded, and fully reported. Often the specific conditions allowing and executing 
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retesting are spelled out in the qualifying test procedure. Sometimes in the event of a FAIL, a review by 
buyer and seller is held to determine the next steps. 
 

 Rules of thumb and examples 
One rule of thumb used in an example in the previous section is that transmitting 3 times the reciprocal of 
the specified BER without an error gives 95% confidence level that the device or network meets the 
desired BER specification, when the bit errors are IID. If one wants 99% confidence level, the multiplier 
is 4.61 rather than 3. Note: These multipliers are derived from statistics involving the binomial 
distribution function and Poisson theorem, as demonstrated below.   
 
A critically important assumption in the rule of thumb, and the application of the binomial statistics, is 
that all the bit errors are “identically distributed and statistically independent”: the IID assumption. This 
means (for practical purposes) that if a bit error occurs in one of the transmitted bits, other bits (in 
particular bits “adjacent” in the bit stream) have no greater (or lesser) likelihood of being in error even 
with the presence of the observed bit error. This is a key assumption and we explore the impact when 
errors are not IID in Sections E.4 and E.5, but for now, note that the “independent bit errors” and 
“identically distributed bit errors” were assumed in the previous section pertaining to confidence level of 
“qualifying” tests. 
 
With the assumption of IID bit errors, if there is a specified requirement of no more than one bit error in 
X transmitted bits, on average, then a rule of thumb is that a test with 3 ∗ X transmitted bits, and requires 
NO bit errors in order to PASS, has a “95% confidence level that the system is at or better than the error 
performance requirement, which is BER less than or equal to 1/X.”  Similarly, another rule of thumb (also 
mentioned above) is that a measurement with 4.61 ∗ X transmitted bits, and NO bit errors to PASS, has a 
“99% confidence level that the system is at or better than the error performance requirement.”   
 
In general, any confidence level can be selected for a qualifying test (strictly upper bounded by 100%). 
With a BER requirement for no more than one bit error in X transmitted bits, on average, and a qualifying 
test requiring no bit errors to achieve a PASS, any confidence level less than 100% can be provided. To 
achieve a confidence level, Y, the number of transmitted bits, N, should be:  
 

N = [ –{ln(1 – Y)} ∗ X] number of transmitted bits; BER requirement is ≤ 1/X; 
confidence level Y; test limit to PASS is zero bit errors.  

 
Such a value for N provides a lower bound for designing the test and is tight for BER requirements of  
10–2 and smaller, and confidence levels of 95% and larger.  
 
Let’s say we want to ensure the BER at a modem which is specified at 1 ∗ 10–8 (1.0E–08), at a 95% 
confidence level. As mentioned previously, one such qualifying test with 95% confidence level requires 
transmitting 3 times the reciprocal of the specified BER without an error. Note that ln(1 – 0.95) is ln(0.05) 
which is –2.9957; thus N = 2.996 ∗ X, or we can conveniently round up (increasing the test duration 
without changing the PASS limit will increase the confidence level, so rounding up is “safe” for 
maintaining the 95% confidence level). Thus, for this example N = 3 ∗ X = 3 ∗ 108; this is the first rule of 
thumb qualifying test mentioned above. 
 
To satisfy the IID assumption on the bit errors, assume a modulation such as BPSK or QPSK, and no 
forward error correction (FEC) coding. These assumptions will be discussed in more detail in Section E.5; 
under AWGN and other ideal conditions, the bit errors with BPSK or QPSK are IID. 
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Calculate the reciprocal of the BER in question and multiply by a multiplier of 3: 
 

=
1

1 ∗ 10−8 ∗ 3 
 

=
1

0.00000001
∗ 3 

 
= 300,000,000 
 
For a 95% confidence level, the required number of bits to be transmitted error free is 300,000,000, which 
is the same as 3 ∗ 108 bits. 
 
The next question is how long it takes to transmit the desired number of bits. 
 
Assume QPSK at 10.72 Mbps: 
 

𝑇𝑇𝑠𝑠𝑚𝑚𝑝𝑝 (𝐿𝐿𝑝𝑝𝑝𝑝𝐿𝐿𝑠𝑠𝑑𝑑𝐿𝐿) =
3 ∗ 108𝑏𝑏𝑠𝑠𝑡𝑡𝐿𝐿

10.72 ∗ 106𝑏𝑏𝑠𝑠𝑡𝑡𝐿𝐿 𝑝𝑝𝑝𝑝𝑝𝑝 𝐿𝐿𝑝𝑝𝑝𝑝𝐿𝐿𝑠𝑠𝑑𝑑
 

 
𝑇𝑇𝑠𝑠𝑚𝑚𝑝𝑝 = 27.984 
 
Answer: The time to transmit 300,000,000 bits at 10.72 Mbps is 27.984 seconds. 
 
If the BER target is something more aggressive like 1∗10–10 (1.0E–10) at 99% confidence level (4.61 
multiplier), the required number of bits that must be transmitted error free is 
 

=
1

1 ∗ 10−10 ∗ 4.61 
 
= 46,100,000,000 
 
The minimum test time for QPSK at 10.72 Mbps is 
 

𝑇𝑇𝑠𝑠𝑚𝑚𝑝𝑝 (𝐿𝐿𝑝𝑝𝑝𝑝𝐿𝐿𝑠𝑠𝑑𝑑𝐿𝐿) =
4.61 ∗ 1010𝑏𝑏𝑠𝑠𝑡𝑡𝐿𝐿

10.72 ∗ 106𝑏𝑏𝑠𝑠𝑡𝑡𝐿𝐿 𝑝𝑝𝑝𝑝𝑝𝑝 𝐿𝐿𝑝𝑝𝑝𝑝𝐿𝐿𝑠𝑠𝑑𝑑
 

 
𝑇𝑇𝑠𝑠𝑚𝑚𝑝𝑝 = 4,300 
 
Answer: The time to transmit 46,100,000,000 bits at 10.72 Mbps is 4,300 seconds or 71 minutes 40 
seconds. 
 
Now consider a system using 256-QAM at the same symbol rate. With 256-QAM there are eight bits per 
QAM symbol. At this point the necessary IID assumptions for application of the confidence level for 
qualifying tests become problematic. Even if the QAM symbols are Gray coded, and there is no FEC, and 
even with the very low error rates (such as 10–8 BER), it can be shown the bits are not IID. The bit errors 
are not identically distributed and the bit errors are not independent, even with the Gray coding.  
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Still, with the Gray coding, and no FEC, and a fairly low BER requirement (even 10–2 would suffice), the 
confidence level analysis that holds with IID can be applied here for practical purposes, but even this has 
a subtlety. With the Gray coding, each of the four bit positions of a 256-QAM symbol rail has half the 
probability of error of the preceding bit position, with the LSB having the largest probability of error. 
Thus, the bit errors are not identically distributed. Another violation of the IID assumption is the 
independence of the bit errors; even with the Gray coding, and low overall error ratios, it is extremely 
unlikely to have more than one bit error per “rail” in a 256-QAM symbol which is Gray coded, compared 
to the probability of one error. In fact, that is the entire point of Gray coding. Thus, of the four bits per rail 
per 256-QAM symbol, the probability of two or more of the four bits being in error is negligible. So, this 
is the subtlety: Given a bit error in one of the four bits of a QAM symbol rail, the other three bits are 
extremely unlikely to be in error (much less than the average BER). This is a strong violation of the 
independence of bit errors requirement! However, it can be shown that the effect on the confidence level 
“cancels” in a fashion, and the standard analysis with IID bit errors can still be applied even with this 
strong bit error dependence (in this case, no errors “near” a given bit error). While these factors are 
violations of the conditions for applicability of the confidence level analysis, it can be shown (beyond the 
scope here) that the confidence level results will still apply for the Gray coded 256-QAM close enough 
for practice. 
 
Assume 256-QAM at 42.88 Mbps: 
 

𝑇𝑇𝑠𝑠𝑚𝑚𝑝𝑝 (𝐿𝐿𝑝𝑝𝑝𝑝𝐿𝐿𝑠𝑠𝑑𝑑𝐿𝐿) =
3 ∗ 108𝑏𝑏𝑠𝑠𝑡𝑡𝐿𝐿

42.88 ∗ 106𝑏𝑏𝑠𝑠𝑡𝑡𝐿𝐿 𝑝𝑝𝑝𝑝𝑝𝑝 𝐿𝐿𝑝𝑝𝑝𝑝𝐿𝐿𝑠𝑠𝑑𝑑
 

 
𝑇𝑇𝑠𝑠𝑚𝑚𝑝𝑝 = 6.996 
 
Answer: The time to transmit 300,000,000 bits at 42.88 Mbps is 6.996 seconds. 
 
If the BER target is something more aggressive like 1∗10–10 (1.0E–10) at 99% confidence level (4.61 
multiplier), the required number of bits that must be transmitted error free is 
 

=
1

1 ∗ 10−10 ∗ 4.61 
 
= 46,100,000,000 
 
The minimum test time for 256-QAM at 42.88 Mbps is 
 

𝑇𝑇𝑠𝑠𝑚𝑚𝑝𝑝 (𝐿𝐿𝑝𝑝𝑝𝑝𝐿𝐿𝑠𝑠𝑑𝑑𝐿𝐿) =
4.61 ∗ 1010𝑏𝑏𝑠𝑠𝑡𝑡𝐿𝐿

42.88 ∗ 106𝑏𝑏𝑠𝑠𝑡𝑡𝐿𝐿 𝑝𝑝𝑝𝑝𝑝𝑝 𝐿𝐿𝑝𝑝𝑝𝑝𝐿𝐿𝑠𝑠𝑑𝑑
 

 
𝑇𝑇𝑠𝑠𝑚𝑚𝑝𝑝 = 1,075 
 
Answer: The time to transmit 46,100,000,000 bits at 42.88 Mbps is 1,075 seconds or 17.9 minutes. 
 

 FEC and M-ary modulation  
BER testing, and application of the confidence level to determine qualification testing, was 
straightforward for decades. However, with the advent of M-ary constellations, and in particular the 
application of FEC, the accurate determination of a BER test’s confidence level can be unwieldy. [See 
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(Atul Shah and Thomas Kolze)]. And without an accurate determination of the confidence level, for 
example, ignoring the dependence of the bit error occurrences (incorrectly assuming bit error 
independence) can lead to inadequate qualification testing.  
 
In one example, with a fairly modest FEC by today’s standards, neglecting the bit error dependence 
would lead to the qualification testing providing a confidence level of 79% when the intention was 95%. 
See (Atul Shah and Thomas Kolze). This is a stark difference; neglecting the bit error dependence of the 
system would cause the confidence level of the qualification testing (21% of non-compliant product could 
PASS erroneously) to fall far short of the buyer’s goal (the 95% identification of a non-compliant 
system). Including the effect of the bit error dependence showed that to achieve the 95% confidence level, 
the test time (the number of transmitted bits) for this system had to be increased by 68% compared to the 
number of transmitted bits if the independence had been incorrectly assumed.  
 
The modulation and FEC in the system in Reference (Atul Shah and Thomas Kolze) have much less bit 
error dependence than the more recently developed communication systems, such as DOCSIS 3.1. In the 
DOCSIS 3.1 downstream, for example, codewords can be as large as 16,200 bits, including the parity 
bits, or as large as 14,232 bits after decoding. 
 
The effect of the dependence of bit error occurrences upon confidence level of qualification testing is 
problematic with even modest FEC. See (Jeruchim, Michel C.). For more recent communication systems, 
such as DOCSIS 3.1, with powerful FEC, and especially with the extremely long codewords compared to 
a generation ago (e.g., DOCSIS 1.0, which itself was quite an achievement at its onset), even a tight 
approximation of confidence level in BER testing would likely be unattainable. And, more to the point, 
hardly worth the heroic effort necessary.  
 
Due to the extreme bit error dependence in modern communication systems, owing to the powerful FEC 
techniques employed, many recently developed communications systems have moved away from 
specifying BER. There is impact of that dependence on the supported applications of the links, in addition 
to impacting the error performance testing (confidence level). For example, what good does it do to know 
a BER when the bit errors, which may be rare, are bursted out in spans of a few thousand bits (highly 
correlated bit error occurrences), when the ultimate goal is to determine an Ethernet packet error ratio 
(PER)? To calculate the Ethernet packet error ratio from a BER measurement, or specification, requires 
knowing fairly precisely the burstiness or distribution of bit errors, i.e., the correlation or dependence of 
bit error events; thus, a daunting further analysis would be needed to determine the Ethernet performance 
even knowing the BER performance! For these reasons, in addition to the entire issue of uncertainty 
regarding the confidence level of the testing, DOCSIS moved away from exclusively specifying BER over 
a decade ago, for example, in DOCSIS 3.0. [Reference (PHYv3.0); I01 was in 2006.] 
 
DOCSIS downstream error performance was originally specified as a BER (DOCSIS 1.0 and forward), 
but within a few years DOCSIS developed a codeword error ratio (CER) performance requirement, and 
vendors were allowed to use either. The determination of an “equivalent” codeword error performance 
with the BER requirement was based on measurements taken by cable modem vendors at the time, not by 
analysis or simulation. In DOCSIS 3.1 the downstream link performance is specified exclusively via 
Ethernet packet error ratio. [Reference (PHYv3.1); I01 was in 2013.]  
 
For the DOCSIS 3.0 specification PHYv3.0, the downstream SC-QAM ITU-T J.83B performance 
specifies the original DOCSIS BER of 10–8 and is accompanied with the CER requirement of 9 ∗ 10–7. 
Note that BER = CER ∗ (bit errors per errored codeword/total bits per codeword), and that there are 122 ∗ 
7 = 854 bits per codeword after decoding the Reed-Solomon outer codewords of the concatenated coding 
scheme. The testing program for setting a CER equivalent to the BER requirement found there was an 
average of about 9 ∗ 10–7 errored Reed-Solomon codewords when the BER was close to threshold, just 
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meeting the requirement at around 10–8. The CER value corresponding to the BER threshold performance 
was obtained by averaging the CER results from many vendors, each cable modem operating where it 
was just achieving 10–8 BER. The average bit errors per errored codeword can be obtained from this 
testing program, and the relationship between CER and BER, such that the average bit errors per errored 
codeword = (BER/CER) ∗ (total bits per codeword) = ((10–8)/(9 ∗ 10–7)) ∗ (854) = (85.4/9) = 9.5 bits. 
 
The FEC for ITU-T-J.83B has an inner convolutional code and an outer Reed-Solomon code, with an 
interleaver in-between. Even in AWGN with no burst noise or other impairments, there are bursted error 
events at the output of the convolutional decoder; the de-interleaver will spread the errors of a single burst 
error event across multiple Reed-Solomon codewords. In AWGN, it will generally take multiple 
convolutional decoding burst error events to cause even a single Reed-Solomon decoding failure, but this 
also means that the Reed-Solomon codeword errors are not IID. When there are sufficient inner code 
errors to cause the Reed-Solomon decoder to fail, there are errors from those same convolutional 
decoding error events spread into adjacent Reed-Solomon codewords, too. The impact of the correlation 
of Reed-Solomon codeword failures on confidence interval will be deferred for another day. However, the 
DOCSIS 3.1 OFDM FEC is examined below. Note that even if the DOCSIS requirements remained 
solely in terms of the BER, the correlation of the bit errors at the output of the Reed-Solomon decoder 
(due to multiple bit errors per codeword error), and the correlated decoder error events, both serve to 
increase the required number of bits to achieve a given confidence level compared to IID bit errors. 
 
As an illustration of the impact of M-ary modulation, and powerful FEC, on the confidence level, the 
DOCSIS 3.1 OFDM PHY layer is examined.  
 
While the performance requirements of DOCSIS 3.1 are in terms of Ethernet packet errors, we consider 
the codeword errors, make a few assumptions, and see what impact correlated bit errors may have on the 
confidence level of the testing.  
 

 Exploring confidence level for DOCSIS 3.1 OFDM FEC testing 

The DOCSIS 3.1 OFDM codewords can have as many as 14,232 bits, and let’s assume there are 70 bits in 
error when a codeword is decoded with an error (i.e., fails to decode). In actuality, the number of bit 
errors that occur when a codeword fails to decode is variable and can cover a large range, but to illustrate 
the impact of correlated bit errors, simplifying assumptions are used here. In the errored codewords we 
see that the bit errors per errored codeword divided by the total bits per codeword is 70/14,232 which is 
(roughly) 1/200.  
 
When there is an average BER of 10–8, and the codewords contain the bit errors as described above (70 bit 
errors in each errored codeword, out of the 14,232 bits), this dictates that the CER is (roughly) 2 ∗ 10–6. 
This is because BER = CER ∗ (bit errors per errored codeword/total bits per codeword), where the ratio in 
parentheses is 1/200 (by our assumption for this example).  
 
Let’s assume that in AWGN that codeword errors are IID. Then a confidence level of 95% with ZERO 
errors for a PASS can be constructed based on the 2 ∗ 10–6 CER which would correspond to the system 
BER when operating at the BER specification of 10–8 (in this example we are “allowing” or presuming a 
BER specification, though in DOCSIS 3.1 OFDM there isn’t such a specification). The number of 
codewords that must be tested to achieve the desired confidence level is 
 

𝑁𝑁_𝑝𝑝𝐿𝐿𝑑𝑑𝑝𝑝𝑤𝑤𝐿𝐿𝑝𝑝𝑑𝑑𝐿𝐿 = 3 ∗ (1 𝐶𝐶𝐸𝐸𝑅𝑅⁄ ) = 3 (2 ∗ 10−6)⁄ = 1.5 ∗ 106 
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Let’s compare the number of bits in this test, compared to the number of bits if we (incorrectly) assumed 
the bit errors were IID and designed a qualifying BER test. Recall that in this case we determined that 3 ∗ 
108 transmitted bits would be needed. But with the correlated error events and the large codewords, we 
actually need 1.5 ∗ 106 codewords to achieve the confidence level desired, and this requires 1.5 ∗ 106 ∗ 
14,232 bits, which is more than 2 ∗ 1010 transmitted bits; this is more than 60 times the number of bits 
determined with the IID assumption, neglecting the correlated bit errors. 
 

 Exploring confidence level for DOCSIS 3.1 downstream Ethernet PER 
performance specification 

It should be noted that the DOCSIS 3.1 modem error performance for OFDM is specified for 1500-byte 
Ethernet packets, rather than codewords, and the requirement is 10–6. The bits in full length OFDM 
codewords are distributed into two or even three Ethernet 1500-byte packets, since they are longer than 
the specified Ethernet packets (14,232 bits compared to 12,000 bits). A 1500-byte Ethernet packet 
comprises about 84.3% of a full length codeword, so (assuming randomized alignments occur) two 
Ethernet packets contain bits from the same codeword in 81.4% ([84.3 – 15.7]/84.3 = 81.4) of the 
codewords, and in the remaining 18.6% (15.7/84.3 = 18.6) of the codewords the bits are distributed 
among three of the Ethernet packets. When a codeword error occurs, there is always at least one Ethernet 
packet in error that occurs, but there could be two or even three Ethernet packet errors arising from a 
single codeword error. With full length OFDM codewords and 1500-byte Ethernet packets, the Ethernet 
packet errors are not IID. Even with the codeword errors being IID, the Ethernet packet errors often occur 
in pairs or even triplets. It is possible that all the codeword errored bits concentrate in one Ethernet 
packet, but with an average of 70 bit errors per errored codeword (assumed for the example), the 
likelihood is very small (less than 2 ∗ 10–5) for none of those bit errors falling in the 2,232 bits (or more) 
outside the Ethernet packet containing the most bits in the codeword. Thus, when there is an Ethernet 
packet error, there is greater than 0.99998 probability that one or both of the two adjacent Ethernet 
packets will be in error, too (a pair or a triplet of errors out of three consecutive packets).  
 
After a fair amount of calculation, it can be shown that under the assumptions above there is an average of 
2.15 Ethernet packet errors when a full length codeword error occurs. For the case where the number of 
codeword errors is very small (such as our area of interest with the CER less than 10–5), we can neglect 
the occurrences of consecutive codeword errors (for the accuracy we are using), so the ratio of the number 
of Ethernet packet errors to codeword errors remains at the value 2.15.  
 
The ratio of the number of Ethernet packets to codewords is 14,232/12,000 in a long-term interval of time 
of continuous transmission. Using the ratios of Ethernet packets to codewords, and the ratio of the 
number of errors of the two, we see the relationship 
 

𝑃𝑃𝐸𝐸𝑅𝑅 𝐶𝐶𝐸𝐸𝑅𝑅 = 2.15 ∗ (12,000 14,232⁄ )⁄ = 1.8 
 
Let’s examine the number of 1500-byte Ethernet packets that need to be transmitted for a confidence level 
of 95% with ZERO errors for a PASS. If we were to assume that the Ethernet packet errors are IID, since 
the requirement is 10-6 PER, then the rule of thumb dictates that the number of packets that must be 
transmitted to achieve the desired confidence level is 
 

𝑁𝑁_𝑝𝑝𝑎𝑎𝑝𝑝𝑘𝑘𝑝𝑝𝑡𝑡𝐿𝐿 = 3 ∗ (1 𝑃𝑃𝐸𝐸𝑅𝑅⁄ ) = 3 (10−6)⁄ = 3 ∗ 106 
 
However, we have seen that the Ethernet packet errors usually occur in pairs or even triplets, owing to a 
single FEC codeword error. The Ethernet packet errors are not IID, and in fact more closely fit a model of 
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occurring in pairs (the average number of Ethernet packet errors arising from a single codeword error was 
2.15). We will see in Section E.5.4 that such error behavior, due to the correlated error events (errors are 
not IID), with errors occurring in pairs, results in a doubling of the number of trials that have to be tested 
to achieve the same confidence level as with IID errors. Thus, in DOCSIS 3.1 OFDM, when testing 
Ethernet packets with the requirement of 10-6 PER, about 2 ∗ (3 ∗ 106) or 6 ∗ 106 transmitted packets are 
needed for a confidence level of 95% with ZERO errors for a PASS. Since these packets are 1500-byte 
Ethernet packets, this means the testing involves (1500 ∗ 8) ∗ 6 ∗ 106 bits, which is 7.2 ∗ 1010 bits.  
 
This result (7.2 ∗ 1010 bits) is more than 3.5 times the number of transmitted bits determined in Section 
E.4.1 for the corresponding 95% confidence level test based on CER. The difference is attributable to the 
fact that the CER performance target in Section E.4.1 is about 3.5 times larger than the CER associated 
with the Ethernet PER requirement. In Section E.4.1 the CER target is 2 ∗ 10-6, while in this section the 
Ethernet PER performance target equates to a CER performance of 0.6 ∗ 10-6. That ratio of roughly 3.5 
more bits for the same confidence level, derived by applying analysis to adjust (increase) the testing due 
to the dependent errors of the Ethernet packets, is entirely attributable to the performance targets of 
Ethernet PER (10-6) and BER (10-8) corresponding to different codeword error ratios. Properly accounting 
for error dependence in the Ethernet packets (shown in this section) would provide the same result for the 
number of transmitted bit errors as derived in testing the codeword errors, which are independent 
(previous section), if the CER target is the same in both cases. The reason the CER targets of the two 
sections are different is because Section E.4.1 assumes a BER requirement of 10-8 as a starting point in 
that section’s analysis, and that does not correspond to the DOCSIS 3.1 OFDM Ethernet PER 
requirement, which is roughly 3.5 times more demanding, as we have just seen. 
  

 Relating BER, Ethernet PER, and FEC codeword CER in DOCSIS 3.1 OFDM 

It is worth mention that FEC statistics are available via DOCSIS 3.1 proactive network maintenance 
(PNM) tools and are often used by cable technicians and network maintenance operations personnel, 
rather than the Ethernet PER. A CER of 10-6 is often used as the ad hoc performance requirement or goal, 
although the DOCSIS 3.1 downstream performance requirement is officially 10-6 for the Ethernet PER 
and is not in terms of the FEC CER. The BER is not available to technicians or network operations 
personnel in DOCSIS 3.1 OFDM at all.  
 
If we had chosen a value of 140 bit errors per errored codeword in the example in Section E.4.1, then the 
CER corresponding to a BER of 10-8 would be 10-6, instead of 2 ∗ 10-6 which arose from 70 bit errors per 
errored codeword.  
 
We saw in the Section E.4.2 that with full length codewords the CER is about 1/1.8 of the Ethernet PER. 
Though not discussed in this Appendix, for shorter FEC codewords the number of Ethernet packet errors 
to codeword errors reduces to 1, while the ratio of total codewords to total Ethernet packets increases 
from less than 1 to greater than 2 for increasingly shorter codewords. The result is that the Ethernet PER 
remains generally in the neighborhood of 2 ∗ CER.  
 
Thus, we have seen that whether the DOCSIS 3.1 OFDM downstream performance is targeted at 10-8 
BER or 10-6 Ethernet PER (the actual DOCSIS requirement), the corresponding FEC performance is in 
the range of 2 ∗ 10-6 to (1/2) ∗ 10-6, respectively. Also, in practice the CER versus SNR performance 
difference between CER of (1/2) ∗ 10-6 and 2 ∗ 10-6 is practically negligible (in the neighborhood of 
0.1 dB). This is why all three descriptions of the DOCSIS 3.1 target performance can be found in 
literature (10-8 BER, 10-6 Ethernet PER, and 10-6 FEC CER). 
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 Analysis 
This section includes calculation details of some of the computations in the previous section. 
 

 Exploring Confidence Level for tests with test limit of ZERO errors required 
to PASS 

Recall: 
 
In general, any confidence level can be selected for a qualifying test (upper bounded by 100%). With a 
BER requirement for no more than one bit error in X transmitted bits, on average, and a qualifying test 
requiring no bit errors to achieve a PASS, any confidence level less than 100% can be provided. To 
achieve a confidence level, Y, the number of transmitted bits, N, should be:  
 

𝑁𝑁 = [−(ln(1 − 𝑌𝑌)) ∗ 𝑋𝑋] number of transmitted bits; BER requirement is ≤ 1/X; 
confidence level Y; test limit to PASS is zero bit errors.  

 
IID assumption, of course. 
 
Let’s derive the formula. 
 
The binomial distribution provides  
 
p = probability of single trial failure, e.g., probability of bit error  
q = 1 – p = probability of trial success, e.g., probability of correct bit 
Y = confidence level desired 
 
[Note that in the formula in the previous pages, and copied above, X = 1/p since it was assumed there is 1 
error in X trials on average.] 
 
The binomial distribution has the probability of each number of bit errors, with N trials, given by 
expanding: 
 

(𝐸𝐸 + 𝑝𝑝𝑒𝑒)𝑁𝑁 = 𝐸𝐸𝑁𝑁 + 𝑁𝑁 ∗ �𝐸𝐸(𝑁𝑁−1)� ∗ 𝑝𝑝 ∗ 𝑒𝑒 + (𝑁𝑁(𝑁𝑁 − 1) 2⁄ ) ∗ �𝐸𝐸(𝑁𝑁−2)� ∗ (𝑝𝑝2) ∗ 𝑒𝑒2 + ⋯ 
 
The coefficient of xn is the probability of n errors in the N trials. 
 
Note that the “little” x in the binomial expansion giving the binomial PDF is NOT at all related to the 
uppercase X which was used as the reciprocal of the single-trial error probability. 
 
The probability of ZERO errors is given by the first term: 
 
Probability of zero errors = 𝐸𝐸𝑁𝑁 = (1 − 𝑝𝑝)𝑁𝑁 
 
For a confidence level of Y = 95%, we want 1 – Y = probability of ZERO errors.  
 
This provides 1 – Y = (1 – p)N, and we have Y and p and want to solve for N. 
 
Taking the natural log of both sides and multiplying through by –1: − ln(1 − 𝑌𝑌) = 𝑁𝑁 ∗ 𝑙𝑙𝑠𝑠(1 (1 − 𝑝𝑝)⁄ ) 
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Rearranging to solve for N: 
 

𝑁𝑁 = − ln(1 − 𝑌𝑌)  ∗ �
1

ln(1 (1 − 𝑝𝑝)⁄ )� 

 
Then factoring in a p/p term: 
 

𝑁𝑁 = − ln(1 − 𝑌𝑌) ∗ (𝑝𝑝 𝑝𝑝⁄ ) ∗ �
1

ln(1 (1 − 𝑝𝑝)⁄ )� = − ln(1 − 𝑌𝑌) ∗ (1 𝑝𝑝⁄ ) ∗ �
𝑝𝑝

ln(1 (1 − 𝑝𝑝)⁄ )� 

 
It will be shown that the term � 𝑐𝑐

ln(1 (1−𝑐𝑐)⁄ )
� is less than 1, but approaches 1 as p gets small (as p 

approaches 0). 
 
Thus, letting 𝑁𝑁 = − ln(1 − 𝑌𝑌) ∗ (1 𝑝𝑝⁄ ) provides that 𝑁𝑁 > − ln(1 − 𝑌𝑌) ∗ (1 𝑝𝑝⁄ ) ∗ � 𝑐𝑐

𝑡𝑡𝑖𝑖(1 (1−𝑐𝑐)⁄ )
� , so setting 

N equal to the less complicated formula will provide more trials than necessary, but sufficient to yield the 
desired confidence level. The fact that � 𝑐𝑐

ln(1 (1−𝑐𝑐)⁄ )
� approaches 1 for small p provides that setting N equal 

to the less complicated formula will cause little additional testing.  
 
It can be shown that the Taylor series expansion of the reciprocal of � 𝑐𝑐

ln(1 (1−𝑐𝑐)⁄ )
�  , is  

 
(1 𝑝𝑝⁄ ) ∗ 𝑙𝑙𝑠𝑠(1 (1 − 𝑝𝑝)⁄ ) = 1 + 𝑝𝑝 2 + (𝑝𝑝2) 3⁄⁄ + (𝑝𝑝3) 4⁄ + (𝑝𝑝4) 5 + ⋯ > 1⁄  

 
For p = 0.01 or less, the reduced term is within 1 percent of unity (well approximated by 1 + p/2, so of 
course less than 1 + p), and calculating N using the simplified formula yields less than 1 percent 
additional testing compared to an exact computation of the number of trials for the Y confidence level.  
 
So, for confidence level Y, and probability of single-trial error of p, the number of trials, N, when PASS 
requires ZERO errors, is bounded by: 
 

𝑁𝑁 = − ln(1 − 𝑌𝑌) ∗ (1 𝑝𝑝⁄ ) 
 

 Binomial Distribution basics 

With IID single-trial errors, the mean number of errors in N trials is Np. 
The standard deviation of the number of errors is 
 

�(𝑁𝑁𝑝𝑝𝐸𝐸) = ��𝑁𝑁𝑝𝑝(1 − 𝑝𝑝)� 

 

For small values of p, such as 10–4 and lower, ��𝑁𝑁𝑝𝑝(1 − 𝑝𝑝)� ≅ �(𝑁𝑁𝑝𝑝), is within 1 percent. 
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 Gray coded SC-QAM 

With Gray coding and square SC-QAM constellations, each rail contains half the bits of the SC-QAM 
symbol, and in AWGN each rail (I and Q) has independent errors.  
 
With Gray coding, when there is a rail error, and the symbol error probability is small (less than 1 percent 
for example), the probability of more than one bit error when there is a rail error is much smaller than if 
the bit errors were independent. The Gray coding provides that crossing a single decision boundary will 
always result in only one bit error, and crossing two symbol boundaries is much less than crossing a 
single boundary (three times the distance for the noise to cover, or about 9.5 dB higher “effective” SNR). 
 
With Gray coded 256-QAM, there are four bits per rail. If the probability of a rail error is p_rail, the 
probability of symbol error is 1 – (1 – p_rail)2 = 2 ∗ p_rail – p_rail2. 
 
As long as the p_rail is less than 1 percent, the following approximations hold well: 
 
The probability of MSB error is p_msb = (1/15) ∗ p_rail. 
The probability of the second MSB error is p_2sb = 2 ∗ p_msb = (2/15) ∗ p_rail. 
The probability of the third MSB error is p_3sb = 2 ∗ p_2sb = (4/15) ∗ p_rail. 
The probability of the LSB error is p_lsb = 2 ∗ p_3sb = (8/15) ∗ p_rail. 
 
The above are the probabilities of error when only one decision boundary is “crossed” by the noise. 
 
For two bit errors to occur in a rail error with Gray coding requires the noise crossing two decision 
boundaries, as mentioned. For example, if the probability of a rail error is about 1 percent, 0.01, the 
probability of crossing two decision boundaries is less than 10–14.  
 
When the probability of a rail error is about 10 percent, the probability of crossing three decision 
boundaries is about 10–6. 
 
The probability of noise crossing more than one decision boundary is far less than the square of the 
probability of crossing one boundary. This is important because of the independence property. 
 
For example, for independence of bit errors in the LSB and 3sb requires p_lsb ∗ p_3sb = probability of 
both bits in error. The left-hand side is (32/225) ∗ p_rail2, and the right-hand side is << p_rail2. Thus, we 
know that the two bit positions do not have independent error events. In this case of dependence, or 
correlated bit errors, we have the situation where having one bit in error means the proximity bits are 
NOT in error. We will look at other cases where a bit error occurrence means other bit errors are more 
likely, not less likely as in this Gray coded situation. 
 
Accepting these probabilities above, let’s examine the confidence level for BER testing with Gray coded 
256-QAM.  
 
First, let’s examine the probability of a bit error, not just the bit error of a specific bit in the constellation 
rail. Each rail trial contains four bits, and we know that with low error probabilities (less than 1 percent), 
there is at most one bit error of the four due to the Gray coding (for all practical purposes). For each rail 
error there is one bit error, and four bits total; thus p_bit = (1/4) ∗ p_rail. This is a key result in examining 
the confidence level of the testing. 
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We see that the If we want to have a confidence level of 95% and a test limit of ZERO errors required for 
PASS, the rail errors are independent and we construct the test to see how many “rail trials” need to be 
transmitted.  
 
If the spec is for p_bit = 10–8, we have seen that N = 3 ∗ 108 bits with IID bits. 
 
With 256-QAM Gray coding and p_bit = 10–8 as the spec, that means the spec corresponds to 
p_rail = 4 ∗ 10–8. The 95% confidence level with ZERO error test limit to PASS means we need 
N = 3/(4 ∗ 10–8) transmitted rails which means N = 0.75 ∗ 108 rails transmitted. But this equates to the 
N = 3 ∗ 108 transmitted bits which is needed for the 95% confidence level with IID bit errors. 
 
So, in THIS case, with Gray coding, the confidence level for the BER testing, with ZERO errors required 
to PASS, results in the same number of transmitted bits as with IID bit errors, even though the bit errors 
are not independent, and very decidedly so.  
 
The same thing happens for BER testing with Gray coded SC-QAM for PASS test limits which are non-
zero. This isn’t a proof, but that this occurs with Gray coding can be justified by examining the mean and 
standard deviation of the testing in terms of bits and also for number of rails. With N rails transmitted, the 
average number of rails received in error will be N ∗ p_rail, and the standard deviation is  
 

�[𝑁𝑁 ∗ 𝑝𝑝_𝑝𝑝𝑎𝑎𝑠𝑠𝑙𝑙 ∗ (1 − 𝑝𝑝_𝑝𝑝𝑎𝑎𝑠𝑠𝑙𝑙)] 
 

Looking at the testing in terms of the bits, there are 4N bits transmitted, and the probability of bit error is 
(1/4)p_rail. Thus, the mean for the number of bit errors is 
 

(4𝑁𝑁) ∗ (𝑝𝑝_𝑏𝑏𝑠𝑠𝑡𝑡) = (4𝑁𝑁) ∗ (𝑝𝑝_𝑝𝑝𝑎𝑎𝑠𝑠𝑙𝑙 4⁄ ) = 𝑁𝑁 ∗ 𝑝𝑝_𝑝𝑝𝑎𝑎𝑠𝑠𝑙𝑙 
 
The mean number of errors is the same for the test with Gray coded SC-QAM as with a bit stream which 
was IID with the same bit error probability, which of course we knew it had to be.  
 
Examining the standard deviation for the number of errors is slightly different, though!  
 
The standard deviation of the number of rails in error in the Gray coded SC-QAM case is given as  
�[𝑁𝑁 ∗ 𝑝𝑝_𝑝𝑝𝑎𝑎𝑠𝑠𝑙𝑙 ∗ (1 − 𝑝𝑝_𝑝𝑝𝑎𝑎𝑠𝑠𝑙𝑙)] (as above). If we look at a bit stream with IID with the same mean error 
with the Gray coding, we see that the standard deviation is 
 

��4𝑁𝑁 ∗ �
𝑝𝑝_𝑝𝑝𝑎𝑎𝑠𝑠𝑙𝑙

4
� ∗ �1 −

𝑝𝑝_𝑝𝑝𝑎𝑎𝑠𝑠𝑙𝑙
4

�� 

 
This simplifies to 
 

��𝑁𝑁 ∗ 𝑝𝑝_𝑝𝑝𝑎𝑎𝑠𝑠𝑙𝑙 ∗ �1 −
𝑝𝑝_𝑝𝑝𝑎𝑎𝑠𝑠𝑙𝑙

4
�� 

 
This is NOT the same as with the SC-QAM Gray coded standard deviation!  
 
However, for even modestly low probability of bit error or rail error, the terms are only negligibly 
different, since the difference involves factors which are so close to 1. 
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The cases of a) repeated errors, as opposed to b) the above case where an error means adjacent bits are not 
in error, behave very differently in regard to the standard deviation of the number of bit errors in N 
transmitted bits: 
 
a) with one error indicating the adjacent bits are not in error (as in Gray coded SC-QAM), the standard 
deviation of the number of bit errors in N transmitted bits is similar to when the bit errors are IID, 
although they are not IID; 
 
b) when errors occur in pairs (or larger multiples), we will see in the next section the standard deviation of 
the number of bit errors in N transmitted bits is much larger than when the N bits are IID. This is explored 
in the following sections. 
 

 Correlated error events 

We have examined testing and confidence level with the IID assumption, and we have examined Gray 
coded constellations and seen bit errors that are not IID and examined the impact on confidence testing. It 
is instructive to examine a case which is superficially constructed but provides insight into relevant 
examples.  
 
A useful construction is to consider trials which always consist of a pair of transmitted bits, and both bits 
are received correctly or both bits are received in error. Let D = number of trials, and they are IID. Let pt 
be the probability of a trial error, and qt = 1 – pt is the probability of a trial being correct. We know that in 
D trials the average number of errors will be D ∗ pt, and the standard deviation of the number of errors in 
D trials will be the square root of D ∗ pt ∗ qt. We have seen for a 95% confidence level test, with the 
PASS criterion being zero errors, we solve 0.05 = (1 – pt)D, for D, and that we find D = 3 ∗ (pt). 
 
Now, let’s examine this test, with significant and straightforward correlated bit errors, and see the impact 
of the correlation on the confidence level in terms of testing the bit errors.  
 
First, we can that in the case of the “zero errors for a PASS” test design, the same testing when looking at 
the independent trials D applies when counting the number of transmitted bits and number of bit errors, 
because “0 errors” is the same whether looking at the trials or counting bits. So, to obtain the same 95% 
confidence level with zero bit errors as the PASS, the number of transmitted bits has to be 2 ∗ (3 ∗ p). 
This is twice the number of bits that have to be transmitted if the bit errors themselves are IID; the impact 
of the correlated bit errors on the required number of bits in the testing is not surprising, but it is good to 
justify it rigorously. 
 
The impact of the correlation of bit errors in this example can be formalized rigorously for tests other than 
those with “0 to PASS” criterion. With N being the number of transmitted bits, we see N = 2 ∗ D. It is 
straightforward to show that the probability of bit error, p, is given by p = pt. If d is the number of trials of 
D that are errored, this means that the number of bit errors, b, is given by b = 2 ∗ d. The average value of 
b is 2 times the average value of d which is 2 ∗ D ∗ pt but this is also N ∗ p. This is the same formula for 
the average of b as if it were binomially distributed and IID, but it is not. 
 
The probability of the values of d, from 0 to D, is given by the binomial distribution, and these binomial 
probabilities align to the values of b, where b = 2 ∗ d, for b values of 0, 2, 4, … , 2 ∗ D. From this it is 
straightforward that the expected value of b2 is 4 times the expected value of d2. The standard deviation of 
b is expected_value{ b2 } minus (expected_value{ b })2, which we see is 4 times expected_value{ d2} 
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minus 4 times (expected_value{ d })2. Therefore, the variance of b is 4 times the variance of d. Finally, 
we see that the standard deviation of b is 2 times the standard deviation of d. None of this is a surprise. 
 
Collecting the results above: 
 

The average value of 𝑏𝑏 = 2 ∗ 𝑀𝑀 ∗ 𝑝𝑝𝑓𝑓 = 𝑁𝑁 ∗ 𝑝𝑝 
 

The standard deviation of b 
 

= 2 ∗ 𝐿𝐿𝑡𝑡𝑎𝑎𝑠𝑠𝑑𝑑𝑎𝑎𝑝𝑝𝑑𝑑 𝑑𝑑𝑝𝑝𝑎𝑎𝑠𝑠𝑎𝑎𝑡𝑡𝑠𝑠𝐿𝐿𝑠𝑠 𝐿𝐿𝑓𝑓 𝑑𝑑  
 

= 2 ∗ �(𝑀𝑀 ∗ 𝑝𝑝𝑓𝑓 ∗ 𝐸𝐸𝑓𝑓) 
 

= 2 ∗ ��(𝑁𝑁 2⁄ ) ∗ 𝑝𝑝 ∗ 𝐸𝐸� 

 
= �2 �(2)⁄ � ∗ �(𝑁𝑁 ∗ 𝑝𝑝 ∗ 𝐸𝐸) 

 
= �(2) ∗ ��(𝑁𝑁 ∗ 𝑝𝑝 ∗ 𝐸𝐸)� 

 
Perhaps this is not a startling result, either. It is good if this is intuitively pleasing or even obvious, but it 
is worth explicitly pointing out that the average of the number of bit errors in N transmitted bits is the 
same as given by the formula N ∗ p, which is the same as the formula that would apply if b were an IID 
binomial distributed random variable, but it is not IID. So, this is interesting, as noted in the previous 
paragraph. But even more importantly, we see that the standard deviation of b is √2 times the standard 
deviation which would occur if b were binomially distributed with the same number of transmitted bits, 
N, and same bit error probability, p. Thus, while not surprising, we definitively see that the standard 
deviation of b is larger in this construction than if it were IID and binomially distributed with the same 
parameters N and p. The correlation of the bit errors has led to the standard deviation of the number of bit 
errors in N transmitted bits to be larger than when the bit errors are IID, although the expected number of 
bit errors is the same.  
 
Heuristically, the number of bits is N in both cases, but in the case with the pairs of errors (the case with 
the correlated errors) there is only half as many independent trials which have occurred. Thus, the case 
with IID has had more independent trials, and the resulting number of bit errors tends more strongly to 
the mean (i.e., smaller standard deviation) than the case with correlated errors.  
 
Because the standard deviation of the number of bit errors is larger with the correlation than it is with IID, 
the number of bits that must be transmitted to achieve a given confidence level is larger. With the same 
average value of bit errors in a trial of N bits, but larger standard deviation, the number of bit errors 
falling below the test threshold and into the PASS region (low number of errors) is a higher probability 
with these correlated bit errors than it is with IID bit errors, with the same parameters N and p. That is the 
take-away: Correlated bit errors imply larger number of transmitted bits to achieve the same confidence 
level as with IID bit errors.  
 
In the example above, with two bits per trial, both correct or both in error, we saw that the standard 
deviation of the number of bit errors in N transmitted bits is the square root of 2 times the standard 
deviation for the IID case. It can be readily shown that if each trial involves the repetition of R bits per 
trial, all in error or all correct, then the standard deviation of the number of bit errors in N transmitted bits 
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is the square root of R times the standard deviation with IID errors. Noting that the standard deviation in 
the IID case is proportional to the square root of N, it is not surprising it can be shown that with the R 
repetitions of bit errors or correct bits, it is required to increase the number of transmitted bits by a 
factor of R to achieve a comparable confidence level test as with IID bit errors.  
 
A real example from communications practice is instructive, which is similar to the previous (and 
somewhat artificial) example of multiple bits per trial; in that previous example, all of the bits in a single 
trial are correct or all bits are in error in each trial result. This example occurs with the real-world case of 
differentially demodulated data, where the carrier and phase reference for a BPSK bit decision is the 
previously received bit. For example, a phase shift of 0 degrees from the previous bit could be decided as 
“0” and a phase shift of 180 degrees could be decided as “1”. It can be shown that demodulated bit errors 
occur in pairs in this scheme. Consider each bit interval as a “symbol,” and two such “symbols” in 
succession are processed to make a bit decision of one bit; but each subsequent new “symbol” received is 
processed with the preceding “symbol” and produces another bit decision.  
 
In this demodulation, an error in a single symbol will result in two demodulated bit errors: 1) the bit 
determined when the symbol is received, and 2) the bit determined when the next symbol is received, and 
the errored symbol is used as the reference. It is a fair assumption to say that the “symbols” are each an 
independent trial. Unlike the previous example with a pair of bits for each trial, there is a one-to-one 
alignment of the “trials” or “symbols” and the number of bits, but a single trial error will result in a pair of 
bit errors.  
 
Complicating matters, two consecutive symbol errors will result in an error pattern of {Bit Error, Correct 
Bit, Bit Error}. The pattern continues, with consecutive symbol errors yielding only a pair of bit errors, 
corresponding to the first symbol error of the string, and the bit following the last symbol error. 
 
Working through some algebra for the expression for the variance of the number bit errors with N bits 
transmitted provides the following: 
 
    ps = probability of symbol error 
    qs = probability symbol is correct = 1 – ps  

p = probability of bit error = 2 ∗ ps ∗ qs 
b = number of bit errors in N transmitted bits 
expected value of b = E{ b } = Np 
 

The variance of b yields a complicated expression: 
 

𝑉𝑉𝑎𝑎𝑝𝑝(𝑏𝑏) = 2𝑁𝑁𝑝𝑝[1 − 1 (2𝑁𝑁)⁄ ] �1 − (3 2⁄ )𝑝𝑝
[1 − ((2) (3𝑁𝑁)⁄ )]

[1 − 1 (2𝑁𝑁)⁄ ] � 

 
A little bit of simplification can be provided by collecting the term: 
 

𝑁𝑁𝑎𝑎𝑝𝑝𝑡𝑡𝐿𝐿𝑝𝑝 =
[1 − (2 (3𝑁𝑁)⁄ )]
[1 − (1 (2𝑁𝑁))⁄ ] 

 
Note that Factor approaches unity as N increases. 
 
So that 
 

𝑉𝑉𝑎𝑎𝑝𝑝(𝑏𝑏) = 2𝑁𝑁𝑝𝑝[1 − 1 (2𝑁𝑁)⁄ ][1 − (3 2⁄ )𝑝𝑝 ∗ 𝑁𝑁𝑎𝑎𝑝𝑝𝑡𝑡𝐿𝐿𝑝𝑝] 
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For small values of the differentially demodulated bit error, such as less than 10–2, and number of trials 
large, such as greater than 100, we see 
 

𝑉𝑉𝑎𝑎𝑝𝑝(𝑏𝑏) ≅ 2𝑁𝑁𝑝𝑝 
 
Recall that for IID bits with probability of correct = 1 – p = q, we had the variance of the number of bit 
errors in N bits transmitted given by N ∗ p ∗ q, so that we can write the variance for the number of bit 
errors in the differentially demodulated stream in terms of the expression for the variance under IID 
conditions of the bit errors: 
 

𝑉𝑉𝑎𝑎𝑝𝑝(𝑏𝑏) ≅ 2 ∗ 𝑉𝑉𝑎𝑎𝑝𝑝𝑠𝑠𝑎𝑎𝑠𝑠𝑝𝑝𝑝𝑝 𝐿𝐿𝑓𝑓 𝑏𝑏𝑠𝑠𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝐿𝐿𝑝𝑝𝐿𝐿 𝑤𝑤𝑠𝑠𝑡𝑡ℎ 𝑁𝑁 𝑏𝑏𝑠𝑠𝑡𝑡𝐿𝐿 𝑡𝑡𝑝𝑝𝑎𝑎𝑠𝑠𝐿𝐿𝑚𝑚𝑠𝑠𝑡𝑡𝑡𝑡𝑝𝑝𝑑𝑑 ∗ �
1
𝐸𝐸

� 

 
Since q is close to 1 under the assumption of p being less than 0.01, we see that the standard deviation of 
the number of bit errors in the differentially demodulated stream tends to the square root of 2 times the 
variance which would occur for the N trials with probability of bit error, p, if those bit errors were IID. 
This is the same result for the standard deviation of the number of errors, in the limit as N increases, and 
the error probability of a single trial is small, as we saw in the previous example of two bits per trial, both 
in error or both correct, with the square root of 2 multiplying the binomial IID variance. The square root 
of 2 increase in the standard deviation of the number of bit errors in N transmitted bits in this example 
translates into requiring a doubling of the number of transmitted bits to achieve a comparable confidence 
level test as with IID bit errors. 
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 Analog Optical Links 
The majority of optical links deployed in HFC networks use linear fiber optic signal transmission, based 
upon analog intensity modulation. Many in the field use the term “AM fiber link” or similar. This section 
includes a brief overview of analog intensity modulation, written by Lamar West. For additional 
information about linear fiber optical signal transmission, see Chapter 12 of [7] or Chapter 4 of [4]. 

 Analog intensity modulation 
 

Analog Intensity Modulation 
 

Lamar West, Ph.D. 
LEW Consulting, LLC 

 
Analog intensity modulation is accomplished by varying the intensity of the light in proportion to an 
analog electrical signal. Consider an electrical signal consisting of an RF carrier amplitude modulated by 
a sine wave. This is shown in the time domain in Figure 94. 

 
Figure 94. Electrical signal in the time domain comprising an RF carrier amplitude 

modulated by a sine wave. 

If we then use this electrical signal to analog intensity modulate an optical source the result would be as 
shown in Figure 95. 
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Figure 95. Analog intensity modulated optical source. 

An optical detector such as a photodiode can be used to recover the original RF signal at the output of the 
optical link. The recovered RF signal is directly compatible with conventional RF coaxial networks. 
However, highly linear optical sources and detectors are required for high quality analog intensity 
modulated optical links. 
 
The signal amplitude of the electrical signal at the output of an analog intensity modulated optical link 
depends on the amplitude of the optical signal at the input to the optical receiver. The level of the optical 
signal at the input to the optical receiver in turn depends on the loss encountered in the optical link. As the 
length of the fiber increases, the amplitude of the electrical output of the receiver decreases. A 1 dB 
change in optical loss will result in a 2 dB change in electrical output. 
 
The laser drive current used for analog intensity modulation consists of the sum of an AC signal current 
and a DC bias current, IB. The bias current is greater than the threshold current, ITH, and is chosen to 
produce the desired average optical power level, APL. Analog intensity modulation is illustrated in Figure 
96. 
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Figure 96. Analog intensity modulation. 

 
There is a limit to the amplitude of the input signal current. If the peak value of the input current is greater 
than the difference between the bias current and the threshold current the optical output power will drop 
to zero. The negative peaks of the input signal will be clipped off in this case. This type of distortion is 
known as laser clipping. When laser clipping occurs it is often useful to think of the output as consisting 
of the desired, undistorted signal plus a clipping noise term that just cancels out the peaks of the 
undistorted signal. 
 
It is desirable to operate the input electrical signal at high amplitude in order to maximize carrier-to-noise 
ratios at the output of the fiber-optic link. However, the amplitude must be limited so that any clipping 
noise produced is of sufficiently small amplitude that it will not significantly deteriorate the quality of the 
output signals. Laser drive level is of critical importance in obtaining maximum link performance. 
 
We define the maximum allowable peak current that will not result in clipping, I0,  

( )I I IB TH0 = −  
 
If the input signal consists of the sum of a group of N equal-amplitude RF carriers, such as one would 
encounter in the downstream of a cable network, each with a peak current of A, then we define the optical 
modulation index of each carrier, m, as 

m
A
I

=
0

 

 
We also define an RMS modulation index, µ, for the composite signal as 
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µ = =
=
∑ m

m
N

i

N 2

1 2 2
 

 
There are minute, random fluctuations in the laser output optical power that are not directly related to the 
drive current. These result in fluctuations of the electrical power at the output of the optical link. These 
fluctuations are referred to as relative intensity noise or RIN. Typical vales for RIN in DFB laser links are 
–150 dB/Hz to –170 dB/Hz. This RIN is generally made worse by light that is reflected back into the laser 
output. RIN can be minimized by the inclusion of an optical isolator at the laser output. 
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 Derivation of Return Loss of 
Cascaded Systems 

Return loss measurements are commonly performed on individual components or devices, such as nodes, 
amplifiers, splitters, directional couplers, taps, connectors, set-top boxes, and so on. But what is the return 
loss when components or devices are cascaded? Examples of the latter include back-to-back taps, or a line 
passive and tap, interconnected with a housing-to-housing adapter. The following analysis, authored by 
Richard S. Prodan, Ph.D., shows how to derive a formula that can be used to calculate the return loss of 
two cascaded components or devices. In the analysis, each component or device is referred to as a system. 

 
Return Loss of Cascaded Systems 

Richard S. Prodan 

If SYSTEM 1 has RL1 dB return loss and SYSTEM 2 has RL2 dB return loss, then what is the overall return 
loss of the cascade of SYSTEM 1 and SYSTEM 2? 

Assume the systems have no internal loss (which contributes to insertion loss).  

The reflection coefficient Γ = Er/Ei = 10−RL/20, where Er is reflected voltage and Ei is incident voltage.   

Reflected power ratio for SYSTEM 1 is Γ1
2=10−RL1/10, and for SYSTEM 2 is Γ2

2=10−RL2/10.  

Power transmitted ratio for SYSTEM 1 is 1 − Γ1
2, and for SYSTEM 2 is 1 – Γ2

2. 

The first reflection back from each system will be the largest and subsequent reflections will be heavily 
attenuated, so we approximate by only considering the first reflections. 

If we take A to be the power incident on SYSTEM 1: 

first reflection from SYSTEM 1 is Γ1
2∗A 

incident power on SYSTEM 2 is (1− Γ1
2) ∗ A 

reflected power from SYSTEM 2 is Γ2
2 ∗ (1− Γ1

2) ∗ A 

reverse-transmission of SYSTEM 2 reflected power through SYSTEM 1 is (1 - Γ1
2) ∗ Γ2

2 ∗ (1− Γ1
2) ∗ A 

total power reflected from both systems (first reflection only) is Γ1
2∗A + (1 - Γ1

2) ∗ Γ2
2 ∗ (1− Γ1

2) ∗ A  
 
return loss of total system: 
RL = −10 ∗ log10[Γ1

2 + (1 − Γ1
2) ∗ Γ2

2 ∗ (1− Γ1
2)] = 10 ∗ log10[Γ1

2 + Γ2
2 ∗ (1 − Γ1

2) 2] 

Assume the systems have insertion loss (which includes reflection and internal power losses). Then the 
transmitted power loss 1 – Γ1

2 due to refection only is replaced with the insertion loss L1 = 10−IL1/10, where 
IL1 is the insertion loss of SYSTEM 1 in dB. This yields the following result: 

return loss of total cascaded system RL = −10 ∗ log10[Γ1
2 + L1 ∗ Γ2

2 ∗ L1] = −10 ∗ log10[Γ1
2 + Γ2

2 ∗ L1
2] 

For example, a cascade of two taps back-to-back each with a return loss of 18 dB and insertion loss of 0.5 
dB would have a cascaded return loss of: RL = −10 ∗ log [10−18/10 + 10−18/10 ∗ (10−0.5/10)2] = 15.46 dB 
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 Mathematics of Field Strength 
The material in this section is adapted from an article by Ron Hranac about the mathematics behind signal 
leakage field strength measurements, in particular the origin of the “0.021” factor used when converting 
between microvolts and microvolts per meter. That article originally appeared in the July 1991 issue of 
Communications Technology, with an update published in June of 2008. Used with permission of the 
author. 
 
 
My original 1991 article was inspired by a call from long-time industry friend and colleague Ralph 
Haimowitz, who commented that he had seen a recent paper discussing, among other things, the 
conversion between microvolts (µV) and microvolts per meter (µV/m). The paper used a somewhat 
different multiplier than the familiar “0.021” that’s in the formulas we still use today! Ralph’s concern 
was the effect the multiplier used in the paper would have on leakage measurement calculations 
performed by cable operators. So I sat down with a variety of references and did some number crunching 
related to the math of field strength measurements. Grab a cup of hot coffee and join me as we revisit 
where “0.021” comes from and why it is indeed “0.021.” 
 
When we measure signal leakage, we’re dealing with a source of RF power (the leak), its propagation 
from the source to a location where the measurement is made, and determination of the radio frequency 
(RF) signal’s field strength at the point of measurement. The receive antenna is normally a half-wave 
dipole that is resonant at the frequency of interest. In fact, Federal Communications Commission (FCC) 
rules require that signal leakage measurements be made with a dipole, or at least correlated to a dipole 
measurement. 
 
Most discussions of RF propagation and field strength measurements reference an isotropic radiator or 
antenna. This is a theoretical and ideal point source that radiates equally in all directions and has unity 
gain. Even though an isotropic antenna does not actually exist, it’s useful as a mathematical basis against 
which real-world comparisons can be made. 
 
Imagine an isotropic antenna in free space, radiating a certain amount of RF power (Pt) uniformly in all 
directions. Now imagine a sphere whose surface is some distance from the point of radiation, with that 
point (the isotropic antenna) at the center of the sphere. A good analogy here is a very tiny but bright light 
bulb – an “isotropic radiator” – in the center of a large balloon, with the bulb illuminating the balloon 
from the inside. You could define the amount of power in a given area at the surface of the sphere (or 
balloon) – say, in a square meter – as so many watts per unit of area. Indeed, that’s exactly how RF power 
density is characterized. 
 
In this example, the power density Pd (in watts per square meter) at the surface of the sphere is simply the 
total transmitted power Pt divided by the surface area of the sphere (4πR2): 
 

𝑃𝑃𝑑𝑑 =
𝑃𝑃𝑓𝑓

4𝜋𝜋𝑅𝑅2 
 

(Eq 1) 

The level of the radiated RF power also can be expressed in volts per meter (V/m). If the field strength on 
our imaginary sphere has an intensity of E in V/m, then the power density is: 
 

𝑃𝑃𝑑𝑑 =
𝐸𝐸2

120𝜋𝜋
 

 

(Eq 2) 
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You’ll notice that Equation 2 is an expression of the basic power equation with Ohm’s Law equivalents 
substituted for E and I, or P = E2/R. In this case, 120π is the “resistance,” or impedance of free space 
(approximately 377 ohms). In order for power density to be useful, though, it has to be converted to 
received power. To do that, multiply power density in watts per square meter by the area in square meters 
of the receiving antenna. Keep in mind there is little relationship between the actual size of a dipole 
antenna and its effective area. If you know the linear (“numerical”) gain (G) of an antenna you can 
calculate its effective area (Ae) with the formula: 
 

𝐴𝐴𝑓𝑓 =
𝐺𝐺𝜆𝜆2

4𝜋𝜋
 

 

(Eq 3) 

For a half-wave dipole, the effective area is: 
 

𝐴𝐴𝑓𝑓 =
1.64𝜆𝜆2

4𝜋𝜋
 

 

(Eq 4) 

Note that in Equation 4, 1.64 is the linear gain of a half-wave dipole in free space. Its gain in decibels 
relative to an isotropic antenna is 10log10(1.64) = 2.15 dBi. 
 
As mentioned previously, the power intercepted by a receiving antenna is found by multiplying the 
antenna’s effective area by the power density at the point of measurement: 
 

𝑃𝑃𝑚𝑚 = 𝐴𝐴𝑓𝑓𝑃𝑃𝑑𝑑 
 

(Eq 5) 

Substituting Equations 2 and 4 for Pd and Ae in Equation 5: 
 

𝑃𝑃𝑚𝑚 =
1.64𝜆𝜆2𝐸𝐸2

480𝜋𝜋2  
 

(Eq 6) 

We can now calculate the received voltage at the terminals of a half-wave dipole antenna using the power 
equation variation of Ohm’s Law: 
 

𝐸𝐸𝑚𝑚 = �(𝑃𝑃𝑚𝑚𝑍𝑍) 
 

(Eq 7) 

where Pr is the received power (from Equation 6) and Z is the impedance of a half-wave dipole in free 
space. The latter is Z = 73.13 + j42.5 ohms for an infinitely thin dipole in free space, but we’ll assume no 
reactance and call the dipole’s impedance approximately 73.2 ohms. Substituting Equation 6 for Pr and 
73.2 for Z, Equation 7 becomes: 
 

𝐸𝐸𝑚𝑚 = ��
1.64𝜆𝜆2𝐸𝐸2

480𝜋𝜋2 � 73.2 

 

(Eq 8) 

The free space wavelength of an RF signal can be found with the formula: 
 

𝜆𝜆 =
𝑝𝑝

𝑓𝑓𝑀𝑀𝑀𝑀
 

 

(Eq 9) 

where c is the speed of light (299,792,458 meters per second) and fHz is the frequency in hertz. When 
dealing with frequencies in megahertz the formula becomes: 
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𝜆𝜆 =
299.792458

𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀
 

 

(Eq 10) 

Substituting Equation 10 for λ in Equation 8, a little algebra will reduce Equation 8 to a simpler form: 
  

 

𝐸𝐸𝑚𝑚 =
47.72299333𝐸𝐸

𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀
 

 

(Eq 11) 

With Equation 11 we can calculate the received voltage (in volts) from a half-wave dipole in free space 
when we know the field strength in V/m (E) and the frequency in MHz (fMHz). If you want to change units 
so that the received voltage is in µV and the field strength is in µV/m, the same equation is used. Just 
make sure you use the same units; don’t mix units – for example volts for Er and µV/m for E. 
 
To convert a received voltage in µV to dBmV, use: 
 

𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉 = 20𝑙𝑙𝐿𝐿𝑎𝑎10 �
𝐸𝐸𝑚𝑚

1000
� (Eq 12) 

 
This can be used to modify Equation 11: 
 

𝐸𝐸𝑚𝑚 = 20𝑙𝑙𝐿𝐿𝑎𝑎10 �
0.04772299333𝐸𝐸

𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀
� 

 

(Eq 13) 

Er is the received voltage in µV from the dipole, and E is the field strength in µV/m. Going the other way, 
you can determine the field strength in µV/m if you know the frequency in MHz and the dipole’s received 
signal level in dBmV: 
 

𝜇𝜇𝑉𝑉/𝑚𝑚 = 20.9543 ∗ 𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀 ∗ 10(𝑑𝑑𝑑𝑑𝑘𝑘𝑑𝑑 20⁄ ) 
 

(Eq 14) 

Here 20.9543 is the reciprocal of 0.04772299333 from Equation 13. If you divide by 1,000, you’ll have 
the familiar 0.021 (actually 0.0209543) multiplication factor used in the more common conversion from 
µV to µV/m: 
 

𝜇𝜇𝑉𝑉/𝑚𝑚 = 𝜇𝜇𝑉𝑉 ∗ 0.021 ∗ 𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀 
 

(Eq 15) 

dBmV can be converted to microvolts with the formula: 
 

𝜇𝜇𝑉𝑉 = 10(𝑑𝑑𝑑𝑑𝑘𝑘𝑑𝑑 20⁄ ) ∗ 1000 
 

(Eq 16) 

Thus, when you know the received signal level in dBmV, the conversion to µV/m becomes a slight 
variation of Equation 14: 
 

𝜇𝜇𝑉𝑉 𝑚𝑚⁄ = 10(𝑑𝑑𝑑𝑑𝑘𝑘𝑑𝑑 20⁄ ) ∗ 1000 ∗ 0.021 ∗ 𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀 
 

(Eq 17) 

Now let’s put this to work. Assume that you’ve measured a leaking continuous wave (CW) carrier on 
CTA Ch. 14’s visual carrier frequency (121.2625 MHz) with a half-wave dipole held 3 meters (approx. 
10 feet) from the plant, and the leak’s level at the dipole terminals is –44.6 dBmV. What’s the field 
strength in µV/m? Use Equation 17: 
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𝜇𝜇𝑉𝑉 𝑚𝑚⁄ = 10(−44.6 20⁄ ) ∗ 1000 ∗ 0.021 ∗ 121.2625 
 
𝜇𝜇𝑉𝑉 𝑚𝑚⁄ = 10(−2.23) ∗ 1000 ∗ 0.021 ∗ 121.2625 
 
𝜇𝜇𝑉𝑉 𝑚𝑚⁄ = 0.01 ∗ 1000 ∗ 0.021 ∗ 121.2625 
 
𝜇𝜇𝑉𝑉 𝑚𝑚⁄ = 14.99 
 
The leak’s field strength is about 15 µV/m, which is below the FCC’s 20 µV/m limit. Technically it’s 
legal, but good engineering practice says if you find a leak, fix it. After all, where there’s leakage, there’s 
most likely ingress, too! 
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 Total Power and Power Spectral 
Density 

The material in this section is adapted from an article by Ron Hranac, that originally appeared in the 
Summer 2019 issue of Broadband Library. Used with permission of the author and the publisher. 
 
 
Two RF power-related parameters that can cause confusion are total power (also called total composite 
power) and power spectral density (PSD). Grab a cup of coffee and a scientific calculator. We’re going to 
look at these two parameters a little more closely. 
 
Quick side note: When we measure RF signal level, we are measuring RF power. You might wonder why 
decibel millivolt (dBmV) is used instead of watt (W) for RF power in cable networks. The first reason is 
the typical power levels we deal with are very small. For example, 0 dBmV is only 13.33 nanowatts 
(about 13 billionths of a watt!). Working in the world of the decibel (dB) makes dealing with very small 
and very large numbers much easier. The second reason we use dBmV is because that metric expresses 
power in terms of voltage. For more on the latter, see my Summer 2017 Broadband Library article “The 
Wise and Mighty Decibel,” available on-line at https://broadbandlibrary.com/wise-and-mighty-decibel/ 
 

 Total power 
 As I noted in the Summer 2017 article, “Total power is the combined power of all signals in a given 
frequency range – for instance, the downstream. It’s of concern because excessive total power is what 
overdrives lasers, set-tops, modems, and other devices.” 
 
Calculating total power does require some number crunching, since you can’t simply add the individual 
signal levels in dBmV to get total power. Consider the example in Figure 97, which shows a single RF 
signal whose power is +20 dBmV. For this and all subsequent examples, assume the impedance is 75 
ohms. 
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Figure 97. One RF signal whose power is +20 dBmV. 
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Converting +20 dBmV to power in watts is done as follows. First, convert dBmV to voltage (millivolts in 
this case): 
 
mV = 10(dBmV/20) 
mV = 10(20/20) 
mV = 101 
mV = 10 (which equals 0.010 volt) 
 
Next, convert voltage to watts: 
P = E2/R 
P = (0.010 volt)2/75 ohms 
P = 0.0001/75 
P = 0.00000133 watt, or 1.33 microwatt (µW) 
 
Since there is only one signal, the total power is +20 dBmV or 1.33 µW. What happens to the total power 
if the number of RF signals is increased to four, each at +20 dBmV? Refer to Figure 98.  
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Figure 98. Four RF signals, each whose power is +20 dBmV. What is the total power? 

There are a few ways to solve this. The first is to convert the signal level in dBmV to watts, add the watt 
values, then convert back to dBmV. Since +20 dBmV = 1.33 µW, then 1.33 µW + 1.33 µW + 1.33 µW + 
1.33 µW = 5.33 µW (0.00000533 W) total power.  
 
Next, convert watts to voltage: 
E2 = PR 
E2 = 0.00000533 ∗ 75 
E2 = 0.0004 
E = 0.02 volt, or 20 mV 
 
Finally convert mV to dBmV: 
dBmV = 20log10(mV/1 mV) 
dBmV = 20log10(20 mV/1 mV) 
dBmV = 20 ∗ [log10(20)] 
dBmV = 20 ∗ [1.301] 
dBmV = 26.02 dBmV 
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When all signals have identical power, the following formula can be used to calculate total power: Ptotal = 
Pone + 10log10(N), where Ptotal is total power, Pone is the power of one signal, and N is the number of 
signals. For the previous example, Ptotal = 20 dBmV + 10log10(4) = 26.02 dBmV. 
 
Had the four +20 dBmV values simply been added together as is, the resulting +80 dBmV would have 
been wrong. That’s equal to 1.33 watts! 
 
If the power of each channel is different, a more typical situation, total power is calculated with the 
formula Ptotal = 10log10[10(P1/10) + 10(P2/10) + 10(P3/10) + … + 10(PN/10)], where Ptotal is total power in dBmV, 
and P1, P2, P3…PN are the levels of each channel or signal in dBmV. If you use this formula for the 
previous example, you’ll get +26.02 dBmV total power. 
 
Ok, go refill that coffee cup. More number crunching is on the way. 
 

 Power spectral density 
This parameter is a bit trickier to grasp. If you really like gnarly math, see the in-depth article on 
Wikipedia at https://en.wikipedia.org/wiki/Spectral_density. For the purposes of the discussion here, PSD 
“describes how power of a signal…is distributed over frequency.” PSD is commonly expressed in power 
per hertz (Hz). 
 
For the next example (see Figure 99), assume a 1.6 MHz-wide upstream single carrier quadrature 
amplitude modulation (SC-QAM) signal whose digital channel power is +65 dBmV. 
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Figure 99. Upstream 1.6 MHz wide SC-QAM signal; P = +65 dBmV. 

The PSD is: 
PSD = 65 dBmV – 10log10(1,600,000 Hz) 
PSD = 65 – [10 ∗ log10(1,600,000)] 
PSD = 65 – [10 ∗ (6.20)] 
PSD = 65 – [62.04] 
PSD = 2.96 dBmV/Hz 
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Now let’s replace the 1.6 MHz wide signal with one that’s 3.2 MHz wide, but with the same PSD as 
before (Figure 100). As viewed on a spectrum analyzer, the “haystack” also would be the same height as 
before. Because the width of the SC-QAM signal is doubled, so is its power. That means the digital 
channel power is now +68.01 dBmV, a 3.01 dB increase. What about the PSD? 
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Figure 100. Upstream 3.2 MHz wide SC-QAM signal; P = +68.01 dBmV. 

PSD = 68.01 dBmV – 10log10(3,200,000 Hz) 
PSD = 68.01 – [10 ∗ log10(3,200,000)] 
PSD = 68.01 – [10 ∗ (6.51)] 
PSD = 68.01 – [65.05] 
PSD = 2.96 dBmV/Hz 
 
Next, replace the 3.2 MHz wide SC-QAM signal with one whose bandwidth is 6.4 MHz. As before, we’re 
going to maintain the same PSD (same “haystack” height as viewed on a spectrum analyzer), illustrated in 
Figure 101. Here, too, since the bandwidth of the SC-QAM signal doubled, so did the digital channel 
power, which is now +71.02 dBmV. 
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Figure 101 - Upstream 6.4 MHz wide SC-QAM signal; P = +71.02 dBmV. 

PSD = 71.02 dBmV – 10log10(6,400,000 Hz) 
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PSD = 71.02 – [10 ∗ log10(6,400,000)] 
PSD = 71.02 – [10 ∗ (6.81)] 
PSD = 71.02 – [68.06] 
PSD = 2.96 dBmV/Hz 
 
Showing all three SC-QAM signals together (Figure 102), we see that they have the same PSD of 2.96 
dBmV/Hz and equal haystack heights. The total power is Ptotal = 10log10[10(65/10) + 10(68.01/10) + 10(71.02/10)] 
= 73.45 dBmV. 
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Figure 102 - All three upstream SC-QAM signals. PSD = 2.96 dBmV/Hz, and Ptotal = 73.45 

dBmV. 

 Constant power per carrier versus constant PSD per carrier  
Most cable modem terminations systems (CMTSs) and cable modems are configured for constant power 
per carrier in the upstream. In the next two examples, the total power of the four signals is the same (+57 
dBmV). Figure 103 shows an example of constant power per carrier, with each SC-QAM signal’s digital 
channel power equal to +50.98 dBmV. Note that the haystack heights are different for different 
bandwidth signals, even though each has the same digital channel power. The PSD, however, is different 
for each bandwidth channel: 6.4 MHz channel: –17.08 dBmV/Hz; 3.2 MHz channel: –14.07 dBmV/Hz; 
and the 1.6 MHz channel: –11.06 dBmV/Hz. 
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Figure 103 - Constant power per carrier. Ptotal = +57 dBmV. 

If the four upstream SC-QAM signals were instead set to constant PSD per carrier (–15.46 dBmV/Hz in 
this example), the spectrum display would look like Figure 104. The haystack heights are the same, but 
the per-signal digital channel power is different! 
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Figure 104 - Constant PSD per carrier; Ptotal = +57 dBmV. 

I don’t know about you, but my coffee just ran out. That’s enough math for now. Class dismissed! 
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  Derivation of Node and Amplifier 
Equalizer Total Composite Power Formulas 

The following is a mathematical derivation of the node and amplifier equalizer total composite power 
(TCP) formulas used in Section 30.14, courtesy of Richard S. Prodan, Ph.D. Used with permission. 

Linear Equalizer: 

𝑃𝑃𝑑𝑑𝑑𝑑(f) = mf + b  (dBmV/MHz) ; m ≡ slope, b ≡ intercept 

The total composite power TCP in decibel millivolt (dBmV) from the equalizer start frequency fstart to the 
equalizer stop frequency fstop is given by the logarithm of the integral of PdB(f) as: 

𝑇𝑇𝐶𝐶𝑃𝑃 = 10 𝑙𝑙𝐿𝐿𝑎𝑎10 � � 10(𝑘𝑘𝑓𝑓+𝑐𝑐)/10

𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑐𝑐

𝑑𝑑𝑓𝑓� 

Integration by variable substitution: 

∫ 𝑝𝑝𝑜𝑜 𝑑𝑑𝑣𝑣 = 𝑝𝑝𝑜𝑜 and 𝑝𝑝ln(10) = 10, so 

� 10(𝑘𝑘𝑓𝑓+𝑐𝑐)/10 𝑑𝑑𝑓𝑓 = � 𝑝𝑝ln(10)(𝑘𝑘𝑓𝑓+𝑐𝑐)/10 𝑑𝑑𝑓𝑓 

Let 𝑣𝑣 =  ln(10)(𝑚𝑚𝑓𝑓 + 𝑏𝑏)/10 

𝑑𝑑𝑣𝑣 = 𝑚𝑚
10 𝑡𝑡𝑖𝑖(10) 𝑑𝑑𝑓𝑓  

� 𝑝𝑝ln(10)(𝑘𝑘𝑓𝑓+𝑐𝑐)/10 𝑑𝑑𝑓𝑓 = � 𝑝𝑝𝑜𝑜 𝑑𝑑𝑣𝑣 �𝑘𝑘
10

𝑡𝑡𝑖𝑖(10)� =
𝑝𝑝𝑜𝑜

�𝑘𝑘
10 𝑡𝑡𝑖𝑖(10)�

� =
𝑝𝑝ln(10)(𝑘𝑘𝑓𝑓+𝑐𝑐)/10

�𝑘𝑘
10 𝑡𝑡𝑖𝑖(10)�

=
10(𝑘𝑘𝑓𝑓+𝑐𝑐)/10

�𝑘𝑘
10 𝑡𝑡𝑖𝑖(10)�

 

Therefore 

� 10(𝑘𝑘𝑓𝑓+𝑐𝑐)/10 𝑑𝑑𝑓𝑓 =
10(𝑘𝑘𝑓𝑓+𝑐𝑐)/10

�𝑘𝑘
10 𝑡𝑡𝑖𝑖(10)�

 

 

Cable Equalizer: 

𝑃𝑃𝑑𝑑𝑑𝑑(f) = 𝐸𝐸𝐸𝐸𝑣𝑣𝑎𝑎𝑙𝑙𝑠𝑠𝑧𝑧𝑝𝑝𝑝𝑝 𝑇𝑇𝑠𝑠𝑙𝑙𝑡𝑡 �1 −
�𝑓𝑓𝑚𝑚𝑓𝑓𝑜𝑜𝑐𝑐 − �𝑓𝑓

�𝑓𝑓𝑚𝑚𝑓𝑓𝑜𝑜𝑐𝑐 − �𝑓𝑓𝑚𝑚𝑓𝑓𝑐𝑐𝑚𝑚𝑓𝑓
�  + Transmit Level @ Equalizer Start Frequency

− 10 𝑙𝑙𝐿𝐿𝑎𝑎10(6)   �
𝑑𝑑𝑑𝑑𝑚𝑚𝑉𝑉
𝑅𝑅𝐻𝐻𝑧𝑧

� 
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= 𝐸𝐸𝐸𝐸𝑣𝑣𝑎𝑎𝑙𝑙𝑠𝑠𝑧𝑧𝑝𝑝𝑝𝑝 𝑇𝑇𝑠𝑠𝑙𝑙𝑡𝑡+ Transmit Level @ Equalizer Start Frequency −
𝐸𝐸𝐸𝐸𝑣𝑣𝑎𝑎𝑙𝑙𝑠𝑠𝑧𝑧𝑝𝑝𝑝𝑝 𝑇𝑇𝑠𝑠𝑙𝑙𝑡𝑡 �𝑓𝑓𝑚𝑚𝑓𝑓𝑜𝑜𝑐𝑐

�𝑓𝑓𝑚𝑚𝑓𝑓𝑜𝑜𝑐𝑐 − �𝑓𝑓𝑚𝑚𝑓𝑓𝑐𝑐𝑚𝑚𝑓𝑓

+
𝐸𝐸𝐸𝐸𝑣𝑣𝑎𝑎𝑙𝑙𝑠𝑠𝑧𝑧𝑝𝑝𝑝𝑝 𝑇𝑇𝑠𝑠𝑙𝑙𝑡𝑡 

�𝑓𝑓𝑚𝑚𝑓𝑓𝑜𝑜𝑐𝑐 − �𝑓𝑓𝑚𝑚𝑓𝑓𝑐𝑐𝑚𝑚𝑓𝑓
�𝑓𝑓 

where 

𝑚𝑚 =  
𝐸𝐸𝐸𝐸𝑣𝑣𝑎𝑎𝑙𝑙𝑠𝑠𝑧𝑧𝑝𝑝𝑝𝑝 𝑇𝑇𝑠𝑠𝑙𝑙𝑡𝑡 

�𝑓𝑓𝑚𝑚𝑓𝑓𝑜𝑜𝑐𝑐 − �𝑓𝑓𝑚𝑚𝑓𝑓𝑐𝑐𝑚𝑚𝑓𝑓
≡  𝐿𝐿𝑙𝑙𝐿𝐿𝑝𝑝𝑝𝑝 

𝑏𝑏 = 𝐸𝐸𝐸𝐸𝑣𝑣𝑎𝑎𝑙𝑙𝑠𝑠𝑧𝑧𝑝𝑝𝑝𝑝 𝑇𝑇𝑠𝑠𝑙𝑙𝑡𝑡+ Transmit Level @ Equalizer Start Frequency −  
𝐸𝐸𝐸𝐸𝑣𝑣𝑎𝑎𝑙𝑙𝑠𝑠𝑧𝑧𝑝𝑝𝑝𝑝 𝑇𝑇𝑠𝑠𝑙𝑙𝑡𝑡 �𝑓𝑓𝑚𝑚𝑓𝑓𝑜𝑜𝑐𝑐

�𝑓𝑓𝑚𝑚𝑓𝑓𝑜𝑜𝑐𝑐 − �𝑓𝑓𝑚𝑚𝑓𝑓𝑐𝑐𝑚𝑚𝑓𝑓
 

  = 𝐸𝐸𝐸𝐸𝑣𝑣𝑎𝑎𝑙𝑙𝑠𝑠𝑧𝑧𝑝𝑝𝑝𝑝 𝑇𝑇𝑠𝑠𝑙𝑙𝑡𝑡+ Transmit Level @ Equalizer Start Frequency − m�𝑓𝑓𝑚𝑚𝑓𝑓𝑜𝑜𝑐𝑐 ≡  𝑠𝑠𝑠𝑠𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 

Substituting the linear function slope and intercept into 𝑃𝑃𝑑𝑑𝑑𝑑(f) yields: 

𝑃𝑃𝑑𝑑𝑑𝑑(f) = m�𝑓𝑓+ b  (dBmV/MHz)  

The total composite power TCP in decibel millivolt (dBmV) from the equalizer start frequency fstart to the 
equalizer stop frequency fstop is given by the logarithm of the integral of PdB(f) as: 

𝑇𝑇𝐶𝐶𝑃𝑃 = 10  𝑙𝑙𝐿𝐿𝑎𝑎10 � � 10� 𝑘𝑘�𝑓𝑓+𝑐𝑐 �/10

𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑐𝑐

𝑑𝑑𝑓𝑓�   

Using 𝑝𝑝ln(10) = 10 

� 10�𝑘𝑘�𝑓𝑓+𝑐𝑐�/10 𝑑𝑑𝑓𝑓 = � 𝑝𝑝ln(10)�𝑘𝑘�𝑓𝑓+𝑐𝑐�/10 𝑑𝑑𝑓𝑓 

Let 𝑣𝑣 =  �𝑓𝑓 = 𝑓𝑓
1
2 

Using the Chain Rule 𝑑𝑑
𝑑𝑑𝑓𝑓

𝑓𝑓𝑖𝑖 = 𝑠𝑠𝑓𝑓𝑖𝑖−1 

𝑑𝑑𝑣𝑣 = 1
2�𝑓𝑓

𝑑𝑑𝑓𝑓 hence 𝑑𝑑𝑓𝑓 = 2𝑣𝑣 𝑑𝑑𝑣𝑣 

Substituting variables: 

� 𝑝𝑝ln(10)�𝑘𝑘�𝑓𝑓+𝑐𝑐�/10 𝑑𝑑𝑓𝑓 = 2 � 𝑣𝑣 𝑝𝑝ln(10)(𝑘𝑘𝑜𝑜+𝑐𝑐)/10 𝑑𝑑𝑣𝑣 

Let 𝑎𝑎 = 𝑚𝑚
10 𝑡𝑡𝑖𝑖(10) 𝑣𝑣 and 𝑑𝑑𝑎𝑎 = 𝑚𝑚

10 𝑡𝑡𝑖𝑖(10) 𝑑𝑑𝑣𝑣 
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2 � 𝑣𝑣 𝑝𝑝ln(10)(𝑘𝑘𝑜𝑜+𝑐𝑐)/10 𝑑𝑑𝑣𝑣 = 2 𝑝𝑝ln(10) 𝑐𝑐/10 �
𝑎𝑎

𝑚𝑚
10 𝑐𝑐𝑛𝑛(10)

 𝑝𝑝
ln(10)𝑘𝑘 𝑟𝑟

𝑚𝑚
10 𝑐𝑐𝑛𝑛(10)

/10 𝑑𝑑𝑎𝑎 
𝑚𝑚
10 𝑐𝑐𝑛𝑛(10)

 

=
2�10𝑐𝑐/10�

�𝑘𝑘
10 𝑡𝑡𝑖𝑖(10)�2  � 𝑎𝑎 𝑝𝑝𝑟𝑟 𝑑𝑑𝑎𝑎 

Integrating ∫ 𝑎𝑎 𝑝𝑝𝑟𝑟 𝑑𝑑𝑎𝑎 by parts results in 
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 A Closer Look at the Basics of 
Phase Noise 

Phase noise is introduced and briefly discussed in Section 30.13 and illustrated in Figure 66. The material 
in this appendix provides an overview of a few basics and “breaking down” or simplifying some nuances 
of traditional phase noise literature. The goal is to provide engineers and technologists a “working 
familiarity” with the most fundamental phase noise considerations and ease the reading of literature and 
understanding of commonly occurring phase-noise-related requirements. This section was written by Tom 
Kolze. Used with permission. 

 
A Closer Look at the Basics of Phase Noise  

 
Tom Kolze, Ph.D. 

Broadcom, Inc. 
 

 Introduction 
Phase noise is an important element of communications systems and can impact system performance 
negatively if not managed suitably. Oscillators are at the heart of a system’s phase noise performance, but 
clocking subsystems, synthesis of all the frequencies needed in an implementation, and modulation and 
demodulation functions all involve analyzing and managing phase noise performance.  
 
This appendix is not addressing how aforementioned functions and subsystems are impacted by phase 
noise nor how to flow-down or allocate requirements regarding phase noise. Rather the objective of this 
appendix is to provide a framework for engineers and technologists who work with communications 
systems, and especially cable communications systems, to enhance a heuristic understanding of 
manifestation, specification, and measurement of phase noise, and do so through a treatment that is 
mathematically rigorous, yet involving little math beyond trigonometry and calculus. A goal is to 
especially avoid the introduction and use of “special” functions and unnecessary terminology common to 
some of the more rigorous treatments of phase noise.  
 
Regarding prerequisites for this appendix: the reader should have a familiarity with additive white 
Gaussian noise (AWGN) processes, Fourier transform theory, power spectral density (PSD) of signals, 
systems and signal processing involving lowpass and bandpass filtering, and some basic modulation 
theory. A quick review of these concepts is provided at the beginning, primarily to establish notation 
conventions.  
 

 One-sided, two-sided, single-sideband, double-sideband  
Modulation is fundamental in treatments of phase noise, and so is analysis in the frequency domain, such 
as measurements made using spectrum analyzers. Negative frequencies appear in Fourier transform 
theory and analysis of modulation. Terminology such as “one-sided” PSD, and “two-sided” PSD, are 
common and probably familiar. These terms are encountered and need to be understood to benefit from 
this appendix. Two related, but completely different terms, are “single-sideband” and “double-sideband,” 
which are introduced and clarified, and will be seen to relate to measurements of modulated signals on a 
spectrum analyzer. 
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Power spectral density, S(f). When a signal is measured with a spectrum analyzer, and averaged 
significantly, the spectrum analyzer display shows the PSD of the signal. If a signal has a random nature, 
but is stable, averaging is necessary to obtain repeatable measurements. Stability means that averages will 
converge when taken over a long enough observation time. The PSD has units of power per Hz, such as 
watts/Hz or perhaps volts squared/Hz. With a PSD, the amount of power in a particular finite band, such 
as fL Hz to fH Hz, is the integral of the PSD function S(f) over the frequency band fL to fH. If there is a 
sinusoid at frequency fc, with power P, then the PSD does not have a “power density” in a literal sense, 
defined at fc, but instead has a delta function at fc, with weight P. The delta function of weight P indicates 
the PSD, as a true density does not exist (it is infinite and undefined at fc), but it is such that any integral 
of S(f) which includes fc within its limits will incorporate the power, P, of that delta function at fc.  
 
It is important to note that the PSD, S(f), is not the Fourier transform of the signal itself.  
 
A spectrum analyzer shows the PSD for positive frequencies, f ≥ 0, up to the limit for which the 
equipment is designed to measure. Integrating the function S(f) from 0 Hz to beyond the highest 
frequency component of the signal will produce the total power of the signal. This is called a one-sided 
PSD. 
 
When dealing with Fourier transforms, mathematically a time domain-signal can be evaluated for the 
frequency (power) content in negative values of frequency, f. A two-sided PSD can be defined such that 
Stwo-sided(f) = S(f)/2 for f ≥ 0, and Stwo-sided(f) = S(–f)/2 for f ≤ 0.  
 
Additive white Gaussian noise, n(t). A noise process in the time domain, n(t), which is generated in 
electronic equipment and adds to other signals. When measured with a spectrum analyzer and averaged 
significantly, the spectrum is flat versus frequency, or “white,” with an understanding that the domain of 
frequencies containing energy is finite. The display on the spectrum analyzer, versus frequency, f, 
whatever it may be, is a function S(f). The one-sided PSD of an AWGN process is generally denoted as 
N0, which is “N zero” or “N sub zero.”  The two-sided PSD of an AWGN process is generally denoted by 
N0/2. The units on N0 are watts per Hz, or volts squared per Hz, or similarly.  
 
A histogram of the voltage of the AWGN process n(t) will converge to the Gaussian probability 
distribution. The mean of n(t) is “0” and letting the power of n(t) be P, the standard deviation of the 
Gaussian distribution is σP = square root of P. 
 
Lowpass AWGN. A lowpass AWGN process will be defined by its one-sided PSD value, N0, and its 
bandwidth, B Hz. Consider that the units on the PSD are in watts/Hz, and assume the power of n(t) is P 
watts. The one-sided PSD is such that S(f) = N0 for f between 0 Hz and B Hz, and is zero for f > B Hz. 
Integrating the one-sided PSD from f = 0 Hz to a value larger than B Hz, produces the power of the 
AWGN signal, n(t), and is P = N0B watts. 
 
The two-sided PSD in this example is Stwo-sided(f) = N0/2, and integrating Stwo-sided(f) from very negative f 
to very large positive f, we obtain the integral (N0/2)(2B) because the non-zero range of the two-sided 
PSD covers from –B Hz to +B Hz. The integral (N0/2)(2B) = N0B = P, the total power of the lowpass 
AWGN signal, n(t). 
 
Bandpass AWGN. A bandpass AWGN process will be defined by its one-sided PSD value, N0, and its 
lowest frequency BL and highest frequency, BH, for which it contains energy. The bandwidth of the 
bandpass AWGN signal, B Hz, is given by the frequency difference BH – BL. The value of S(f) is N0, for f 
between BL and BH, and is 0 for all other frequencies, f.  Consider that the units on the PSD are in 
watts/Hz, and assume the power of n(t) is P watts. Integrating the one-sided PSD from f = 0 Hz to a value 
larger than BH Hz, produces the power of the AWGN signal, n(t), and is P = N0(BH – BL) = N0B watts. 
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In-phase (I) and quadrature (Q) representation of bandpass AWGN. For a bandpass AWGN process, 
n(t), with center frequency fc = (BH + BL)/2 which is larger than B, and typically much larger than B, 
there is a common representation of the bandpass process n(t) as a composition of two lowpass AWGN 
processes which are independent (statistically).  
 
The (sufficiently narrowband) bandpass AWGN process n(t), of power P, bandwidth B, center frequency 
fc, and one-sided PSD N0, can be written as: 
 
 n(t) = nI(t)*21/2*sin( 2π fc t ) + nQ(t)*21/2*cos( 2π fc t ),  
  
where nI(t) and nQ(t) are statistically independent lowpass AWGN processes, each of power P/2, 
bandwidth B/2, and one-sided PSD N0. The bandpass AWGN process, n(t), still has power P, of course. 
 
The noise processes nI(t) and nQ(t) are termed the in-phase and quadrature noise components, 
respectively. They are also called “quadrature components” or “baseband quadrature components” of the 
bandpass noise. The 21/2*sin() and 21/2*cos() signals are the quadrature carriers, and each has unity power. 
An alternative decomposition where the quadrature carriers have unity amplitude, and thus each has 
power of “1/2,” results in the baseband quadrature noise components which each have power P: 
 
 n(t) = nI(t)*sin( 2π fc t ) + nQ(t)*cos( 2π fc t ),  
  
where nI(t) and nQ(t) are statistically independent lowpass AWGN processes, each of power P, bandwidth 
B/2, and one-sided PSD 2*N0. 
 
The decomposition with unity amplitude quadrature carriers (the latter shown) helps simplify and unify 
some aspects of the treatment of phase noise; it is beneficial to be familiar with both decompositions, 
which differ only in a scaling factor. There is no distinction between the two decompositions other than 
the strength of the baseband quadrature noise components. The relationship and strength (power) of a 
phase noise process, φ(t), relative to, and associated with, the quadrature AWGN baseband process, nQ(t), 
does depend on which decomposition is used. [The author prefers the latter decomposition, with unity-
amplitude quadrature carriers, for dealing with bandpass AWGN together with phase noise; there is no 
deep “gotcha” involved. The consideration is only to be mindful of the decomposition (scaling) which is 
used in any given treatment, analysis, or requirements allocations, and be mindful of the various factors of 
“2,” which is always a handful in dealing with phase noise, anyway.]  
 
The decompositions of bandpass AWGN into expressions of two lowpass (also called “baseband”) 
AWGN processes, each multiplying one of a pair of quadrature carriers, can take on other forms than 
what is shown above. One variation is exchanging the sin() and cos() quadrature signals, pairing the “in-
phase” noise with the cos(), and another variation is that the sign of the quadrature noise can be negative. 
We will not be using these variations.  
 
Comparing and contrasting phase noise and bandpass AWGN. We will see that phase noise on a 
carrier has similarities to the quadrature noise of bandpass AWGN. Also, two key differences exist 
between bandpass AWGN and a carrier’s phase noise. One difference is that with bandpass AWGN there 
is an in-phase noise term of equal power (and independent) of the quadrature noise term, while with phase 
noise, there is only the quadrature noise present on the carrier. Another difference is that with an 
otherwise ideal carrier that has phase noise, we will see that with a small phase noise process (magnitude 
less than 0.1 radian), the phase noise, which is in quadrature with the carrier, is proportional to the 
carrier amplitude, and has a multiplicative aspect with respect to the carrier (explained further in Section 
K.13). With bandpass AWGN, the quadrature noise term is additive to the carrier, but with bandpass 
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AWGN it is not proportional to the carrier. As such, changing the carrier strength does not change the 
AWGN quadrature noise term, but with the phase noise being proportional to the carrier, increasing the 
carrier amplitude will increase the apparent quadrature noise which is due to the phase noise on the 
carrier. This is revisited in Section K.13. 
 
Power and bandwidth. We have seen for the AWGN lowpass and bandpass noise, and for signals in 
general, that integrating the one-sided PSD over the positive frequencies, or the two-sided PSD over both 
positive and negative frequencies, will provide the power of the noise.  
 
Modulated signals and usefulness of two-sided PSD. The utility of negative frequencies in signal 
spectra is illustrated when the signal is used to modulate a carrier. Consider a lowpass signal m(t) with 
absolute value < 1 and energy all contained below B Hz in the one-sided PSD, M(f). Note that M(f) is the 
PSD of m(t) and not the Fourier transform of m(t).  
 
The two-sided PSD of m(t) is given in terms of the one-sided PSD, M(f), as:  
 
          Mtwo-sided(f) = M(–f)/2, f < 0, 
          Mtwo-sided(f) = M(f)/2, f ≥ 0. 
 
When the signal is used as the message signal in amplitude modulation of a carrier A*sin( 2π fc t) the 
resulting signal is: 
 
          x(t) = (1 + m(t) )*A*sin( 2π fc t ) = A*sin( 2π fc t ) + m(t)*A*sin( 2π fc t )  
 
A spectrum analyzer will display the PSD of the amplitude modulated carrier, x(t): 
 
          ( M(fc – f)/2 )*(A2/2) + (A2/2)*δ(f – fc) + ( M(f – fc)/2 )*(A2/2). 
 
The one-sided PSD of x(t), displayed on a spectrum analyzer, shows the frequencies below the carrier 
frequency, fc, contain the frequency-translated (shifted “right” in the frequency domain by the amount of 
the carrier frequency, fc Hz) negative frequencies of the two-sided PSD of m(t), and it is multiplied by the 
carrier power, A2/2. 
 
The fact that the modulated, or “upconverted” signal, 1 + m(t), has its one-sided PSD revealed as a right-
shifted (in the frequency domain) version of the two-sided PSD of 1 + m(t) is sufficient to justify the 
acceptance of negative frequencies and the utility of two-sided PSDs.  
 
While this example deals with amplitude modulation, when dealing with a carrier with phase modulation 
or a phase noise process, the utility of the two-sided PSD of the baseband phase noise process is useful in 
the same way.   
 
Phase noise process φ(t) and one-sided PSD of φ(t), Sφ(f). In the subsequent sections we will analyze a 
carrier which has a baseband phase process φ(t):  
 
          x(t) = A*sin( 2π fc t + φ(t) )  
 
and the one-sided PSD of φ(t) is denoted Sφ(f), and the two-sided PSD of φ(t) is given by: 
 
          Sφ_two-sided(f) = Sφ(–f)/2, f < 0, 
          Sφ_two-sided(f) = Sφ(f)/2, f ≥ 0. 
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Applying a trigonometry relationship to the phase modulated carrier, x(t), we can see: 
 
          x(t) = cos( φ(t) )*A*sin( 2π fc t ) + sin( φ(t) )*A*cos( 2π fc t ). 
 
We can see that the phase process φ(t) results in quadrature components of the carrier, each amplitude 
modulated by nonlinear functions (sine and cosine) operating on φ(t). When a carrier is amplitude 
modulated by a baseband signal m(t) we saw it was straightforward to find the PSD of the resulting 
signal, but with a phase modulated signal, in general, the resulting PSD is complex due to the fact that the 
resultant is a quadrature upconversion of highly nonlinear functions of φ(t). The quadrature upconversion 
is not prohibitive, but the nonlinear functions operating on φ(t) require more sophisticated math than 
trigonometry and Fourier analysis to develop an informative description, in the general case. 
 
Single-sideband measurement, high-side and low-side. Above, we saw the spectrum analyzer display 
of an amplitude modulated signal, x(t), with baseband signal, m(t): 
 
The spectrum analyzer will display the one-sided PSD of the amplitude modulated carrier, x(t): 
 
         X(f) = ( M(fc – f)/2 )*(A2/2) + (A2/2)*δ(f – fc) + ( M(f – fc)/2 )*(A2/2). 
 
The residual carrier power (at f = fc) is A2/2 and the PSD at frequencies higher than the carrier frequency 
is given by: 
 
         X(f) = ( M(f – fc)/2 )*(A2/2), f > fc.  
 
We define the relative value, compared to the residual carrier power, of the spectrum measured above the 
carrier frequency as the single-sideband measurement, and denote it as ℒ (f), which is spoken as “script 
L of f,” and is also often written as L(f): 
 
 L(f – fc) = {by definition} X(f)/[carrier power] = ( M(f – fc)/2 )*(A2/2)/[A2/2], f > fc. 
 
               L(f – fc) = ( M(f – fc)/2 ), f > fc. 
 
In general, a single-sideband measurement can be made for either the “high-side,” which are the 
frequencies larger than the carrier frequency, or for the “low-side,” which are the frequencies smaller than 
carrier. In the latter, the argument of L(f) is (fc – f). Double-sideband refers to both the high-side and the 
low-side spectrum about the carrier. 
 

 Phase modulation of a carrier and the small signal assumption 
This section addresses phase modulation of a carrier by a signal which introduces a small amount of 
phase deviation, such as less than 0.1 radian (which is less than 5.73 degrees). With the “small signal 
assumption,” there is tremendous simplification in that harmonics (higher orders, nonlinearity) of the 
modulating signal may be neglected. Thus, there is a similarity to amplitude modulation and its 
simplicity, compared to unrestricted phase modulation.  
 
As an example where the small signal assumption with phase modulation does not apply, consider 
traditional FM broadcasting (which is a form of phase modulation). By intention, the phase deviation 
introduced by the frequency modulation in FM broadcasting is large; the “bandwidth expansion” 
associated with traditional “frequency modulation” is significant and contains much of the energy of the 
resultant signal. The significant presence of harmonics (nonlinear terms) of the modulating signal is 
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responsible for the bandwidth expansion characteristic of FM broadcasting, and is even critical to the 
advantages and performance of commercial FM broadcasting.  
 
In the treatment and analysis of phase noise for communications and clock synthesis purposes it is 
reasonable to have a goal, and expectation, for the applicability of the “small signal assumption,” and it is 
advantageous to make use of this simplification, since it is almost always applicable in practical phase 
noise analyses, and it is easy to validate the applicability.  
 
Phase modulation of a carrier and the small signal assumption. The following pages show the 
derivation of a simplified (approximate) expression of the signal resulting when a carrier is phase 
modulated with a baseband phase process of small maximum amplitude (such as amplitude less than 0.1 
radian). 
 
Taylor’s Series expansion around φ = 0 radians: 
 
sin( φ ) = φ – φ3/3! + φ5/5! – … 
 
For | φ | < 0.1 radians, sin (φ ) ≈ φ, within 1 percent (the error is less than 1 percent of φ). 
 
For | φ | < 0.01 radians, sin (φ ) ≈ φ, within 0.01 percent (10–4);  
                                                                                    the magnitude of the error is less than |φ|*10–4.  
 
Note that for the same small angle, the cos() function has a corresponding Taylor’s Series expansion: 
 
cos( φ ) = 1 – φ2/2! + φ4/4! – … 
 
For | φ | < 0.1 radian, cos (φ ) ≈ 1, within 1 percent. 
 
Note that 0.1 radian is approximately 5.73 degrees. 
 
We have analyzed sin(φ) for small φ, and demonstrated that sin (φ ) ≈ φ, now consider that the phase of a 
carrier is φ(t), and φ is small: 
  
     φ(t) = angle in radians, absolute value less than 0.1 radian; 
                     
     x(t) = A*sin( 2π fc t + φ(t) ) = A*sin( 2π fc t )cos( φ(t) ) + A*cos( 2π fc t )sin( φ(t) )   
                                                             ≈ A*sin( 2π fc t ) + A* φ(t) * cos( 2π fc t ) 
 
Thus, neglecting the (insignificant) higher order terms, it can be seen that with the small angle (lower 
power) phase process, the resultant is the ideal carrier term, plus a modulated signal term. The phase 
process, φ(t), is amplitude-modulating the quadrature of the ideal carrier. Thus, the baseband process, 
φ(t), becomes a modulated process, spectrally “centered” on the ideal carrier and additive to the ideal 
carrier, and significantly, proportional to the carrier, due to the factor “A” which multiplies φ(t). 
 
If the power of φ(t) is Pφ radians squared, and the power of the ideal carrier is A2/2 watts, and assuming 
the spectrum of φ(t) is insignificant for frequencies approaching fc, the power of the signal (due to the 
small-amplitude phase noise) added to the ideal carrier is Pφ * (A2/2) . 
 
In terms relative to the ideal carrier’s power, “1” is the power equal to the ideal carrier, the relative power 
in the additive process centered on the ideal carrier is Pφ, and is unitless, since it is watts over watts (or 
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volts2 over volts2, or similar). Recall that Pφ is also the power in the baseband phase process, φ(t), in 
radians2, which is thus also (literally) unitless (because “radians” is literally unitless, as a ratio of lengths). 
 
In terms relative to the ideal carrier’s power, using decibel notation, 0 dBc is the ideal carrier power. The 
entirety of the relative power in the signal or process due to the phase noise, which is centered on the 
ideal carrier, is 10*log10( Pφ ), dBc. 
 
PSD of the carrier with phase noise φ(t), where φ(t) is small. We have seen that the carrier with small-
signal phase modulation is approximated by: 
 
         x(t) = A*sin( 2π fc t + φ(t) ) ≈ A*sin( 2π fc t ) + A* φ(t) * cos( 2π fc t ), 
 
which is similar to the amplitude modulation we analyzed in Section K.2, except now the modulating 
function is φ(t) and the carrier component multiplying the modulating function is the quadrature of the 
unmodulated carrier component.  
 
The PSD of the phase modulated carrier is thus similarly obtained as was the PSD of the amplitude 
modulated signal of Section K.2, where a spectrum analyzer will display the PSD of the phase modulated 
carrier, x(t): 
 
          X(f) = ( Sφ(fc – f)/2 )*(A2/2) + (A2/2)*δ(f – fc) + ( Sφ(f – fc)/2 )*(A2/2). 
 
This is illustrated in Figure 66.  
 
Note that the unmodulated carrier has power A2/2. The PSD in the frequencies higher than fc are seen to 
be (Sφ(f – fc)/2 )*(A2/2). As mentioned in Section K.2, the spectrum measured above the carrier 
frequency, scaled or normalized relative to the residual carrier power, is defined as the single-sideband 
measurement, and denoted as ℒ (f). This is spoken as “script L of f,” and is also often written as L(f). 
 
The single-sideband measurement of the carrier with phase noise is: 
 
 L(f – fc) = {by definition} X(f)/[carrier power] = ( Sφ(f – fc)/2 )*(A2/2)/[A2/2], f > fc. 
 
               L(f – fc) = Sφ(f – fc)/2, f > fc. 
 
               L(f) = Sφ(f)/2 , f > 0. 
 
L(f) is highlighted in Figure 66. Since the value L(f) is a relative measurement, it is literally unitless. 
However, it can be noted that L(f) numerically equals the value of the two-sided PSD of the baseband 
phase noise process. When expressed in decibels, the units of L(f) are dBc/Hz, where 0 dBc is the carrier 
power. The values of L(f) may also be interpreted as radians squared per Hz of a two-sided PSD; the 
practical aspect means that integrating 2 * L(f) over the positive frequencies, a semi-infinite range of 
frequency, will result in the total phase noise power in units of radians squared. Alternatively, integrating 
2 * L(f) from 0 Hz to F Hz results in the phase noise power in units of radians squared for all phase noise 
below F Hz.   
 
As mentioned in Section K.2, in general, a single-sideband phase noise measurement can be made for 
either the “high-side,” which are the frequencies larger than the carrier frequency, or for the “low-side,” 
which are the frequencies smaller than carrier. In the latter, the argument of L(f) is (fc – f). Double-
sideband refers to both the high-side and the low-side spectrum about the carrier. 
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 Phase modulation of a carrier by a small amplitude sinusoidal 
phase process 

In this section we will use the trigonometric relationships: 
 

sin(a)cos(b) = (1/2)sin(a + b) + (1/2)sin(a – b)    
 
 sin(a + b) = sin(a)cos(b) + cos(a)sin(b). 
 
Phase modulation of a carrier by a small amplitude sinusoidal phase process. We have examined a 
carrier with a generalized small phase process, φ(t). Now we consider a specific, sinusoidal phase 
process, φ(t) = R*sin( 2π fm t) radians, with R < 0.1 radian: 
 
            x(t) = A*sin( 2π fc t + φ(t) ) = A*sin( 2π fc t + R*sin( 2π fm t)  ) 
 
We saw in Section K.3,  
           x(t) = A*sin( 2π fc t + φ(t) ) = A*sin( 2π fc t )cos( φ(t) ) + A*cos( 2πfc t )sin( φ(t) )   
 
Substituting the sinusoidal waveform expression for φ(t), and applying the small angle approximations, 
 
           x(t) ≈ A*sin( 2π fc t ) + A* R*sin( 2π fm t) * cos( 2π fc t ) 
         
                                 ≈ A*sin( 2π fc t ) + (A* R/2)sin( 2π [fc – fm] t) + (A* R/2)sin( 2π [fc + fm] t)    
 
(A2)/2 is the power of the carrier component, which is also the ideal carrier (we have applied the small 
angle assumption on the phase process in this example). There is also a lower frequency sideband 
sinusoid with power (A2)(R2)/8, and a higher frequency sideband with the same power, (A2)(R2)/8. In all 
three cases, the units of power are watts, or volts squared (we have been using watts in examples). 
 
The sinusoidal additive phase process, φ(t) = R*sin( 2π fm t) radians, has power (R2)/2 radians squared.  
 
The sinusoidal additive phase process, φ(t), in a one-sided representation of its power spectrum, has all of 
its power, (R2)/2 radians squared, at fm Hz. 
 
The sinusoidal additive phase process, φ(t), in a two-sided representation of its power spectrum, has half 
its power, (R2)/4, at –fm Hz and half its power, (R2)/4, at +fm Hz; the positive frequencies contain half 
the power and the negative frequencies contain half the power.  
 
In relative terms, the power of the ideal carrier, also known as the residual carrier component, is “1” or in 
decibels, 0 dBc. (In actuality, the power of the ideal carrier is reduced by the power which shows up in 
the sidebands, so that the total (relative) power of the ideal carrier is “1,” or 0 dBc, and the residual carrier 
power is slightly smaller than “1.”) 
 
In relative terms, the power of the lower frequency sideband is (R2)/4, and the power of the higher 
frequency sideband is (R2)/4; both are unitless.  
 
It is KEY to note that we have described above the one-sided spectral representation of the carrier as 
impacted by a small-angle sinusoidal phase process (one-sided must be the case with a spectrum analyzer 
display). However, the two offset (from the carrier itself) one-sided delta functions correspond to the two-
sided spectral representation of the (baseband) sinusoidal phase process; it can be recognized that the pair 
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of baseband sinusoidal spectral delta functions originate in the two-sided representation, and are then 
right-shifted in the frequency domain by multiplication with the carrier, ending up ultimately as the one-
sided delta functions as they are shown (negative frequencies are not existing and all the power of the 
signal is represented in the positive frequency domain). Whereas in the two-sided spectral representation 
of the (baseband) sinusoidal phase process the power of each of the spectral delta functions is (R2)/4 
radians squared, in the one-sided spectral representation of the impacted carrier, each sideband has power 
[(A2)/2]*[(R2)/4], and each of the relative sideband’s power is (R2)/4 unitless: 
 
The power spectral density of the one-sided spectrum of a carrier impacted by a phase process, i.e., the 
spectrum displayed in a spectrum analyzer, in terms relative to the carrier (i.e., “dBc”), has the same 
numeric value as the two-sided power spectral density Sφ(f)/2 of the baseband phase process, φ(t), in 
units of radians squared. (This is illustrated in Figure 66.) 
 
In a one-sided representation of its power spectrum, in this example with a small-angle sinusoidal phase 
process, there are three “delta functions,” one each at fc – fm Hz, fc Hz, and fc + fm Hz. The sum of the 
power of the three delta functions in the one-sided representation of the modulated spectrum totals the 
complete signal power.  
 

 Recapping the relation of spectrum analyzer measurement of 
sideband-to-carrier power, L(f), and two-sided power spectral 
density of the phase noise process, Sφ(f)/2, and total phase noise 
power 

The relative power of the combined low-sided and high-sided portions of the modulated spectrum is 
unitless, and integrates to the same numerical value (unitless) as equals the total power of the baseband 
phase process, in units of radians squared.  
 
Equivalently, the high-side integration of the single-sideband L(f) plus the low-side integration of the 
single-sideband L(f), is the double-sideband integration of L(f); while the resulting integrals’ units are 
“unitless” (technically), the numerical result is equal to the total integrated phase noise power in units of 
radians squared. The total phase noise power is the semi-infinite integration (positive frequencies) of 
Sφ(f), the one-sided phase noise PSD. 
 
Symbolically, 
     Sφ(f) is the one-sided power spectral density of the phase noise process, φ(t); defined only for f > 0. 
     The two-sided power spectral density of the phase noise process is Sφ(f)/2, with Sφ (–f)/2 = Sφ (f)/2.  
 
The single-sideband measurement, L(f), at a frequency offset from the carrier, is the measurement of 
JUST the relative power in one sideband of the carrier; using the upper frequency for example, in which 
case for a measurement fmeasured Hz, the argument of L(f) is f = fmeasured – fc Hz.  
 
It is apparent from what we have shown above, L(f) = Sφ(f)/2, when the small angle assumption holds for 
the phase noise process. The units of L(f) in decibels are “dBc” or unitless for a “tone,” or “dBc/Hz” for a 
power spectral density. 
 
Directly following from above, Sφ(f) = 2 * L(f) in units of “dBradians

2/Hz.” 
 
Sφ(f)/2 radians squared per Hz, two-sided = L(f) relative power, or unitless, per Hz, “single-sideband.” 
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Sφ(f) radians squared per Hz, one-sided = 2 * L(f) relative power, or unitless, per Hz, “single-sideband.” 
 

 Relationship of phase noise process and time domain jitter of 
zero-crossings 

There is a relationship between phase noise and time domain jitter. Phase noise manifests as jitter in the 
carrier’s zero-crossings viewed in the time domain, as explained in this section. Further, there are key 
insights we explore in this section that derive from “viewing” phase noise as a time domain jitter of a 
sinusoidal waveform, as well as measuring time domain jitter of a clock signal or carrier.  
 
A static phase value of φ radians in a carrier of frequency fc Hz causes a static time-domain displacement 
of the carrier’s zero-crossings of –φ/fc seconds, found by setting 2*π*fc*t + φ = 2*π radians, and solving 
for t. In that definition of the jitter process, an advancement in the zero-crossings (earlier occurring) 
corresponds to a negative jitter; we can just as well define the jitter with the opposite sense of sign, and let 
an earlier occurrence of the zero-crossings correspond to a positive time-jitter process. We will do that for 
the remainder of the discussion. 
 
A dynamic phase process of φ(t) radians in a carrier of frequency fc Hz causes a dynamic time-domain 
displacement of the carrier’s zero-crossings of τ(t) = φ(t)/fc seconds. 
 
Sinusoidal phase noise of amplitude R radians in a carrier of frequency fc Hz causes sinusoidal time-
domain jitter of amplitude R/fc seconds. 
 
The RMS phase noise, in radians, is the square root of the total integrated phase noise power (integrating 
both the high-side frequencies and the low-side frequencies, if using L(f)). 
 
The time domain RMS jitter, in seconds, of a carrier of frequency fc Hz, is the RMS phase noise, in 
radians, divided by fc in Hz. 
 
Equivalently, the RMS jitter in the time domain (in seconds), divided by the period of the carrier (in 
seconds), is the RMS value of the phase noise.  
 
Converting between the phase noise integrated power (radians squared) and time-domain jitter (seconds 
squared) is given as:  στ

2 = σradians
2/(fc)2     

 
Example: sinusoidal phase noise, amplitude R = 0.01 radian, on a carrier of 100 MHz: 
 
Sφ(f) is a delta function of R2/2 radians squared, which is 5*10–5 radians squared at f = fm Hz,  
which is –43 dBradians

2. 
 
L(f) = Sφ(f)/2 is a delta function of 2.5*10–5 relative to carrier power, which is –46 dBc, at f = fc + fm Hz, 
and another at fc – fm Hz., which is in total, –43 dBc. 
 
It is seen that the total integrated L(f), both the high-side and the low-side, summed (i.e., double-
sideband), numerically equals the total integrated phase noise of the fc Hz carrier, in radians squared: The 
integrated phase noise of the 100 MHz carrier is –43 dBc, or 5*10–5 radians squared. 
 
Time domain zero-crossing RMS jitter, in units of seconds, is the RMS phase noise (the square root of the 
integrated phase noise), in radians, multiplied by 1/fc Hz: 
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The RMS phase noise on the 100 MHz carrier is square root of (5*10–5) radians2, which is approximately 
7*10–3 radians RMS. Converting to units of degrees, the RMS phase noise on the 100 MHz carrier is 
7*10–3 *57.3 ≈ 4 deg RMS. 
 
The time domain jitter of the carrier, due to the phase noise, is:  
 
     7*10–3 radians RMS * 1/(108 Hz) = 7*10–3 * 10–8 seconds = 7*10–2 nanoseconds RMS = 0.07 ns RMS. 
 

 Ideal frequency synthesis, with phase noise on the reference 
Building on the insights of the relationship between phase noise of a carrier, and the corresponding time 
domain jitter of the carrier’s zero-crossings, we can develop further insights into the behavior of ideal 
frequency divider circuits and ideal frequency multipliers. In the analysis, the reference frequency (input 
to the multiplier or divider circuits), has phase noise, but all other aspects of the operations are ideal. 
 
A reference sinusoid with frequency fc and given phase noise process, φ(t), will have time domain jitter 
process (zero-crossing jitter process) of τ(t) = φ(t)/fc seconds.  
 
Analysis of an ideal synthesis of a harmonic frequency, or a subharmonic frequency, to another 
frequency, fc2, shows that the same time domain jitter process on the reference signal, τ(t), also occurs on 
the output signal as well. Filtering functions are typically applied in practice, which will alter the phase 
noise PSD, but in this analysis such filtering is not incorporated.  
 
Since the time domain jitter process is the same on the output signal as the input signal, we can use the 
relationships of Section K.6 and determine the phase process on the output signal corresponding to τ(t). 
The output signal frequency is fc2 Hz so the phase process, φ2(t), is given by φ2(t) = τ(t)*fc2, radians. 
 
The phase noise process of a second frequency, fc2, synthesized from a reference frequency, fc, via 
multiplier and divider circuits, where the reference frequency has phase noise φ(t) radians, inherits the 
phase noise process, scaled by ratio of the output-to-input frequency, φ2(t) = φ(t) *fc2/fc. 
 
With the frequency synthesis, a display on a spectrum analyzer of the single-sideband power spectral 
density, L(f), in units dBc, will verify that the L2(f) of the carrier with the second frequency, fc2, is indeed 
(fc2/fc)2 * L(f) of single-sideband PSD of the reference frequency, fc. For example, if L(f) of a 10 MHz 
reference is –110 dBc/Hz at an offset of 10 kHz, then a synthesized frequency of 200 MHz will have L2(f) 
at 10 kHz offset of 20*log10(fc2/fc) = 26 dB added to L(f), so L2(f) = –110 dBc/Hz + 26 dB = –84 dBc/Hz.  
 
Analog to digital converter (ADC) clock jitter and phase noise. The same analysis (sketched in 
Section K.6) which showed that a sinusoid of fc Hz with a phase noise process, φ(t), experiences time 
domain jitter related to the phase noise as τ(t) = φ(t)/fc seconds, shows that jitter on an ADC clock, and 
thus jitter in the sampling times, results in the digitized waveform (which will be processed assuming the 
sampling was uniformly ideal) having the mirror image jitter, –τ(t). The sign doesn’t matter in this case. 
So, the time domain jitter on the ADC clock becomes the mirror image time domain jitter, –τ(t), on the 
input signals to the ADC. 
 
Interestingly, with a single sinusoid, or with a multitude of sinusoids all presented to the ADC, all are 
sampled with the same jitter process, and thus each digitized sinusoid will individually manifest the phase 
noise from the introduced jitter. It does not really matter how the time domain jitter was introduced to the 
sinusoids, the fact is that the jitter exists for each sinusoid, and thus the “time domain jitter versus carrier 
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phase noise” relationship exists, for each. We can use the equation relating the time domain jitter and 
phase noise, and determine the corresponding phase noise on each sinusoid presented to the ADC: φ(t) = 
τ(t)*fc radians, for each sinusoid, where fc Hz is the frequency of a sinusoid presented to the ADC. 
 
Given the ADC sampling clock has frequency, fclock Hz, and phase noise on this ADC sampling clock, 
φclock(t) radians, then we can determine the sampling clock time domain jitter, and then determine the 
phase noise on a sinusoid presented to the ADC and digitized:  φ(t) = ( φclock(t)/fclock )*fc radians = 
φclock(t)*(fc/fclock) radians. 
 
Note the relationship for the phase noise of a sinusoidal signal ADC’d with a sampling clock which has 
phase noise (just shown), is the same as if the input signal to the ADC were synthesized with frequency 
dividers and multipliers from the ADC sample clock. This is an intuitively pleasing result.  
 
Digital to analog converter (DAC) clock jitter and phase noise. The same analysis (sketched above) 
for the ADC can be shown to be valid for a DAC with phase noise on its reconstruction clock. 
 

 Use of masks in oscillator phase noise specifications 
Phase noise specifications of oscillators often use “masks” of PSD, characterized by a given carrier 
frequency, and a table of offset frequencies, and corresponding maximum allowed Sφ(f), in units of 
dBradians

2/Hz. Alternatively, the specification may be in terms of single-sideband phase noise, L(f). Care 
must be taken in determining which is being specified, since there is a factor of 2 (or 3 dB) scaling for 
Sφ(f) and L(f).  
 
For example, a specification may be for L(f) for a carrier at 10 MHz, and at the offset frequencies 100 Hz, 
1 kHz, 10 kHz, 100 kHz, 300 kHz, 1 MHz, and 3 MHz. (Note: “Decade” values are not always selected.) 
The L(f) requirements may be, as an example: –115 dBc/Hz, –125 dBc/Hz, –140 dBc/Hz, 
 –155 dBc/Hz, –163 dBc/Hz, –170 dBc/Hz, and –175 dBc/Hz, at the corresponding offset frequencies. 
 
Note that the requirements for L(f) are technically unitless, but also, we know that they specify the two-
sided power spectral density limit of the phase noise process, which has units of radians squared per Hz. 
 
To pass the requirement, an oscillator’s phase noise PSD (the two-sided PSD, Sφ(f)/2, if the specification 
is on L(f)) would have to be lower than the specified mask at every frequency from 100 Hz to 3 MHz, 
where the specification mask is interpolated between the given points with a line (linear interpolation) on 
a log-log graph, so both the x-axis (the offset frequency) and the y-axis (the Sφ(f)) are log scales. 
 
Unless specifically discounted in the official requirements, a continuous wave tone, aka discrete 
frequency, such as described in Section K.4, will violate the mask requirement because by definition it 
has an infinite PSD. 
 
Often, some discrete frequency spurs in oscillators are allowed, specified or listed separately from the 
PSD requirements. Even the selection of the measurement bandwidth for determination of L(f) in dBc/Hz 
can be crucial, and a sticking point if not carefully specified; a wider measurement bandwidth will itself 
“smooth out” variations in the L(f), possibly smoothing out a portion of phase noise PSD of the oscillator 
being tested which failed the mask limit. This can become an arguing point between a buyer and a seller, 
if the measurement bandwidth is not listed as part of the requirements.  
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 Specification of integration of the phase noise power over 
specified frequency ranges  

As an alternative to specifying a phase noise mask for an oscillator, or for a modulator (i.e., for a 
transmitted signal’s carrier), specification of integration of the phase noise power over specified 
frequency ranges may be provided. 
 
The specification of integration regions with a cap on the integrated phase noise in each region is 
beneficial, i.e., preferred over a PSD mask specification, if system performance and considerations can 
allow the determination or shaping for such requirements. 
 
The use of integration regions, and caps on the phase noise power within each region, is not really a far 
deviation from a mask PSD requirement, since careful specification of limits on measurement bandwidth 
should be performed even with a specified mask PSD. By specifying frequency intervals, each with a cap 
on the phase noise power in the interval, discrete spurs are included in the integration and need not be 
distinguished from the true PSD. Separate requirements on the number and power of discrete spurs can 
still be levied, in addition to the integration regions and their caps.  
 
The integration regions, as opposed to a spectral PSD mask, is beneficial because it allows purchase of 
oscillators, and design of clocking and synthesizer schemes, which may violate a rigorous mask 
specification by a small amount over an insignificant range of frequencies, while maintaining acceptably 
low integrated phase noise amounts over each specified region. This superior latitude in purchase and 
design of parts and critical subsystems allows cost minimization without sacrificing meaningful 
performance. The cost is simply doing more due-diligence in analyzing the system needs and flow-down 
of allocation to the phase noise and the clocking and oscillator subsystems.  
 
The DOCSIS PHY layer requirements, dating back to DOCSIS 1.0 and through to the current DOCSIS 
3.1, have examples of specification of caps on integrated phase noise power in specified frequency 
intervals. See References at the end of this appendix, immediately after Section K.13. 
 

 Closed form integration formulas for the linear (in log-log 
graphs) interpolation of the PSD masks 

One-sided PSD of phase noise process is Sφ(f), with units of radians2/Hz, and f Hz. 
 
Given two values of Sφ(f):  
         S1 = Sφ(f1) and S2 = Sφ(f2),  
         with coordinate pairs (f1, 10*log10(S1)) and (f2, 10*log10(S2)). 
 
Find the integral of Sφ(f) from f1 to f2, with linear interpolation of log-log graphing of Sφ(f) between the 
two given coordinate points. This involves linearly interpolating Sφ(f) using 10*log10(S) and log10(f).  
 
The slope of the linear interpolation, in log-log graphing, between the two given coordinates is: 
 
         m = [ 10*log10(S2) – log10(S1) ] / [ log10(f2/f1) ]. 
 
The resulting integral is: 
 
     Integral = ∫f1

f2 Sφ(f) df = [ 10/(10 + m) ] * (S1 * f1) * [ (f2/f1)(1 + (m/10)) – 1 ]  radians2, when m ≠ –10 
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     Integral = ʃf1

f2 Sφ(f) df = (S1 * f1) * [ ln(f2/f1) ]  radians2, when m = –10. 
 
When Sφ(f) is proportional to f-1, the slope, m, is –10, which results in the special case for the integral, 
shown above. 
 

 Time domain specification of integrated phase noise  
Specification of integrated phase noise can be given in the time domain, making the specification 
independent of the carrier frequency. When specifying phase noise via integration regions of the offset 
frequency, as described in Section K.9, the caps on the result of the integration (measurement) of phase 
noise power over the various offset frequency regions may be given as an RMS limit, in units of time.  
 
Section K.6 shows the relation of RMS time domain jitter to RMS phase noise in radians, and that the 
relationship holds for the underlying processes, τ(t) and φ(t). The relationship shows a procedure of 
computing the RMS value of time domain jitter by a) integrating L(f) or Sφ(f), with proper factor of 2 if 
needed, b) taking the square root, yielding units of radians RMS, and c) dividing by the carrier frequency. 
The approach is the conversion of the requirement in terms of phase noise power into RMS time domain 
jitter. Any specification of integrated phase noise over any offset frequency region, in units of radians2, 
for a specific carrier frequency, can be converted to an equivalent time domain specification, in units of 
seconds2, and independent of carrier frequency. 
 
When a system or subsystem has many possible carrier frequencies this may be an attractive approach to 
the specification of the phase noise. 
 

 Bandpass AWGN and phase noise, not entirely separable 
The two processes a) bandpass AWGN added to an unmodulated carrier, and b) a carrier with phase 
noise, are two distinct processes. In a system the two are usually specified (or a requirement allowance 
“flowed down”) separately, but in practice the measurement of either one will be corrupted or influenced 
by the presence of the other. This coupling is important to understand. An even stronger statement can be 
made: Some portion of bandpass AWGN IS phase noise, and also, phase noise contributes, or IS, a 
portion of bandpass AWGN. 
 
We have seen bandpass AWGN, n(t), is described in Section K.2 as: 
 
     n(t) = nI(t)*sin( 2π fc t ) + nQ(t)*cos( 2π fc t ),  
  
where nI(t) and nQ(t) are statistically independent lowpass AWGN processes, each of power P, bandwidth 
B/2, and one-sided PSD 2*N0. 
 
And we have seen small power phase noise on a carrier is well-described as: 
 
     x(t) = A*sin( 2π fc t + φ(t) ) ≈ A*sin( 2π fc t ) + A* φ(t) * cos( 2π fc t ) 
 
We noted in Section K.2, and elsewhere, that the phase noise process of an ideal carrier (with small-
amplitude phase noise) is additive, similar to the bandpass AWGN quadrature noise term, but unlike 
AWGN, the phase noise is proportional to the carrier amplitude, as seen by the “A” multiplying φ(t). The 
fact that the phase noise is proportional to the carrier amplitude is one aspect of the multiplicative nature 
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of phase noise; that multiplicative nature is explored more in the next section. In the remainder of this 
section, we will continue examining the proportionality of the phase noise to the carrier amplitude, and 
the relationship of phase noise and bandpass AWGN. 
 
We can assign the power of φ(t) as Pφ radians squared, and the power of the ideal carrier is A2/2 watts, 
and assuming the spectrum of φ(t) is insignificant for frequencies approaching fc, the power of the signal 
added to the ideal carrier is Pφ * (A2/2) watts. 
 
Consider a situation of a carrier with (small) phase noise, and also bandpass AWGN (so the two signals 
are added): 
 
     x(t) = A*sin( 2π fc t + φ(t) ) + n(t) ≈ A*sin( 2π fc t ) + A* φ(t) * cos( 2π fc t ) + n(t) 
 
     x(t) ≈ ( A + nI(t) )*sin( 2π fc t ) + ( A*φ(t) + nQ(t) ) * cos( 2π fc t ) 
 
From the above expression it is apparent that the phase noise and the lowpass AWGN quadrature noise 
add together and modulate the quadrature carrier. An ideal measurement of phase noise will “see” the 
lowpass AWGN quadrature noise ( A*φ(t) + nQ(t) ). Likewise, a measurement of bandpass AWGN will 
be corrupted by the presence of the phase noise. The phase noise will contribute to the measurement of 
the bandpass AWGN power, e.g., ( nQ(t)2 + A2*φ(t)2 + nQ(t)2 + 2*A*φ(t)*nQ(t) ). The latter term will 
generally average to zero, but the phase noise power, weighted proportionally with the carrier power, will 
corrupt the measurement if it is large enough.  
 
There are three possibilities (neglecting for a moment that the resulting situation can vary depending on 
the offset frequencies being measured): a) the phase noise is negligible compared to the bandpass 
AWGN; b) the bandpass AWGN is negligible compared to the phase noise; and c) the relative strengths 
are such that neither is negligible in the combination. It may be that in a frequency range close to the 
carrier that the phase noise dominates the bandpass AWGN, and that for far-out offset frequencies from 
the carrier, it may be that the bandpass AWGN dominates the phase noise. If this is the case, it is likely 
that at some offset frequencies the two noise sources or noise types will be comparable in their power. 
 
It IS true that with both bandpass AWGN and phase noise present, with parameters such that the one is 
not negligible compared to the other, it is even arguable that the lowpass AWGN quadrature noise, nQ(t), 
IS phase noise. The only thing that prevents the converse statement, that the phase noise is arguably 
lowpass AWGN quadrature noise, is that the phase noise is not necessarily spectrally flat.  
 
In fact, it may just be semantics, but a strong argument can be made that given an observation of “white” 
(spectrally flat) quadrature noise, it is not possible to categorize it as just flat phase noise or just 
quadrature noise; in essence, the noise is simultaneously both.   
 
In making specifications for either of these two types of noise, and in designing testing to measure the 
performance or amount of presence of these two types of noise, the reader should be left with the correct 
impression that both must be considered, in their anticipated and allowed amounts. It is necessary to 
understand that the measurement (and thus validation of meeting the requirements) of each will be 
potentially impacted by the other. The specifications and test limits for each of the types of noise have to 
be synergistic.  
 
It is worth noting that if there is some control of the signals, a determination of the decomposition 
between the phase noise and bandpass AWGN is possible, such as changing the carrier amplitude. This 
will change the phase noise component relative to the bandpass AWGN. Other means of assessing the 
presence of the two different types of noise can involve examining different offset frequency bands, and 
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comparing the in-phase lowpass AWGN power (if it is possible in the existing test configurations; it is 
practically and theoretically possible in most cases) with the quadrature noise power, or other imbalance 
in the two quadrature noise processes, or correlation with aspects of the signal, if the carrier is data 
modulated. This is a topic that is beyond the scope of this treatment.  
 
In a well-designed system operating as intended, it will not be important to determine which noise types 
are dominating, but in a broken system it may be good to know. It is the concern of this writing to 
understand the fundamentals, without going into designing and trouble-shooting systems. 
 

 Phase noise and a phase-modulated carrier 
In this section we illustrate that phase noise has a multiplicative nature, which is most evident when there 
is a message89 which is phase modulating the carrier. The fact that the phase noise is proportional to the 
carrier amplitude is one aspect of the multiplicative nature of phase noise, and that was fully explored in 
the previous section. 
 
When multiplying complex numbers, the magnitudes multiply, but the multiplication also results in the 
phases adding. Phase noise is precisely the same as multiplying complex numbers, where a) the phase 
noise is proportional to the carrier amplitude (multiplication of the magnitudes), and b) overall phase of 
the modulated carrier is the addition of i) the signal phase due to the message and ii) the phase noise.  
 
Equations help to nail down the multiplicative nature of phase noise upon a carrier with intended phase 
modulation.  
 
We have analyzed sin(φ) for small φ, and demonstrated that sin(φ) ≈ φ, now consider that the phase of a 
carrier is the sum of θ(t) and φ(t), where θ(t) is a message and is not small, covering a full range of 2π 
radians, and φ is the small phase noise as before: 
  
     φ(t) = angle in radians, absolute value less than 0.1 radian; 
                     
     x(t) = A*sin( 2π fc t + θ(t) + φ(t) ) = A*sin( 2π fc t + θ(t) )cos( φ(t) ) + A*cos( 2π fc t + θ(t) )sin( φ(t) )   
                                                             ≈ A*sin( 2π fc t + θ(t) ) + A* φ(t) * cos( 2π fc t + θ(t) ) 
 
It is apparent that after applying the small angle approximations for the phase noise process, what remains 
is the carrier with its (undistorted) ideal phase modulation by the message, θ(t), and then another term, a 
term additive to the ideal phase modulated carrier, which is the quadrature of the ideal phase modulated 
carrier, but this term (quadrature of the ideal signal) is multiplied by the phase noise process. 
 
Without the message modulating the carrier, this expression was used in the previous section to show that 
the additive phase noise process was proportional to the carrier. We see this is still the case even when the 
carrier is phase modulated by a message. We also see that the phase of the carrier is the sum of the 

 
89 In this context, the term "message" can be thought of as analogous to data. The concept of “message” has been 
used in communications theory for decades. For instance, the 1948 "A Mathematical Theory of Communication" by 
Shannon describes a model for communication (The Bell System Technical Journal, Vol. 27, pp. 379–423, 623–656, 
July, October, 1948). The sender (or information source) is the originator of a message; the encoder (e.g., 
transmitter) converts the message into signals such as electromagnetic waves; the message is transported from 
encoder to decoder through a channel; the decoder converts the signals into a message; and the receiver is the 
destination of the message from the sender. 
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message-induced phase and the phase noise itself, so this is exactly the result with multiplication of 
complex numbers.  
 
A phase modulated carrier, even with large phase deviation by the message, still is impacted by 
small angle phase noise in the same fashion as complex numbers multiply: a) amplitude is 
multiplied, and b) phases add. Even with the multiplicative nature of the phase noise, the equation 
above shows it is still also an additive process onto the ideal carrier. A noise term is added which is 
proportional to the carrier amplitude and proportional to the phase noise process. This noise term is 
amplitude modulating the quadrature of the ideal phase modulated carrier, and thus this term is always in 
quadrature to the ideal signal, even when the signal has phase modulation. A figure helps to illustrate this. 
Figure 105 shows graphs of two sets of clusters around the constellation points of the upper right quadrant 
of a 16-QAM SC-QAM constellation. One set of clusters, represented with the blue points, shows the 
same 10 bandpass AWGN sample values added to the four ideal constellation points of the upper right 
quadrant. Inspection should show that the same 10 noise values are added to the four ideal constellation 
values; this properly illustrates how the bandpass AWGN process will interact with the ideal modulated 
carrier to yield the resultant signal-plus-noise, for each of the four signal values which are depicted in the 
figure. The 10 noise vectors literally add to the signal vector.  
 
The other set of clusters, represented with orange points, shows a phase noise process on the otherwise 
ideal 16-QAM modulated carrier, where the same 10 phase noise sample values are shown as they impact 
each of the four constellation points. First, it is seen that the phase noise is not impacting the amplitude of 
the carrier; there is no in-phase (amplitude) variation contributed with phase noise. All the displacement 
from the ideal constellation point is in quadrature to the ideal modulated carrier. Secondly, the larger 
amount of absolute displacement or rotation, due to the phase noise, for the constellation points with 
larger amplitude is clearly distinguishable. The multiplicative nature of the phase noise acting on the 
carrier is seen as the phase noise adds to the carrier phase regardless of the carrier phase ideal value (and 
recall phase adds as complex numbers are multiplied). The multiplicative nature of the phase noise is also 
seen where the displacement from the ideal constellation point is proportional to the magnitude of the 
ideal modulated carrier: The phase value of the phase noise is the same with a smaller amplitude ideal 
carrier as with a larger amplitude ideal carrier, but the displacement with respect to the ideal constellation 
point location, especially as contrasted to the AWGN, is larger. 
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Figure 105 - 16-QAM constellation quadrant with AWGN (blue dots) and phase noise 

(orange dots), separately. 
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 Decomposing Data 
Communication Efficiency into Four Factors 

“Spectral efficiency” is discussed in Section 29.8, and is introduced as being excerpted and adapted from 
[29]. “QAM-independent system efficiency” is introduced in Section 29.8.2 and is computed for an 
example in Section 29.8.3. This appendix revisits the QAM-independent system efficiency and generates 
a definition for system efficiency, and a decomposition which provides insight and utility. New 
definitions of different but heuristically attractive “efficiencies” are introduced, and their relationships are 
developed and enlightening. This section was written by Tom Kolze. Used with permission. 

 
Decomposing Data Communication Efficiency into Four Factors  

 
Tom Kolze, Ph.D. 

Broadcom, Inc. 
 

 Introduction 
This appendix explores “efficiency” of modulation and coding communication systems, building upon the 
contents of Section 29.8, and the “QAM-independent system efficiency” presented therein. The system 
efficiency in this appendix is the same as the “QAM-independent system efficiency,” but is generalized to 
apply to any modulation and coding system. It is demonstrated in this appendix that the efficiency is 
defined as a measure of the utilization of the time and frequency resource dedicated to the system 
operation; the efficiency is a measure of the percentage of the time-frequency resource which is allocated 
or utilized for transmitting “information,” or information bits (also called in this document, net bits). The 
complement of this efficiency is properly viewed as the “inefficiency” of the system in utilizing resources 
(in utilizing the frequency allocated, during the time of operation).  
 
This appendix provides a) introduction of clarifying terminology, and b) a decomposition of efficiency 
(the “QAM-independent system efficiency” of Section 29.8.2) into a product of four intuitively satisfying 
factors. The approach is generalized, such that it is not restricted or customized for OFDM or SC-QAM, 
or any particular modulation. 
 
One benefit of this approach is the significant insight provided by the decomposition into the four factors. 
Another benefit of this efficiency approach is unification of efficiency calculations, unambiguously 
applicable for any modulation and coding scheme. For example, the same decomposition applies to 
DOCSIS SC-QAM and DOCSIS OFDM.  
 
With this generalized and unifying efficiency approach, accurate and meaningful direct comparison of 
SC-QAM and OFDM is finally achievable. These comparisons have proven elusive and/or controversial 
dating back over a decade, due to differences of opinion regarding “bookkeeping details” – how to 
account for, whether to include or not, factors which seem to be “apples-and-oranges” between the 
schemes attempted to be compared. These difficulties are avoided with the derivation and decomposition 
of efficiency introduced in this appendix.  
 
New definitions of different but heuristically attractive “efficiencies” are introduced, and their 
relationships are developed and enlightening. Section L.2 presents new terms and modifications to “old” 
terms (defined in other sections of this document), which are helpful in understanding, defining, and 
calculating efficiency. Then the four factors are introduced which multiply to generate an overall measure 
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of System Efficiency, which are Information Rate Efficiency, Powered Data Efficiency (the product of 
these two is Bit Stream Efficiency), Symbol Utilization Efficiency, and Time-Frequency Efficiency (the 
product of the latter two is Modulation Efficiency). 
 
The Time-Frequency Efficiency is a measure (percentage) of the generation of symbol “opportunities” 
which are created by the system out of the number possible within a frequency (channel) and time 
allotted. The Symbol Utilization Efficiency is a measure (percentage) of how many of those symbol 
“opportunities” are energized and transmitted through the channel, as opposed to left silent. The Powered 
Data Efficiency (PDE) is the measure (percentage) of how many energized symbols are carrying 
information, i.e., the percentage of data-carrying symbols to the sum of the total number of energized 
symbols (data-carrying plus non-data-carrying). The Information Rate Efficiency (IRE) is the measure 
(percentage) of how much of the data-carrying symbols is dedicated to “information” bits, as opposed to 
“overhead” bits and/or FEC parity bits, etc.  
 
The Bit Stream Efficiency, the product of the IRE and the PDE, is a measure (percentage) of how much 
of the energy in the transmitted symbols is dedicated to information, rather than overhead uses such as 
error correction redundancy, pilots and/or preamble, protocol headers, etc.  
 
Section L.3 shows that Modulation Efficiency is the product of Symbol Utilization Efficiency and Time-
Frequency Efficiency; thus, it follows that the System Efficiency is the product of Bit Stream Efficiency 
and Modulation Efficiency. The Modulation Efficiency is the measure (percentage) of the number of 
energized symbols compared to the number possible based on the channel bandwidth, in any duration of 
time. The Modulation Efficiency is also the symbol rate divided by the channel bandwidth, in Hz.  
 
All these terms are defined and explained further in the following pages. 
 

 New terminology and modified terminology  
Symbol rate, rsym. Symbol rate, rsym, will be defined in this appendix as the number of symbols 
containing energy presented to the channel every second (by the modulator or transmitter). Examples are 
provided in the next section, Section L.3. But as a preview, in OFDM, excluded subcarriers are not 
counted in the symbol rate. 
 
Bits per symbol, sb_net and sb_gross. This term exists and is in common use, but needs the same modifiers, 
“net” and “gross,” that we introduced and added in earlier sections to “bits per second” or bps. The term 
sb is used for bits per symbol in previous sections, and we introduce sb_net and sb_gross to denote the number 
of information bits (i.e., net bits) per symbol and the number of gross bits per symbol, respectively.  
Note that net bits per symbol, sb_net, is given by the equation sb_net = bpsnet/rsym. It is easy to see by 
“following the units,” that the net bits per symbol is given by the net bits per second divided by the 
symbols per second. Similarly, of course, sb_gross = bpsgross/rsym. 
 
Note that the bpsgross and sb_gross have an ambiguity that currently is treated in this Operational Practice in a 
particular manner, and this appendix is following that approach. The ambiguity involves transmitted 
symbols (symbols with energy) which do not contain any data, such as preamble symbols or pilot 
symbols (e.g., pilot subcarriers in OFDM) or PLC symbols (subcarriers) in OFDM. It is apparent from the 
definitions in the preceding paragraph that the sb_net is reduced by accounting for non-data-carrying 
symbols in the total symbols per second, rsym, but this is the convention. When all the data-carrying 
symbols have the same number of gross bits (channel bits) per symbol, this document assigns that same 
value of gross bits per symbol to the non-data-carrying symbols. (The ambiguity mentioned above is how 
to handle the accounting of the gross bits or channel bits in regards to the non-data-carrying symbols.) In 
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counting the non-data-carrying symbols for computing the sb_gross, and assigning (i.e., extrapolating) the 
same gross bits per symbol to the non-data-carrying symbols, the value of sb_gross is the same as the value 
of gross bits per symbol as occurs in the data-carrying-symbols. The sb_net is not affected by this 
assumption or assignment of gross bits upon the non-data-carrying symbols.  
 
In the event that the data-carrying symbols have different values of gross bits per symbol among them, the 
approach recommended here (and applied later in this appendix), is to apply (assign, or extrapolate) the 
average gross bits per symbol of the data-carrying symbols to the non-data-carrying symbols. 
 
Also note that in this Operational Practice, preamble symbols and PLC symbols and the like are 
modulated, and carry information (preamble symbols carry information about timing and frequency, for 
example, if not carrying information in their bits specifically), but these are categorized as non-data-
carrying symbols because they do not contain any of the net bits. 
 
Spectral efficiency, SEnet and SEgross. This term is defined in Section 29.8.1 as the net bit rate (the 
information bits per second) divided by the channel bandwidth in Hz. The equation for spectral efficiency 
is SE = bpsnet/BWHz in Section 29.8.1. In this appendix we will call this spectral efficiency as “net spectral 
efficiency,” so that net spectral efficiency is given by SEnet = bpsnet/BWHz. Similarly, gross spectral 
efficiency is given by SEgross = bpsgross/BWHz. 
 
Symbol block rate. For orthogonal modulations, such as OFDM or S-CDMA, a “block” of symbols is 
created and presented to the channel together. The symbol block rate is the number of blocks presented by 
the modulator or transmitter every second. As examples, for OFDM with FFT period duration of FFT 
seconds, and cyclic prefix duration of CP seconds, there is a new block of symbols presented to the 
channel every FFT + CP seconds. The symbol block rate for OFDM is 1/(FFT + CP) blocks per second. 
For SC-QAM, there is only one symbol in each block, and the symbol block rate for SC-QAM is the same 
as the symbol rate, rsym, when all the possible symbols are energized. 
 
Symbol block duration, Ts. The symbol block duration is the inverse of the symbol block rate, denoted 
with Ts. For the OFDM example, the symbol block duration is FFT + CP seconds. For SC-QAM, the 
symbol block rate is the same as the symbol rate, so the symbol block duration is Ts = 1/rsym seconds. 
 
Symbols per block, Nmod. The number of symbols per block, denoted Nmod, is the number of symbols in 
each block which contain energy. As an example, for OFDM, the excluded subcarriers are not counted in 
Nmod. 
 
Silent symbols per block, Nsilent. The silent symbols are the symbols which do not contain energy, but 
are available to contain energy. It is the choice of the modulation scheme to not put energy into those 
symbols (they are “unused”). As an example, for OFDM, the number of excluded subcarriers in each 
symbol block is Nsilent. 
 
Modulation Efficiency, ME. The Modulation Efficiency, ME, is the number of symbols presented to the 
channel every second divided by the channel bandwidth in Hz. The equation for this is ME = rsym/BWHz. 
An equivalent expression for the Modulation Efficiency is obtained by noting that the modulator presents 
Nmod symbols to the channel every Ts seconds, so ME = Nmod/(BWHz ∗ Ts). As an example, for SC-QAM 
we have noted that Nmod is unity, and we have seen in previous sections that the raised cosine shaping 
factor α relates Ts to BWHz as BWHz = (1 + α)/Ts. Thus, for SC-QAM, ME = 1/(1 + α). 
 
Information Ratio Efficiency, IRE. The Information Ratio Efficiency is the ratio of information bits to 
total bits applied to the modulator, but here no bits are counted in the denominator for non-data-carrying 
transmitted (energized) symbols. This is different from the accounting for sb_gross and bpsgross, which is 
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explained above. There are never any information bits, or net bits, counted for non-data-carrying symbols, 
but there are gross bits (channel bits) assigned for non-data-carrying symbols in the computation of sb_gross 
and bpsgross. The value for the ratio of information bits-to-total bits, neglecting the non-data-carrying 
symbols, is assigned as R for this appendix, but is also the value for IRE.  
 

IRE = R = (information bits/total bits), neglecting the non-data-carrying symbols. 
 

Note that the FEC code rate is typically denoted by r, and the total bits are comprised of the information 
bits plus the parity bits. The FEC layer may involve additional parity checks (i.e., CRC) usually for 
additional error detection. This is the case with D3.1 downstream FEC, for example. The additional CRC 
parity check bits would normally be included in the denominator in the calculation of r. The computation 
of R includes more categories of “overhead” bits in the denominator than just the FEC, so R ≤ r. 
Additional bits included in the denominator for R may include framing bits or header (or tail) bits, as an 
example, especially where the framing is a key part of the PHY layer. This is the case in DOCSIS 3.0 SC-
QAM, as one example.  
 
In DOCSIS 3.1 OFDM the PHY link channel (PLC) and the next codeword pointers (NCPs) do not 
contain information bits (that is the convention for accounting); for this appendix we consider these as 
non-data-carrying symbols, so they do not contribute to the IRE. 
 
It is often a “matter of taste” about how MAC messages are accounted, whether they would be considered 
“overhead” bits or information bits, but in this appendix we count the MAC data as information bits. In 
any treatment of information bit rate, efficiency, and similar, a clear explanation of accounting of what 
constitutes information bits and what are not information bits should be provided. It is certainly the case 
that in a thorough system analysis, the proportion of MAC traffic compared to User Data is an important 
consideration, but the most common practice is to consider MAC traffic as a portion of the information 
data, and it is a “traffic analysis” and not a PHY layer matter to consider how much MAC traffic is 
required in a system.  
 
Powered Data Efficiency, PDE. Powered Data Efficiency is the ratio of data-carrying symbols-to-total 
transmitted (energized) symbols. In a given long duration of time (long enough for stability of the ratio 
we will be computing) the number of data-carrying symbols is Nd and the number of non-data-carrying 
(but energized) symbols is Np. The PDE is given by PDE = ( Nd )/(Nd + Np). Examples of non-data-
carrying symbols are pilots, preamble symbols, and in this appendix, for DOCSIS 3.1 the PLC subcarriers 
and the NCP subcarriers are considered non-data-carrying symbols. It is not necessarily the case that the 
sum (Nd + Np) equals Nmod, the number of energized symbols per block; it could be that the ratio for PDE 
requires multiple symbol blocks to stabilize. The SC-QAM example where there is only one symbol per 
symbol block (Nmod = 1) is precisely such an example. Then, in the upstream SC-QAM it is common that 
there are un-energized symbols as guard-time, so it does take a number of symbol blocks to converge 
PDE in the case of DOCSIS upstream SC-QAM. 
 
Bit Stream Efficiency, BSE. Bit Stream Efficiency is the ratio of information bits (net bits) to gross bits 
in the transmitted signal. This is given in equation form as BSE = bpsnet/bpsgross. However, there is a 
complicating factor which we addressed above, and repeat here, with an “understanding.” The bit stream 
for a modulation and coding system is analyzed for its ratio of information bits to total bits, where the 
total bits include FEC parity bits and perhaps other “overhead” bits, as explained in the discussion above 
for Information Rate Efficiency. Symbols which contain energy but are not carrying information bits (net 
bits), such as pilot symbols or preamble symbols, are categorized as non-data-carrying symbols, as 
explained in discussing PDE above. Symbols such as the subcarriers for DOCSIS 3.1 which are dedicated 
to the PLC and NCPs are also non-data-carrying symbols (discussed above and included in Powered Data 
Efficiency). The Bit Stream Efficiency, defined above, is also calculated as:  
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BSE = bpsnet/bpsgross = (R ∗ Nd)/(Nd + Np) = IRE * PDE.  

 
It is worth repeating that there is potential ambiguity in assigning symbols either as “overhead” (so they 
are included in reducing IRE) or as non-data-carrying symbols (so they are included in reducing PDE). 
These symbols such as DOCSIS 3.1 PLC and NCPs do not carry information bits, but are energized; they 
do carry necessary information for managing the PHY layer, but are definitively NOT MAC information 
nor are they information bits to be included in bpsnet. It has been prior practice for D3.1 to include these 
particular subcarriers as non-data-carrying symbols in performing efficiency calculations, which is 
justified in part because they are not carrying any user data (none of this data passes out of the receiver or 
out of the PHY layer itself), and a different FEC is used than is applied to user data. 
 
Symbol Utilization Efficiency, SUE. Symbol Utilization Efficiency, SUE, is the ratio of energized 
symbols to the sum of both the energized symbols and the non-energized (silent) symbols. As one 
example, for downstream DOCSIS, SC-QAM SUE is unity, every symbol is energized. For upstream SC-
QAM, there are guard-time symbols which are not energized, so the SUE for upstream DOCSIS SC-
QAM will be less than unity. For both upstream and downstream DOCSIS OFDM the SUE is less than 
unity because of (at least) excluded band-edge subcarriers. 
 
Time-Frequency Efficiency, TFE. The Time-Frequency Efficiency is given by computing the ratio of 
the combined number of silent symbols and modulated (energized) symbols, in each block of symbols, to 
the channel bandwidth in Hz, and dividing that ratio by the symbol block duration. The equation for 
Time-Frequency Efficiency is given by TFE = [(Nmod + Nsilent)/BWHz]/Ts. 
 
Note that the Time-Frequency Efficiency can also be expressed as TFE = [(Nmod + Nsilent)/Ts]/BWHz. The 
combined modulated (or energized) symbols plus the silent symbols represent the totality of the symbol 
“opportunities.” This form of the expression for TFE illustrates that the rate of generation of symbol 
opportunities (per second) divided by the channel bandwidth (in Hz), is an inefficiency factor to the 
extent it is less than unity. The form in the preceding paragraph illustrates that to the extent that the 
symbol block duration, Ts, is larger than the ratio of the number of symbol opportunities generated with 
(divided by) a given bandwidth, that this is a view of inefficiency in the time domain. It is the same 
inefficiency, either way. 
  
The TFE is a measurement of the number of symbol opportunities created in a given time-frequency 
space, and when this number is smaller than the number of (complex) dimensions90 in the time-frequency 
space, which equals the product of the time duration and channel bandwidth, it represents an inefficiency.  

 
90 A channel of bandwidth B Hz, and a block of time of T seconds, occupies a “signal space” or time-bandwidth 
space of B ∗ T, which is unitless. In N blocks of such time-bandwidth space, N ∗ B ∗ T, as N gets arbitrarily large, 
the number of independent complex symbols (see Section 29.2) which can be generated, approaches N ∗ B ∗ T.  
This is equivalently stated as a channel with B Hz bandwidth can support a symbol rate (per second) arbitrarily close 
to B symbols per second (N ∗ B ∗ T symbols in N ∗ T seconds is B symbols per second). Note that for system 
designs where the symbol rate approaches the limit of B symbols per second, each symbol endures (far) longer than 
1/B seconds. The B ∗ T time-bandwidth space is said to have B * T complex dimensions, since this is the 
(approachable) upper bound for the number of complex symbols which can be generated every T seconds, 
constrained to B Hz bandwidth. 
For a signal waveform design which supports (provides) the symbol rate approaching the upper bound of B symbols 
per second, the duration (time span) of any one symbol will be large, generally much larger than 1/B seconds. The 
system will be encumbered with larger latency than a system with a more modest symbol rate in the same 
bandwidth. There are implementation and performance considerations for a system design with efficiency such that 
the symbol rate (per second) approaches B (Hz), including increased latency. 
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 System Efficiency as a product of four factors 
We now show that Modulation Efficiency is the product of Symbol Utilization Efficiency and Time-
Frequency Efficiency. This is demonstrated by multiplying SUE ∗ TFE: 
 

SUE ∗ TFE = [(Nmod)]/(Nmod + Nsilent)] ∗ [(Nmod + Nsilent)/BWHz]/Ts.  
 
Canceling the common term in numerator and denominator, SUE ∗ TFE = (Nmod)/(BWHz ∗ Ts), and this is 
the equation directly resulting from the definition of Modulation Efficiency. Thus, ME = SUE ∗ TFE.  
As another note, in Section 29.8.2 the term Seff is defined as “QAM-independent system efficiency,” 
given by the equation Seff = SE/sb, but with our notation of this appendix, we use the definition for Seff 
such that the equation is given by Seff = SEnet/sb_gross. Also, in Section L.2 we have defined 
 

SEnet = bpsnet/BWHz, and we showed that 
sb_gross = bpsgross/rsym.  

 
Substituting these expressions results in Seff = (bpsnet/BWHz)/(bpsgross/rsym).  
 
Rearranging this expression for Seff, we find Seff = (bpsnet/bpsgross)∗(rsym/BWHz).  
 
Now we remind readers that we defined Bit Stream Efficiency as BSE = (bpsnet/bpsgross), and we defined 
Modulation Efficiency as ME = (rsym/BWHz), so we recognize that we have shown 
 

Seff = (bpsnet/bpsgross) ∗ (rsym/BWHz) = BSE ∗ ME. 
 
So, we have shown that the “QAM-independent system efficiency” of Section 29.8.2 is the product 
of the newly defined, and intuitively satisfying, Bit Stream Efficiency (ratio of net bits to gross bits 
in the transmitted stream, with the adjusted values of Section L.2 accounting for energized symbols 
that don’t carry data) and the newly defined Modulation Efficiency, which is the ratio of the symbol 
rate (in seconds) divided by the channel bandwidth (in Hz).  
 
We have further shown (in this section, above) that we can decompose the expression for Modulation 
Efficiency into a product of the Symbol Utilization Efficiency (accounting for silent symbols) and the 
Time-Frequency Efficiency (accounting for the rate of blocks or symbols presented to the channel being 
slower than the channel bandwidth). Thus, we can substitute this product in place of the Modulation 
Efficiency, and yield QAM-independent system efficiency as a product of three terms:  
 

Seff = BSE ∗ SUE ∗ TFE 
 
Writing out the equations,  
 
           Seff = BSE∗ME = (bpsnet/bpsgross) ∗ (rsym/BWHz) = (bpsnet/bpsgross) ∗ (Nmod)/(BWHz ∗ Ts)  
                                     = (bpsnet/bpsgross) ∗ [(Nmod)]/(Nmod + Nsilent)] ∗ [(Nmod + Nsilent)/BWHz]/Ts 
                                     = BSE ∗ SUE ∗ TFE. 
 
This is a very satisfying result for a “system efficiency”; it is a product of three factors which are 
fundamental: 1) the ratio of information bits to the adjusted total bits in the transmitted stream; 2) the 
ratio of energized symbols to the total symbol “opportunities”; and 3) the ratio of the total symbol 
opportunities to the time-frequency space complex dimensions (so, a “time domain inefficiency” or a 
“frequency domain inefficiency,” or both, but in truth, these are two sides of the same coin). 
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It is definitely worth noting that we could have further factored the efficiencies involved in computing the 
System Efficiency, Seff = BSE ∗ SUE ∗ TFE, such that Seff = IRE ∗ PDE∗ SUE ∗ TFE. Inasmuch as the 
PDE is unity for DOCSIS SC-QAM downstream, and is notably less than unity for DOCSIS OFDM, 
similar to SUE in this respect, it is a noteworthy additional factorization. 
 
           Seff = BSE∗ME = BSE ∗ SUE ∗ TFE = IRE ∗ PDE ∗ SUE ∗ TFE 
                 = R ∗ [(Nd)/(Nd + Np)] ∗ [(Nmod)]/(Nmod + Nsilent)] ∗ [(Nmod + Nsilent)/BWHz]/Ts. 
 
This is also a very satisfying result for “system efficiency”; it is now a product of four factors which 
are fundamental: 1) the ratio of information bits to total bits, in the data-carrying symbols (non-data-
carrying symbols are not counted); 2) the ratio of data-carrying symbols to the total number of energized 
symbols (data-carrying plus non-data-carrying); 3) the ratio of energized symbols to the total symbol 
“opportunities”; and 4) the ratio of the total symbol opportunities to the time-frequency space complex 
dimensions. 
 
Writing out the four factors in a “word equation”: 
 
     Seff = (information bits per data-carrying symbol/total bits per data-carrying symbol) 
                   ∗ (data-carrying symbols/energized symbols) 
                        ∗ (energized symbols/all possible symbols) ∗ (all possible symbols per second/BW Hz). 
 
It is obvious we can add “per second” to the numerator and denominator of each of the first three terms 
without changing the result. And we can cancel the numerator of the latter two terms with the 
denominator of the preceding term. Performing these operations: 
 
     Seff = (information bits per data-carrying symbol/total bits per data-carrying symbol) 
                   ∗(data-carrying symbols per second/BW Hz) 
      = R * (Nd per second/BW Hz). 
 
This is another expression for Seff as a product of just two terms, each physically apparent. 
 
Seff is a unitless value, as are all the “efficiencies” in this section. It is one point of view that Seff, 
being a product of four fundamental measures of efficiency, is accurately described as “system 
efficiency” without the qualifier of “QAM-independent.”  
 

 Symbol rate and efficiency examples, OFDM and SC-QAM 
For SC-QAM it is straightforward that one new symbol is presented to the channel every Ts seconds. For 
the DOCSIS downstream SC-QAM all the symbols are energized. In upstream DOCSIS some of the 
symbols are used for time-domain guard-time and thus are not energized. For downstream SC-QAM the 
symbol block rate is Ts seconds; the number of modulated (energized) symbols during the symbol block 
duration is one, so Nmod is one. It is seen that rsym = (1/Ts) symbols per second. 
 
The Bit Stream Efficiency for SC-QAM is called the ratio of the net bits to the gross bits, but this is 
adjusted to account for energized symbols which don’t carry any of the data stream bits (as given in 
Section L.2). Redundant bits in FEC are not information bits, nor are bits classified as “header” bits. The 
percentage of information bits compared to all (gross) bits is determined for the modulation and coding 
scheme. The adjusted ratio represents a percentage of the energized symbols which is allocated or 
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dedicated to “information” and not other uses. Then the symbols (if any) that are energized but don’t 
carry any bits are accounted as explained in Section L.2. The Bit Stream Efficiency is the result of the 
information bits fraction of the gross bits, but normalized to one gross bit per symbol; adding to the 
denominator the number of symbols which contain energy but NO bits completes the determination of the 
Bit Stream Efficiency. This was explained via equation in Section L.2. 
 
For downstream DOCSIS SC-QAM the Symbol Utilization Efficiency is unity, SUE = 1, with every 
symbol “opportunity” being energized and no silent symbols in the continuous downstream. 
 
For downstream DOCSIS SC-QAM the Time-Frequency Efficiency is  
 

TFE = [(Nmod + Nsilent)/BWHz]/Ts, 
TFE = [(1 + 0)/BWHz]/Ts = [(1 + 0)/[(1 + α)/Ts]]/Ts = [1/(1 + α)] ∗ (Ts)/Ts = 1/(1 + α).  

 
For SC-QAM, ME = SUE ∗ TFE = 1 ∗ [1/(1 + alpha)] = 1/(1 + alpha). 
 
For DOCSIS SC-QAM, recall that PDE = 1, because there are no non-data-carrying symbols. 
 
The overall System Efficiency for DOCSIS SC-QAM is given by: 
 
           Seff = BSE * ME = (bpsnet/bpsgross) ∗ (rsym/BWHz) =  (bpsnet/bpsgross) ∗ (Nmod)/(BWHz * Ts)  
                                      = BSE ∗ SUE ∗ TFE  
                                     = (bpsnet/bpsgross) ∗ 1/(1 + alpha). 

= IRE ∗ PDE ∗ 1/(1 + alpha). 
   = R ∗ 1 ∗ 1/(1 + alpha) = R/(1 + alpha). 
 
For OFDM the Bit Stream Efficiency calculation is much as for SC-QAM. A subcarrier with energy is 
equivalent to a SC-QAM symbol with energy, in calculating Bit Stream Efficiency. Subcarriers which are 
pilots have a weighting of 0% for their net information. As another example, subcarriers in the PLC do 
not carry payload (user) data, so they too are weighted as 0% net information content. The subcarriers 
which are energized and carry data are weighted with the percentage of information bits that were 
calculated for the bit stream (called R in Section L.2). The data-carrying subcarriers are combined with 
the non-data subcarriers, as shown in Section L.2, to compute the adjusted bpsnet and bpsgross, and the ratio 
of those is the BSE. This BSE is directly analogous to the calculations for SC-QAM and as explained in 
Section L.2. 
 
For OFDM the Symbol Utilization Efficiency is calculated as SUE = [(Nmod)]/(Nmod + Nsilent)].  
Note that the example in Section 29.8.3 has a value NCH, which is the number of subcarriers in the OFDM 
channel, and this can be taken as the value for Nmod + Nsilent. Basically, we are not “counting” the 
subcarriers which are excluded but are outside the channel’s assigned spectrum. Nsilent includes the 
internal excluded subcarriers, and also the excluded guard-band subcarriers, the latter which are denoted 
as NGB in Section 29.8.3. 
 
The OFDM subcarriers within the defined channel spectrum are divided into the following three proper 
subsets: 1) data subcarriers, 2) excluded subcarriers (no energy), and 3) non-zero-valued subcarriers 
which are not carrying data. 
 
The sum of #1 and #3 equals Nmod. Nmod is not limited to data subcarriers. 
 
For OFDM the Time-Frequency Efficiency is calculated as follows.  
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FFT period duration = FFT seconds, and cyclic prefix duration = CP seconds. A new block of symbols is 
presented to the channel every FFT + CP seconds. Thus, the Ts = FFT + CP. The number of symbols in 
each block is the number of subcarriers in the channel which contain energy, Nmod.  
 
For the OFDM channel we have the relationship (Nmod + Nsilent)∗(1/FFT) = BWHz.  
 
This is manipulated to form: (Nmod + Nsilent)/BWHz = FFT. 
 
The Time-Frequency Efficiency for OFDM is then: 
 

 TFE = [(Nmod + Nsilent)/BWHz]/Ts = FFT/(FFT + CP). 
 
This is a very intuitively pleasing result, where we know the time inefficiency is CP/(FFT + CP).  
 
For OFDM, ME = SUE ∗ TFE = [(Nmod)]/(Nmod + Nsilent)] ∗ [FFT/(FFT + CP)]. 
 
The overall System Efficiency for DOCSIS OFDM is given by: 
 
Seff = BSE ∗ ME = (bpsnet/bpsgross) ∗ (rsym/BWHz) = (bpsnet/bpsgross) ∗ (Nmod)/(BWHz ∗ Ts)   
                           = BSE ∗ SUE ∗ TFE = (bpsnet/bpsgross) ∗ [(Nmod)]/(Nmod + Nsilent)] ∗ [FFT/(FFT + CP)]. 
               = IRE ∗ PDE ∗ [(Nmod)]/(Nmod + Nsilent)] ∗ [FFT/(FFT + CP)]. 
   = R ∗ [(Nd)/(Nd + Np)] ∗ [(Nmod)]/(Nmod + Nsilent)] ∗ [FFT/(FFT + CP)]. 
 
Comparison with the results for OFDM in Section 29.8.3 show that the value for Seff above agrees exactly 
term-by-term, with some reorganization.  
 

 Conclusion 
The System Efficiency in this appendix is the same as the “QAM-independent system efficiency” of 
Section 29.8.2, but is generalized to apply to any modulation and coding system. The System Efficiency 
is also shown to be factored into a product of newly defined “efficiencies” which are fundamental and 
heuristically satisfying. It is demonstrated in this appendix that the System Efficiency is defined as a 
measure of the utilization of the time and frequency resource dedicated to the system operation; the 
efficiency is a measure of the percentage of the time-frequency resource which is allocated or utilized for 
transmitting “information,” or information bits (also called in this document, net bits). The complement of 
this efficiency is properly viewed as the “inefficiency” of the system in utilizing resources (in utilizing the 
frequency allocated, during the time of operation). 
 
New definitions of different but heuristically attractive “efficiencies” are introduced, and their 
relationships are developed and enlightening. This appendix provides a decomposition of System 
Efficiency (the “QAM-independent system efficiency” of Section 29.8.2) into a product of four intuitively 
satisfying factors. The approach is generalized, such that it is not restricted or customized for OFDM or 
SC-QAM, or any particular modulation. 
 
The same decomposition applies to DOCSIS SC-QAM and DOCSIS OFDM. 
 
The four factors which multiply to generate an overall measure of System Efficiency are Information Rate 
Efficiency, Powered Data Efficiency (the product of these two is Bit Stream Efficiency), Symbol 
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Utilization Efficiency, and Time-Frequency Efficiency (the product of the latter two is Modulation 
Efficiency): 

• The Time-Frequency Efficiency is a measure (percentage) of the generation of symbol 
“opportunities” which are created by the system out of the number possible within a frequency 
(channel) and time allotted. 
  

• The Symbol Utilization Efficiency is a measure (percentage) of how many of those symbol 
“opportunities” are energized and transmitted through the channel, as opposed to left silent. 
 

• The Powered Data Efficiency (PDE) is the measure (percentage) of how many energized symbols 
are carrying information, i.e., the percentage of data-carrying symbols to the sum of the total 
number of energized symbols (data-carrying plus non-data-carrying).  
 

• The Information Rate Efficiency (IRE) is the measure (percentage) of how much of the data-
carrying symbols is dedicated to “information” bits, as opposed to “overhead” bits and/or FEC 
parity bits, etc.  

The first three efficiency terms listed above, of the four which multiply to create the overall System 
Efficiency, Seff, are an example of a “telescoping” series of factors: The numerator of one term “cancels” 
the denominator of an adjacent term in the order listed above. 
 
The Bit Stream Efficiency is the product of the IRE and the PDE, and is a measure (percentage) of how 
much of the energy in the transmitted symbols is dedicated to information, rather than overhead uses such 
as error correction redundancy, pilots and/or preamble, protocol headers, etc.  
 
The Modulation Efficiency is the product of Symbol Utilization Efficiency and Time-Frequency 
Efficiency. The Modulation Efficiency is the measure (percentage) of the number of energized symbols 
compared to the number possible based on the channel bandwidth, in any duration of time. The 
Modulation Efficiency is also the symbol rate divided by the channel bandwidth, in Hz. 
 
Collecting the two pairs of efficiency factors as shown in the two preceding paragraphs, it follows that the 
System Efficiency is the product of Bit Stream Efficiency and Modulation Efficiency.  
 
We also showed that the System Efficiency could be expressed as yet another product of just two terms, 
each physically apparent: 
 
     Seff = (information bits per data-carrying symbol/total bits per data-carrying symbol) 
                   ∗ (data-carrying symbols per second/BW Hz) 
      = R ∗ (Nd per second/BW Hz). 
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